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Summary. We introduce notion of subgroup, coset of a subgroup, sets of left and
right cosets of a subgroup. We define multiplication of two subset of a group, subset of
reverse elemens of a group, intersection of two subgroups. We define the notion of an index
of a subgroup and prove Lagrange theorem which states that in a finite group the order of the
group equals the order of a subgroup multiplied by the index of the subgroup. Some theorems
that belong rather to [1] are proved.
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The articles[[1D0],[15],[15],[18],11R], 161, 18], [[71, 18], [[14], 1], 9], ([16], [[4], [1F],[2], and[11]
provide the notation and terminology for this paper.

In this pape is a setG is a non empty 1-sorted structure, ahds a subset 06.

Next we state the proposition

(3] If Gis finite, thenAis finite.

For simplicity, we adopt the following conventio¥; Z denote setd denotes a natural number,
G denotes a groum, h denote elements @, andA denotes a subset &
Let us conside6, A. The functorA—! yielding a subset o6 is defined as follows:

(Def.1) Al={gl:geAl
We now state several propositions:
(5P x e A1iff there existsg such thak = g~ andg € A.
® {g}t={g'}.
@ A{gh}*={g*h "}
(8) (tne carrier ofc) L = 0.
(9)  (Qthe carrier ofc) "+ = the carrier ofG.
(10) A#£0iff AL £0.

We adopt the following ruless is a non empty groupoidd, B, C are subsets db, anda, b, g,
01, g2, h are elements db.

Let us considefs and let us consideh, B. The functorA- B yielding a subset o6 is defined
by:

1 The propositions (1) and (2) have been removed.
2 The proposition (4) has been removed.
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(Def.2) A-B={g-h:ge A A heB}.
Next we state a number of propositions:
(12 x € A-Biiff there existg, h such thak = g-h andg € Aandh € B.
(13) A£0andB#0iff A-B#£0.
(14) If Gis associative, thefA-B)-C=A-(B-C).
(15) For every grougs and for all subsets, B of G holds(A-B) "t =B1.A"L,
(16) A-(BUC)=A-BUA.C.
(17) (AUB)-C=A-CUB-C.
(18) A-(BNC) < (A-B)n(A-C).
(19) (ANB)-CC(A-C)N(B-C).
(20)  Othe carrier ofc - A = 0 andA- Oine carrier ofc = 0.

(21) LetG be a group and\ be a subset o6. SupposeA # 0. Then Qine carrier ofc - A = the
carrier ofG andA- Qine carrier ofg = the carrier ofG.

(22) {g}-{h}=A{g-h}.
(23) {9} {91,92} ={9-91,9- 02}
24) {91,902} {9} ={01-9.%2-9}.
(25) {g.h}-{01,92} = {9-91,9-92,h-g1,h- g2}
(26) LetG be a group ané be a subset ob. Suppose that
(i) for all elements);, go of G such thag; € Aandg, € Aholdsg; - gz € A, and

(i) for every elemeng of G such thag € Aholdsg € A.
ThenA-A=A

(27) For every grougs and for every subset of G such that for every elemegtof G such that
g€ Aholdsgt € AholdsA™1 = A

(28) If for all a, b such thae Aandb € B holdsa-b=b-a, thenA-B=B-A
(29) If Gis a commutative group, theh-B=B-A.
(30) For every commutative group and for all subsetd, B of G holds(A-B)"1 =A-1.B~L.
Let us conside6, g, A. The functorg- Ayields a subset dB and is defined as follows:
(Def.3) g-A={g}-A
The functorA- g yielding a subset ofs is defined by:
(Def. 4) A-g=A-{g}.
We now state several propositions:
(33F] xe g-Aiff there existsh such thak = g-handh € A.
(34) xe A-giff there existsh such thakk = h-gandh € A.
(35) If Gis associative, thefg-A)-B=g- (A-B).

3 The proposition (11) has been removed.
4 The propositions (31) and (32) have been removed.
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(36) If Gis associative, thefA-g)-B=A-(g-B).
(37) If Gis associative, thefA-B)-g=A-(B-Q).
(38) If Gis associative, thefg-h)-A=g-(h-A).
(39) If Gis associative, thefg-A)-h=g- (A-h).
(40) If Gis associative, thefA-g)-h=A-(g-h).
(41)  Otne carrier of - @= 0 anda- Bne carrier ofc = 0.

