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Summary. We introduce notion of subgroup, coset of a subgroup, sets of left and
right cosets of a subgroup. We define multiplication of two subset of a group, subset of
reverse elemens of a group, intersection of two subgroups. We define the notion of an index
of a subgroup and prove Lagrange theorem which states that in a finite group the order of the
group equals the order of a subgroup multiplied by the index of the subgroup. Some theorems
that belong rather to [1] are proved.
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The articles [10], [5], [15], [8], [12], [6], [13], [7], [3], [14], [1], [9], [16], [4], [17], [2], and [11]
provide the notation and terminology for this paper.

In this paperx is a set,G is a non empty 1-sorted structure, andA is a subset ofG.
Next we state the proposition

(3)1 If G is finite, thenA is finite.

For simplicity, we adopt the following convention:Y, Z denote sets,k denotes a natural number,
G denotes a group,g, h denote elements ofG, andA denotes a subset ofG.

Let us considerG, A. The functorA−1 yielding a subset ofG is defined as follows:

(Def. 1) A−1 = {g−1 : g∈ A}.

We now state several propositions:

(5)2 x∈ A−1 iff there existsg such thatx = g−1 andg∈ A.

(6) {g}−1 = {g−1}.

(7) {g,h}−1 = {g−1,h−1}.

(8) ( /0the carrier ofG)−1 = /0.

(9) (Ωthe carrier ofG)−1 = the carrier ofG.

(10) A 6= /0 iff A−1 6= /0.

We adopt the following rules:G is a non empty groupoid,A, B, C are subsets ofG, anda, b, g,
g1, g2, h are elements ofG.

Let us considerG and let us considerA, B. The functorA ·B yielding a subset ofG is defined
by:

1 The propositions (1) and (2) have been removed.
2 The proposition (4) has been removed.
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(Def. 2) A·B = {g·h : g∈ A ∧ h∈ B}.

Next we state a number of propositions:

(12)3 x∈ A·B iff there existg, h such thatx = g·h andg∈ A andh∈ B.

(13) A 6= /0 andB 6= /0 iff A·B 6= /0.

(14) If G is associative, then(A·B) ·C = A· (B·C).

(15) For every groupG and for all subsetsA, B of G holds(A·B)−1 = B−1 ·A−1.

(16) A· (B∪C) = A·B∪A·C.

(17) (A∪B) ·C = A·C∪B·C.

(18) A· (B∩C)⊆ (A·B)∩ (A·C).

(19) (A∩B) ·C⊆ (A·C)∩ (B·C).

(20) /0the carrier ofG ·A = /0 andA· /0the carrier ofG = /0.

(21) Let G be a group andA be a subset ofG. SupposeA 6= /0. ThenΩthe carrier ofG ·A = the
carrier ofG andA·Ωthe carrier ofG = the carrier ofG.

(22) {g} · {h}= {g·h}.

(23) {g} · {g1,g2}= {g·g1,g·g2}.

(24) {g1,g2} · {g}= {g1 ·g,g2 ·g}.

(25) {g,h} · {g1,g2}= {g·g1,g·g2,h·g1,h·g2}.

(26) LetG be a group andA be a subset ofG. Suppose that

(i) for all elementsg1, g2 of G such thatg1 ∈ A andg2 ∈ A holdsg1 ·g2 ∈ A, and

(ii) for every elementg of G such thatg∈ A holdsg−1 ∈ A.

ThenA·A = A.

(27) For every groupG and for every subsetA of G such that for every elementg of G such that
g∈ A holdsg−1 ∈ A holdsA−1 = A.

(28) If for all a, b such thata∈ A andb∈ B holdsa·b = b·a, thenA·B = B·A.

(29) If G is a commutative group, thenA·B = B·A.

(30) For every commutative groupG and for all subsetsA, B of G holds(A·B)−1 = A−1 ·B−1.

Let us considerG, g, A. The functorg·A yields a subset ofG and is defined as follows:

(Def. 3) g·A = {g} ·A.

