Subgroup and Cosets of Subgroups

Wojciech A. Trybulec Warsaw University

Summary. We introduce notion of subgroup, coset of a subgroup, sets of left and right cosets of a subgroup. We define multiplication of two subset of a group, subset of reverse elemens of a group, intersection of two subgroups. We define the notion of an index of a subgroup and prove Lagrange theorem which states that in a finite group the order of the group equals the order of a subgroup multiplied by the index of the subgroup. Some theorems that belong rather to [1] are proved.

MML Identifier: GROUP_2.

WWW: http://mizar.org/JFM/Vol2/group_2.html

The articles [10], [5], [15], [8], [12], [6], [13], [7], [3], [14], [1], [9], [16], [4], [17], [2], and [11] provide the notation and terminology for this paper.

In this paper x is a set, G is a non empty 1-sorted structure, and A is a subset of G. Next we state the proposition

 $(3)^1$ If G is finite, then A is finite.

For simplicity, we adopt the following convention: Y, Z denote sets, k denotes a natural number, G denotes a group, g, h denote elements of G, and A denotes a subset of G.

Let us consider G, A. The functor A^{-1} yielding a subset of G is defined as follows:

(Def. 1)
$$A^{-1} = \{g^{-1} : g \in A\}.$$

We now state several propositions:

- $(5)^2$ $x \in A^{-1}$ iff there exists g such that $x = g^{-1}$ and $g \in A$.
- (6) $\{g\}^{-1} = \{g^{-1}\}.$
- (7) $\{g,h\}^{-1} = \{g^{-1},h^{-1}\}.$
- (8) $(\emptyset_{\text{the carrier of }G})^{-1} = \emptyset.$
- (9) $(\Omega_{\text{the carrier of }G})^{-1} = \text{the carrier of } G.$
- (10) $A \neq \emptyset \text{ iff } A^{-1} \neq \emptyset.$

We adopt the following rules: G is a non empty groupoid, A, B, C are subsets of G, and a, b, g, g_1 , g_2 , h are elements of G.

Let us consider G and let us consider A, B. The functor $A \cdot B$ yielding a subset of G is defined by:

¹ The propositions (1) and (2) have been removed.

² The proposition (4) has been removed.

(Def. 2) $A \cdot B = \{g \cdot h : g \in A \land h \in B\}.$

Next we state a number of propositions:

- $(12)^3$ $x \in A \cdot B$ iff there exist g, h such that $x = g \cdot h$ and $g \in A$ and $h \in B$.
- (13) $A \neq \emptyset$ and $B \neq \emptyset$ iff $A \cdot B \neq \emptyset$.
- (14) If *G* is associative, then $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- (15) For every group *G* and for all subsets *A*, *B* of *G* holds $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
- (16) $A \cdot (B \cup C) = A \cdot B \cup A \cdot C$.
- $(17) \quad (A \cup B) \cdot C = A \cdot C \cup B \cdot C.$
- (18) $A \cdot (B \cap C) \subseteq (A \cdot B) \cap (A \cdot C)$.
- $(19) \quad (A \cap B) \cdot C \subseteq (A \cdot C) \cap (B \cdot C).$
- (20) $\emptyset_{\text{the carrier of } G} \cdot A = \emptyset \text{ and } A \cdot \emptyset_{\text{the carrier of } G} = \emptyset.$
- (21) Let G be a group and A be a subset of G. Suppose $A \neq \emptyset$. Then $\Omega_{\text{the carrier of } G} \cdot A = \text{the carrier of } G$ and $A \cdot \Omega_{\text{the carrier of } G} = \text{the carrier of } G$.
- (22) $\{g\} \cdot \{h\} = \{g \cdot h\}.$
- (23) $\{g\} \cdot \{g_1, g_2\} = \{g \cdot g_1, g \cdot g_2\}.$
- $(24) \quad \{g_1, g_2\} \cdot \{g\} = \{g_1 \cdot g, g_2 \cdot g\}.$
- (25) $\{g,h\} \cdot \{g_1,g_2\} = \{g \cdot g_1, g \cdot g_2, h \cdot g_1, h \cdot g_2\}.$
- (26) Let G be a group and A be a subset of G. Suppose that
 - (i) for all elements g_1, g_2 of G such that $g_1 \in A$ and $g_2 \in A$ holds $g_1 \cdot g_2 \in A$, and
- (ii) for every element g of G such that $g \in A$ holds $g^{-1} \in A$.

Then $A \cdot A = A$.

- (27) For every group G and for every subset A of G such that for every element g of G such that $g \in A$ holds $g^{-1} \in A$ holds $A^{-1} = A$.
- (28) If for all a, b such that $a \in A$ and $b \in B$ holds $a \cdot b = b \cdot a$, then $A \cdot B = B \cdot A$.
- (29) If G is a commutative group, then $A \cdot B = B \cdot A$.
- (30) For every commutative group G and for all subsets A, B of G holds $(A \cdot B)^{-1} = A^{-1} \cdot B^{-1}$.