We adopt the following conventioi®@ is a group-like non empty groupoid, g1, 9> are elements
of G, andAis a subset of.
One can prove the following propositions:

(42) LetG be a group and be an element 0&. ThenQihe carrier ofc - @ = the carrier ofG and
a- che carrier ofG — the Carrler OG.

(43) 1g-A=AandA-1g=A.
(44) If Gis a commutative group, theap A=A-g.

Let G be a group-like non empty groupoid. A group-like non empty groupoid is said to be a
subgroup ofG if it satisfies the conditions (Def. 5).

(Def.5)()) The carrier of itC the carrier ofG, and
(i) the multiplication of it= (the multiplication ofG) [[: the carrier of it, the carrier of it:

In the sequeH denotes a subgroup & andh, hy, h, denote elements df.
One can prove the following propositions:

(48] If Gis finite, therH is finite.

(49) IfxeH,thenxe G.

(50) hedG.

(51) his an element of.

(52) Ifhy =g; andh, =gy, thenhy-hy = g1-0».

Let G be a group. Note that every subgroup®fs associative.

For simplicity, we adopt the following rulesG, G;, Gy, G3 are groupsga, b, g, g1, 9> are
elements of5, A, B are subsets d&, |, H, H1, Hy, Hz are subgroups db, andhis an element of.

We now state several propositions:

(53) 1y =1g.
G4 Ty = Ly-

(55) 1g€H.

(56) Ln,) € Ho.

(57) Ifh=g,thenh l=gL

(58) -y =-g'Ithe carrier oH.

(59) Ifgr €Handg, € H,theng;-go € H.
(60) IfgeH,thengteH.

5 The propositions (45)—(47) have been removed.
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Let us conside. Note that there exists a subgroup®fvhich is strict.
One can prove the following two propositions:

(61) Suppos@ # 0 and for allgs, gz such thay; € Aandg, € Aholdsg; - g2 € Aand for every
g such thatg € A holdsg™! € A. Then there exists a strict subgrotpof G such that the
carrier ofH = A.

(62) If Gis a commutative group, thet is commutative.

Let G be a commutative group. Observe that every subgro@isfcommutative.
Next we state several propositions:

(63) Gis asubgroup of.

(64) If Gy is a subgroup of5; and G, is a subgroup of5;, then the groupoid 06; = the
groupoid ofG,.

(65) If Gy is a subgroup o6, andG; is a subgroup 063, thenG; is a subgroup 06s.
(66) If the carrier oH; C the carrier oH,, thenH; is a subgroup oH>.

(67) If for everyg such thag € H; holdsg € Hy, thenH; is a subgroup oH>.

(68) If the carrier oH; = the carrier oH,, then the groupoid dfl; = the groupoid oH,.
(69) If for everyg holdsg € H; iff g € Ha, then the groupoid ofl; = the groupoid oH,.

Let us considefs and letH;, Hy be strict subgroups db. Let us observe that; = H; if and
only if:

(Def. 6) For eveng holdsg € H; iff g€ Ha.

We now state two propositions:

(70) LetG be a strict group anHil be a strict subgroup d&. If the carrier ofH = the carrier of
G, thenH =G.

(71) If for every elemeng of G holdsg € H, then the groupoid dfi = the groupoid ofG.
Let us conside6. The functor{1} yielding a strict subgroup d& is defined by:
(Def. 7) The carrier of 1} = {1g}.
Let us conside6. The functorQg yielding a strict subgroup d& is defined by:
(Def. 8) Qg = the groupoid ofG.

The following propositions are true:

(75f {1}n = {L}e.

(76) {1ty = {1 (y)-

(77) {1} is a subgroup oH.

(78) For every strict grou holds every subgroup @ is a subgroup of)c.
(79) Every strict groufis is a subgroup 0fg.

(80) {1}gis finite.

6 The propositions (72)-(74) have been removed.
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Let X be a non empty set. One can verify that there exists a sub¥etwich is finite and non
empty.
One can prove the following propositions:

(81) ord{l}e)=1.

(82) For every strict subgroup of G such thaH is finite and ordH) = 1 holdsH = {1}¢.
(83) OrdH) < Ord(G).

(84) If Gis finite, then ordH) < ord(G).

(85) For every strict grou and for every strict subgroud of G such thatG is finite and
ord(G) = ord(H) holdsH = G.