The functorA·g yielding a subset ofG is defined by:

(Def. 4) A·g = A· {g}.

We now state several propositions:

(33)4 x∈ g·A iff there existsh such thatx = g·h andh∈ A.

(34) x∈ A·g iff there existsh such thatx = h·g andh∈ A.

(35) If G is associative, then(g·A) ·B = g· (A·B).

3 The proposition (11) has been removed.
4 The propositions (31) and (32) have been removed.
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(36) If G is associative, then(A·g) ·B = A· (g·B).

(37) If G is associative, then(A·B) ·g = A· (B·g).

(38) If G is associative, then(g·h) ·A = g· (h·A).

(39) If G is associative, then(g·A) ·h = g· (A·h).

(40) If G is associative, then(A·g) ·h = A· (g·h).

(41) /0the carrier ofG ·a = /0 anda· /0the carrier ofG = /0.

We adopt the following convention:G is a group-like non empty groupoid,g, g1, g2 are elements
of G, andA is a subset ofG.

One can prove the following propositions:

(42) LetG be a group anda be an element ofG. ThenΩthe carrier ofG ·a = the carrier ofG and
a·Ωthe carrier ofG = the carrier ofG.

(43) 1G ·A = A andA·1G = A.

(44) If G is a commutative group, theng·A = A·g.

Let G be a group-like non empty groupoid. A group-like non empty groupoid is said to be a
subgroup ofG if it satisfies the conditions (Def. 5).

(Def. 5)(i) The carrier of it⊆ the carrier ofG, and

(ii) the multiplication of it= (the multiplication ofG)�[: the carrier of it, the carrier of it :].

In the sequelH denotes a subgroup ofG andh, h1, h2 denote elements ofH.
One can prove the following propositions:

(48)5 If G is finite, thenH is finite.

(49) If x∈ H, thenx∈G.

(50) h∈G.

(51) h is an element ofG.

(52) If h1 = g1 andh2 = g2, thenh1 ·h2 = g1 ·g2.

Let G be a group. Note that every subgroup ofG is associative.
For simplicity, we adopt the following rules:G, G1, G2, G3 are groups,a, b, g, g1, g2 are

elements ofG, A, B are subsets ofG, I , H, H1, H2, H3 are subgroups ofG, andh is an element ofH.
We now state several propositions:

(53) 1H = 1G.

(54) 1(H1) = 1(H2).

(55) 1G ∈ H.

(56) 1(H1) ∈ H2.

(57) If h = g, thenh−1 = g−1.

(58) ·−1
H = ·−1

G �the carrier ofH.

(59) If g1 ∈ H andg2 ∈ H, theng1 ·g2 ∈ H.

(60) If g∈ H, theng−1 ∈ H.

5 The propositions (45)–(47) have been removed.
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Let us considerG. Note that there exists a subgroup ofG which is strict.
One can prove the following two propositions:

(61) SupposeA 6= /0 and for allg1, g2 such thatg1 ∈ A andg2 ∈ A holdsg1 ·g2 ∈ A and for every
g such thatg ∈ A holdsg−1 ∈ A. Then there exists a strict subgroupH of G such that the
carrier ofH = A.

(62) If G is a commutative group, thenH is commutative.

Let G be a commutative group. Observe that every subgroup ofG is commutative.
Next we state several propositions:

(63) G is a subgroup ofG.

(64) If G1 is a subgroup ofG2 and G2 is a subgroup ofG1, then the groupoid ofG1 = the
groupoid ofG2.

(65) If G1 is a subgroup ofG2 andG2 is a subgroup ofG3, thenG1 is a subgroup ofG3.

(66) If the carrier ofH1 ⊆ the carrier ofH2, thenH1 is a subgroup ofH2.

(67) If for everyg such thatg∈ H1 holdsg∈ H2, thenH1 is a subgroup ofH2.