Let us consider G, g, A. The functor $g \cdot A$ yields a subset of G and is defined as follows:

(Def. 3)
$$g \cdot A = \{g\} \cdot A$$
.

The functor $A \cdot g$ yielding a subset of G is defined by:

(Def. 4)
$$A \cdot g = A \cdot \{g\}$$
.

We now state several propositions:

- $(33)^4$ $x \in g \cdot A$ iff there exists h such that $x = g \cdot h$ and $h \in A$.
- (34) $x \in A \cdot g$ iff there exists h such that $x = h \cdot g$ and $h \in A$.
- (35) If *G* is associative, then $(g \cdot A) \cdot B = g \cdot (A \cdot B)$.

³ The proposition (11) has been removed.

⁴ The propositions (31) and (32) have been removed.

- (36) If *G* is associative, then $(A \cdot g) \cdot B = A \cdot (g \cdot B)$.
- (37) If *G* is associative, then $(A \cdot B) \cdot g = A \cdot (B \cdot g)$.
- (38) If *G* is associative, then $(g \cdot h) \cdot A = g \cdot (h \cdot A)$.
- (39) If *G* is associative, then $(g \cdot A) \cdot h = g \cdot (A \cdot h)$.
- (40) If *G* is associative, then $(A \cdot g) \cdot h = A \cdot (g \cdot h)$.
- (41) $\emptyset_{\text{the carrier of } G} \cdot a = \emptyset \text{ and } a \cdot \emptyset_{\text{the carrier of } G} = \emptyset.$

We adopt the following convention: G is a group-like non empty groupoid, g, g_1 , g_2 are elements of G, and A is a subset of G.

One can prove the following propositions:

- (42) Let G be a group and a be an element of G. Then $\Omega_{\text{the carrier of }G} \cdot a$ = the carrier of G and $a \cdot \Omega_{\text{the carrier of }G}$ = the carrier of G.
- $(43) \quad 1_G \cdot A = A \text{ and } A \cdot 1_G = A.$
- (44) If G is a commutative group, then $g \cdot A = A \cdot g$.

Let G be a group-like non empty groupoid. A group-like non empty groupoid is said to be a subgroup of G if it satisfies the conditions (Def. 5).

- (Def. 5)(i) The carrier of it \subseteq the carrier of G, and
 - (ii) the multiplication of it = (the multiplication of G) [: the carrier of it, the carrier of it:].

In the sequel H denotes a subgroup of G and h, h_1 , h_2 denote elements of H. One can prove the following propositions:

- $(48)^5$ If G is finite, then H is finite.
- (49) If $x \in H$, then $x \in G$.
- (50) $h \in G$.
- (51) h is an element of G.
- (52) If $h_1 = g_1$ and $h_2 = g_2$, then $h_1 \cdot h_2 = g_1 \cdot g_2$.

Let G be a group. Note that every subgroup of G is associative.

For simplicity, we adopt the following rules: G, G_1 , G_2 , G_3 are groups, a, b, g, g_1 , g_2 are elements of G, A, B are subsets of G, I, H, H_1 , H_2 , H_3 are subgroups of G, and h is an element of H.

We now state several propositions:

- (53) $1_H = 1_G$.
- (54) $1_{(H_1)} = 1_{(H_2)}$.
- (55) $1_G \in H$.
- (56) $1_{(H_1)} \in H_2$.
- (57) If h = g, then $h^{-1} = g^{-1}$.
- (58) $\cdot_H^{-1} = \cdot_G^{-1} \upharpoonright \text{the carrier of } H.$
- (59) If $g_1 \in H$ and $g_2 \in H$, then $g_1 \cdot g_2 \in H$.
- (60) If $g \in H$, then $g^{-1} \in H$.

⁵ The propositions (45)–(47) have been removed.

Let us consider *G*. Note that there exists a subgroup of *G* which is strict. One can prove the following two propositions:

- (61) Suppose $A \neq \emptyset$ and for all g_1 , g_2 such that $g_1 \in A$ and $g_2 \in A$ holds $g_1 \cdot g_2 \in A$ and for every g such that $g \in A$ holds $g^{-1} \in A$. Then there exists a strict subgroup H of G such that the carrier of H = A.
- (62) If G is a commutative group, then H is commutative.