Let us conside6, H. The functorH yields a subset of and is defined by:
(Def. 9) H = the carrier oH.
One can prove the following propositions:
(87)] H+#o.
(88) xcHiff xc H.
(89) Ifgs €H andg; € H, theng; - g2 € H.
(90) IfgeH,theng ! cH.
(91)
(92)

H-H=H.
H-1=H.

(93)()) If H1-Hz = Hy-Hy, then there exists a strict subgrodpof G such that the carrier of
H =H;-Hy, and

(i) if there existsH such that the carrier ¢ = H; - Hp, thenH; - Hz, = Hz - Hj.

(94) If Gis a commutative group, then there exists a strict subgkbopG such that the carrier
of H=Hz-Hy.

Let us considefs, Hi, Ho. The functorH; NHy yields a strict subgroup @ and is defined by:
(Def. 10) The carrier oH; N"Hy = Hy NHo.
Next we state several propositions:

(97ﬂi) For every subgroupl of G such thaH = Hy NH; holds the carrier oH = (the carrier
of Hy) N (the carrier oHy), and

(i)  for every strict subgroupd of G such that the carrier dfl = (the carrier ofH;) N (the
carrier ofH,) holdsH = H; N Ha.

(98) HiNHz =HiNHa.

(99) xeHyiNnHyiff xe Hy andx € Ha.
(100) For every strict subgroup of G holdsHNH = H.
(101) HinHz =HyNHy.

Let us conside6, Hq, H,. Let us notice that the functét; NH» is commutative.
Next we state a number of propositions:

" The proposition (86) has been removed.
8 The propositions (95) and (96) have been removed.
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(102) (Hlﬂ Hz) NHz=HiN (Hzﬂ H3).
(103) {1}cnNH ={1}candHnN {1} = {1}c.

(104) For every strict grou and for every strict subgroud of G holdsH N Qg =H and
QcNH=H.

(105) For every strict grou® holdsQg NQg = G.
(106) HiNH;is a subgroup oH; andH; NH; is a subgroup oH,.
(107) For every strict subgroug of G holdsHs is a subgroup oH, iff H "H, = Hj.
(108) IfHj is a subgroup oH,, thenH; NHsz is a subgroup ofs.
(109) IfHj is a subgroup oH, and a subgroup dfl3, thenH; is a subgroup oH, N Hs.
(110) IfH; is a subgroup o2, thenH; NH3 is a subgroup oH, N Hs.
(111) IfHy is finite orH; is finite, thenH; NHy is finite.
Let us conside6, H, A. The functorA- H yielding a subset o6 is defined by:
(Def.11) A-H=A-H.
The functorH - Ayields a subset db and is defined by:
(Def.12) H-A=H-A
One can prove the following propositions:
(114{ﬂ x € A-H iff there existgs, g such thak = g; - g2 andg; € Aandg, € H.
(115) x e H-Aiff there existg, g2 such thak = g; - g2 andg; € H andg; € A
(116) -B)-H=A-(B-H).
(117) ‘H)-B=A-(H-B).
(118) (H-A)-B=H-(A-B).

(A

(A
(H-

(119) (A-Hi)-Hz=A-(H1-Ha).
(
(

o —

(120) (Hi-A)-Hz=Hi-(A-Hp).
(121) (Hi-Hz2)-A=H;i-(H2-A).
(122) If Gis a commutative group, thel-H =H - A.
Let us conside@, H, a. The functora- H yielding a subset o6 is defined as follows:
(Def. 13) a-H =a-H.
The functorH - ayields a subset db and is defined by:
(Def.14) H-a=H-a.
We now state a number of propositions:
(125@ x € a- H iff there existsg such thak =a-gandg € H.

(126) x e H-aliff there existsg such thatkk=g-aandg € H.
(127) (a-b)-H=a-(b-H).

(128) (a-H)-b=a-(H-b).

(129) (H-a)-b=H-(a-b).

(130) aca-HandacH-a

(132f] 1c-H=HandH 1 =H.

9 The propositions (112) and (113) have been removed.
10 The propositions (123) and (124) have been removed.
11 The proposition (131) has been removed.
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{1}c-a= {a} anda- {1}c = {a}.

a- Qg = the carrier ofG andQg - a = the carrier ofG.
If G is a commutative group, themH =H -a.
acHiffa-H=H.

a-H=Db-Hiff bl-acH.

a-H=Db-Hiff a-H meetsh-H.
(a-b)-HCa-H-(b-H).
HCa-H-(al-H)andH Cal-H-(a-H).
a-HCa-H-(a-H).

acHiff H-a=H.