(68) If the carrier ofH1 = the carrier ofH2, then the groupoid ofH1 = the groupoid ofH2.

(69) If for everyg holdsg∈ H1 iff g∈ H2, then the groupoid ofH1 = the groupoid ofH2.

Let us considerG and letH1, H2 be strict subgroups ofG. Let us observe thatH1 = H2 if and
only if:

(Def. 6) For everyg holdsg∈ H1 iff g∈ H2.

We now state two propositions:

(70) LetG be a strict group andH be a strict subgroup ofG. If the carrier ofH = the carrier of
G, thenH = G.

(71) If for every elementg of G holdsg∈ H, then the groupoid ofH = the groupoid ofG.

Let us considerG. The functor{1}G yielding a strict subgroup ofG is defined by:

(Def. 7) The carrier of{1}G = {1G}.

Let us considerG. The functorΩG yielding a strict subgroup ofG is defined by:

(Def. 8) ΩG = the groupoid ofG.

The following propositions are true:

(75)6 {1}H = {1}G.

(76) {1}(H1) = {1}(H2).

(77) {1}G is a subgroup ofH.

(78) For every strict groupG holds every subgroup ofG is a subgroup ofΩG.

(79) Every strict groupG is a subgroup ofΩG.

(80) {1}G is finite.

6 The propositions (72)–(74) have been removed.
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Let X be a non empty set. One can verify that there exists a subset ofX which is finite and non
empty.

One can prove the following propositions:

(81) ord({1}G) = 1.

(82) For every strict subgroupH of G such thatH is finite and ord(H) = 1 holdsH = {1}G.

(83) Ord(H)≤Ord(G).

(84) If G is finite, then ord(H)≤ ord(G).

(85) For every strict groupG and for every strict subgroupH of G such thatG is finite and
ord(G) = ord(H) holdsH = G.

Let us considerG, H. The functorH yields a subset ofG and is defined by:

(Def. 9) H = the carrier ofH.

One can prove the following propositions:

(87)7 H 6= /0.

(88) x∈ H iff x∈ H.

(89) If g1 ∈ H andg2 ∈ H, theng1 ·g2 ∈ H.

(90) If g∈ H, theng−1 ∈ H.

(91) H ·H = H.

(92) H−1 = H.

(93)(i) If H1 ·H2 = H2 ·H1, then there exists a strict subgroupH of G such that the carrier of
H = H1 ·H2, and

(ii) if there existsH such that the carrier ofH = H1 ·H2, thenH1 ·H2 = H2 ·H1.

(94) If G is a commutative group, then there exists a strict subgroupH of G such that the carrier
of H = H1 ·H2.

Let us considerG, H1, H2. The functorH1∩H2 yields a strict subgroup ofG and is defined by:

(Def. 10) The carrier ofH1∩H2 = H1∩H2.

Next we state several propositions:

(97)8(i) For every subgroupH of G such thatH = H1∩H2 holds the carrier ofH = (the carrier
of H1)∩ (the carrier ofH2), and

(ii) for every strict subgroupH of G such that the carrier ofH = (the carrier ofH1)∩ (the
carrier ofH2) holdsH = H1∩H2.

(98) H1∩H2 = H1∩H2.

(99) x∈ H1∩H2 iff x∈ H1 andx∈ H2.

(100) For every strict subgroupH of G holdsH ∩H = H.

(101) H1∩H2 = H2∩H1.

Let us considerG, H1, H2. Let us notice that the functorH1∩H2 is commutative.
Next we state a number of propositions:

7 The proposition (86) has been removed.
8 The propositions (95) and (96) have been removed.
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(102) (H1∩H2)∩H3 = H1∩ (H2∩H3).

(103) {1}G∩H = {1}G andH ∩{1}G = {1}G.

(104) For every strict groupG and for every strict subgroupH of G holds H ∩ΩG = H and
ΩG∩H = H.

(105) For every strict groupG holdsΩG∩ΩG = G.

(106) H1∩H2 is a subgroup ofH1 andH1∩H2 is a subgroup ofH2.

(107) For every strict subgroupH1 of G holdsH1 is a subgroup ofH2 iff H1∩H2 = H1.

(108) If H1 is a subgroup ofH2, thenH1∩H3 is a subgroup ofH2.

(109) If H1 is a subgroup ofH2 and a subgroup ofH3, thenH1 is a subgroup ofH2∩H3.

(110) If H1 is a subgroup ofH2, thenH1∩H3 is a subgroup ofH2∩H3.

(111) If H1 is finite orH2 is finite, thenH1∩H2 is finite.

Let us considerG, H, A. The functorA·H yielding a subset ofG is defined by:

(Def. 11) A·H = A·H.

The functorH ·A yields a subset ofG and is defined by:

(Def. 12) H ·A = H ·A.

One can prove the following propositions:

(114)9 x∈ A·H iff there existg1, g2 such thatx = g1 ·g2 andg1 ∈ A andg2 ∈ H.

(115) x∈ H ·A iff there existg1, g2 such thatx = g1 ·g2 andg1 ∈ H andg2 ∈ A.

(116) (A·B) ·H = A· (B·H).

(117) (A·H) ·B = A· (H ·B).

(118) (H ·A) ·B = H · (A·B).

(119) (A·H1) ·H2 = A· (H1 ·H2).

(120) (H1 ·A) ·H2 = H1 · (A·H2).

(121) (H1 ·H2) ·A = H1 · (H2 ·A).

(122) If G is a commutative group, thenA·H = H ·A.

Let us considerG, H, a. The functora·H yielding a subset ofG is defined as follows:

(Def. 13) a·H = a·H.

The functorH ·a yields a subset ofG and is defined by:

(Def. 14) H ·a = H ·a.

We now state a number of propositions:

(125)10 x∈ a·H iff there existsg such thatx = a·g andg∈ H.

(126) x∈ H ·a iff there existsg such thatx = g·a andg∈ H.

(127) (a·b) ·H = a· (b·H).

(128) (a·H) ·b = a· (H ·b).

(129) (H ·a) ·b = H · (a·b).

(130) a∈ a·H anda∈ H ·a.

(132)11 1G ·H = H andH ·1G = H.

9 The propositions (112) and (113) have been removed.
10 The propositions (123) and (124) have been removed.
11 The proposition (131) has been removed.
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(133) {1}G ·a = {a} anda· {1}G = {a}.

(134) a·ΩG = the carrier ofG andΩG ·a = the carrier ofG.

(135) If G is a commutative group, thena·H = H ·a.

(136) a∈ H iff a·H = H.

(137) a·H = b·H iff b−1 ·a∈ H.

(138) a·H = b·H iff a·H meetsb·H.

(139) (a·b) ·H ⊆ a·H · (b·H).

(140) H ⊆ a·H · (a−1 ·H) andH ⊆ a−1 ·H · (a·H).

(141) a2 ·H ⊆ a·H · (a·H).

(142) a∈ H iff H ·a = H.

(143) H ·a = H ·b iff b·a−1 ∈ H.

(144) H ·a = H ·b iff H ·a meetsH ·b.

(145) (H ·a) ·b⊆ H ·a· (H ·b).

(146) H ⊆ H ·a· (H ·a−1) andH ⊆ H ·a−1 · (H ·a).

(147) H ·a2 ⊆ H ·a· (H ·a).

(148) a· (H1∩H2) = (a·H1)∩ (a·H2).

(149) (H1∩H2) ·a = (H1 ·a)∩ (H2 ·a).

(150) There exists a strict subgroupH1 of G such that the carrier ofH1 = a·H2 ·a−1.

(151) a·H ≈ b·H.

(152) a·H ≈ H ·b.

(153) H ·a≈ H ·b.

(154) H ≈ a·H andH ≈ H ·a.

(155) Ord(H) = a·H and Ord(H) = H ·a.