H-a=H-biff b-ateH.

H-a=H-biff H-ameetsH -b.
(H-a)-bCH-a-(H-b).
HCH-a-(H-al)andHCH-at (H-a).
H-a?CH-a-(H-a).

a-(HiNHz) = (a-Hi)N(a-Hy).

(HiNHz2)-a=(Hy-a)N(Hz-a).

There exists a strict subgrotip of G such that the carrier df; =a-H,-a 1.
a-H=b-H.

a-H=~H-h.

H-ax=H-h

H~a-HandH~H-a

OrdH)=a-H and OrdH) = H - a.

IfH is finite, then there exist finite seéBsC such thaB=a-H andC=H-aand ordH) =

cardB and ordH) = cardC.

The schem&ubFamCompleals with a se#l, a family B of subsets o0f2, a family C of subsets

of 4, and a unary predicatg, and states that:

B=C

provided the following conditions are met:

Let us conside6s, H. The left cosets ofl yielding a family of subsets db is defined by:

For every subseX of 2 holdsX € B iff P[X], and
For every subseX of 4 holdsX e Ciff P[X].

(Def. 15) A € the left cosets oH iff there existsa such thaiA = a- H.

The right cosets dfl yields a family of subsets @& and is defined as follows:

(Def. 16) A € the right cosets ofl iff there existsa such thaih=H - a.

The following propositions are true:
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(164@ If Gis finite, then the right cosets &f is finite and the left cosets ¢f is finite.

(165) H € the left cosets oH andH ¢ the right cosets off.

(166) The left cosets dfl ~ the right cosets ofl.

(167) (the left cosets oH) = the carrier ofG and(J (the right cosets ofl ) = the carrier ofG.
(168) The left cosets ofl}g = {{a}}.

(169) The right cosets dfl}g = {{a}}.

(170) For every strict subgroui of G such that the left cosets &f = {{a}} holdsH = {1} .
(171) For every strict subgrou of G such that the right cosets bif = {{a}} holdsH = {1} .
(172) The left cosets d@¢ = {the carrier ofG} and the right cosets &g = {the carrier ofG}.

(173) LetG be a strict group and be a strict subgroup @. If the left cosets oH = {the carrier
of G}, thenH = G.

(174) LetG be a strict group an#li be a strict subgroup db. If the right cosets oH = {the
carrier ofG}, thenH = G.

Let us conside6, H. The functorje : H| yields a cardinal number and is defined as follows:

(Def. 17) |e:H| = the left cosets oH .

We now state the proposition

(175) |e:H| = the left cosets oH and|e : H| = the right cosets off .

Let us considefS, H. Let us assume that the left cosetstbfis finite. The functorje : H|y
yielding a natural number is defined as follows:

(Def. 18) There exists a finite sBtsuch thaB = the left cosets oH and|e : H|y = cardB.

The following proposition is true

(176) Suppose the left cosetstdfis finite. Then
(i) there exists a finite s@& such thaB = the left cosets oH and|e : H|y = cardB, and
(i) there exists a finite s& such thaC = the right cosets ofl and|e : H|y = cardC.

Let D be a non empty set and létbe an element dD. Then{d} is an element of FiD.
The following two propositions are true:

(177) IfGisfinite, then ordG) = ord(H) - |e : H|x.
(178) If Gis finite, then ord@H) | ord(G).

In the sequel denotes a subgroup &f.
The following propositions are true:

(179) IfGisfinite andl =J,then|e :l|y = o :J|y-|e:H|y.
(180) |e:Qg|n=1.

(181) LetG be a strict group anHl be a strict subgroup @b. If the left cosets ofH is finite and
|e:H|x=1,thenH =G.

(182) |e:{1}g| = Ord(G).

12 The propositions (157)-(163) have been removed.
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(183) IfGisfinite, then|e: {1}g|y = ord(G).

(184) For every strict subgroup of G such that is finite andje : H|y = ord(G) holdsH = {1} .

(185) For every strict subgrou of G such that the left cosets bff is finite andje : H| = Ord(G)

holdsG is finite andH = {1}¢.

(186) LetX be a finite set. Suppose that for evéhsuch thaty € X there exists a finite s&

(1
(2]

(3]

(4]

6]
(7]

8l
[0l

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

such thaB =Y and card = k and for everyZ such thaZ € X andY # Z holdsY ~ Z andY
misse<Z. Then there exists a finite $8tsuch thatC = [ J X and cardC = k- cardX.
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