(156) If H is finite, then there exist finite setsB, C such thatB= a·H andC = H ·a and ord(H) =
cardB and ord(H) = cardC.

The schemeSubFamCompdeals with a setA , a familyB of subsets ofA , a familyC of subsets
of A , and a unary predicateP , and states that:

B = C
provided the following conditions are met:

• For every subsetX of A holdsX ∈ B iff P [X], and
• For every subsetX of A holdsX ∈ C iff P [X].

Let us considerG, H. The left cosets ofH yielding a family of subsets ofG is defined by:

(Def. 15) A∈ the left cosets ofH iff there existsa such thatA = a·H.

The right cosets ofH yields a family of subsets ofG and is defined as follows:

(Def. 16) A∈ the right cosets ofH iff there existsa such thatA = H ·a.

The following propositions are true:
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(164)12 If G is finite, then the right cosets ofH is finite and the left cosets ofH is finite.

(165) H ∈ the left cosets ofH andH ∈ the right cosets ofH.

(166) The left cosets ofH ≈ the right cosets ofH.

(167)
⋃

(the left cosets ofH) = the carrier ofG and
⋃

(the right cosets ofH) = the carrier ofG.

(168) The left cosets of{1}G = {{a}}.

(169) The right cosets of{1}G = {{a}}.

(170) For every strict subgroupH of G such that the left cosets ofH = {{a}} holdsH = {1}G.

(171) For every strict subgroupH of G such that the right cosets ofH = {{a}} holdsH = {1}G.

(172) The left cosets ofΩG = {the carrier ofG} and the right cosets ofΩG = {the carrier ofG}.

(173) LetG be a strict group andH be a strict subgroup ofG. If the left cosets ofH = {the carrier
of G}, thenH = G.

(174) LetG be a strict group andH be a strict subgroup ofG. If the right cosets ofH = {the
carrier ofG}, thenH = G.

Let us considerG, H. The functor|• : H| yields a cardinal number and is defined as follows:

(Def. 17) |• : H|= the left cosets ofH .

We now state the proposition

(175) |• : H|= the left cosets ofH and|• : H|= the right cosets ofH .

Let us considerG, H. Let us assume that the left cosets ofH is finite. The functor|• : H|N
yielding a natural number is defined as follows:

(Def. 18) There exists a finite setB such thatB = the left cosets ofH and|• : H|N = cardB.

The following proposition is true

(176) Suppose the left cosets ofH is finite. Then

(i) there exists a finite setB such thatB = the left cosets ofH and|• : H|N = cardB, and

(ii) there exists a finite setC such thatC = the right cosets ofH and|• : H|N = cardC.

Let D be a non empty set and letd be an element ofD. Then{d} is an element of FinD.
The following two propositions are true:

(177) If G is finite, then ord(G) = ord(H) · |• : H|N.

(178) If G is finite, then ord(H) | ord(G).

In the sequelJ denotes a subgroup ofH.
The following propositions are true:

(179) If G is finite andI = J, then|• : I |N = |• : J|N · |• : H|N.

(180) |• : ΩG|N = 1.

(181) LetG be a strict group andH be a strict subgroup ofG. If the left cosets ofH is finite and
|• : H|N = 1, thenH = G.

(182) |• : {1}G|= Ord(G).

12 The propositions (157)–(163) have been removed.
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(183) If G is finite, then|• : {1}G|N = ord(G).

(184) For every strict subgroupH of Gsuch thatG is finite and|• : H|N = ord(G) holdsH = {1}G.

(185) For every strict subgroupH of G such that the left cosets ofH is finite and|• : H|= Ord(G)
holdsG is finite andH = {1}G.

(186) LetX be a finite set. Suppose that for everyY such thatY ∈ X there exists a finite setB
such thatB = Y and cardB = k and for everyZ such thatZ ∈ X andY 6= Z holdsY ≈ Z andY
missesZ. Then there exists a finite setC such thatC =

⋃
X and cardC = k ·cardX.
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