Let *G* be a commutative group. Observe that every subgroup of *G* is commutative. Next we state several propositions:

- (63) G is a subgroup of G.
- (64) If G_1 is a subgroup of G_2 and G_2 is a subgroup of G_1 , then the groupoid of G_1 = the groupoid of G_2 .
- (65) If G_1 is a subgroup of G_2 and G_2 is a subgroup of G_3 , then G_1 is a subgroup of G_3 .
- (66) If the carrier of $H_1 \subseteq$ the carrier of H_2 , then H_1 is a subgroup of H_2 .
- (67) If for every g such that $g \in H_1$ holds $g \in H_2$, then H_1 is a subgroup of H_2 .
- (68) If the carrier of H_1 = the carrier of H_2 , then the groupoid of H_1 = the groupoid of H_2 .
- (69) If for every g holds $g \in H_1$ iff $g \in H_2$, then the groupoid of H_1 = the groupoid of H_2 .

Let us consider G and let H_1 , H_2 be strict subgroups of G. Let us observe that $H_1 = H_2$ if and only if:

(Def. 6) For every g holds $g \in H_1$ iff $g \in H_2$.

We now state two propositions:

- (70) Let G be a strict group and H be a strict subgroup of G. If the carrier of H = the carrier of G, then H = G.
- (71) If for every element g of G holds $g \in H$, then the groupoid of H = the groupoid of G.

Let us consider G. The functor $\{1\}_G$ yielding a strict subgroup of G is defined by:

(Def. 7) The carrier of $\{1\}_G = \{1_G\}$.

Let us consider G. The functor Ω_G yielding a strict subgroup of G is defined by:

(Def. 8) Ω_G = the groupoid of G.

The following propositions are true:

- $(75)^6 \{1\}_H = \{1\}_G.$
- (76) $\{\mathbf{1}\}_{(H_1)} = \{\mathbf{1}\}_{(H_2)}.$
- (77) $\{1\}_G$ is a subgroup of H.
- (78) For every strict group G holds every subgroup of G is a subgroup of Ω_G .
- (79) Every strict group G is a subgroup of Ω_G .
- (80) $\{1\}_G$ is finite.

⁶ The propositions (72)–(74) have been removed.

Let *X* be a non empty set. One can verify that there exists a subset of *X* which is finite and non empty.

One can prove the following propositions:

- (81) ord($\{\mathbf{1}\}_G$) = 1.
- (82) For every strict subgroup H of G such that H is finite and $ord(H) = 1 \text{ holds } H = \{1\}_G$.
- (83) $\operatorname{Ord}(H) \leq \operatorname{Ord}(G)$.
- (84) If *G* is finite, then $ord(H) \le ord(G)$.
- (85) For every strict group G and for every strict subgroup H of G such that G is finite and ord(G) = ord(H) holds H = G.

Let us consider G, H. The functor \overline{H} yields a subset of G and is defined by:

(Def. 9) \overline{H} = the carrier of H.

One can prove the following propositions:

- $(87)^7$ $\overline{H} \neq \emptyset$.
- (88) $x \in \overline{H} \text{ iff } x \in H.$
- (89) If $g_1 \in \overline{H}$ and $g_2 \in \overline{H}$, then $g_1 \cdot g_2 \in \overline{H}$.
- (90) If $g \in \overline{H}$, then $g^{-1} \in \overline{H}$.
- (91) $\overline{H} \cdot \overline{H} = \overline{H}$.
- (92) $\overline{H}^{-1} = \overline{H}$.
- (93)(i) If $\overline{H_1} \cdot \overline{H_2} = \overline{H_2} \cdot \overline{H_1}$, then there exists a strict subgroup H of G such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$, and
- (ii) if there exists H such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$, then $\overline{H_1} \cdot \overline{H_2} = \overline{H_2} \cdot \overline{H_1}$.
- (94) If G is a commutative group, then there exists a strict subgroup H of G such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$.

Let us consider G, H_1 , H_2 . The functor $H_1 \cap H_2$ yields a strict subgroup of G and is defined by:

(Def. 10) The carrier of $H_1 \cap H_2 = \overline{H_1} \cap \overline{H_2}$.

Next we state several propositions:

- (97)⁸(i) For every subgroup H of G such that $H = H_1 \cap H_2$ holds the carrier of H = (the carrier of H_1) \cap (the carrier of H_2), and
- (ii) for every strict subgroup H of G such that the carrier of H = (the carrier of H_1) \cap (the carrier of H_2) holds $H = H_1 \cap H_2$.
- $(98) \quad \overline{H_1 \cap H_2} = \overline{H_1} \cap \overline{H_2}.$
- (99) $x \in H_1 \cap H_2 \text{ iff } x \in H_1 \text{ and } x \in H_2.$
- (100) For every strict subgroup H of G holds $H \cap H = H$.
- (101) $H_1 \cap H_2 = H_2 \cap H_1$.

Let us consider G, H_1 , H_2 . Let us notice that the functor $H_1 \cap H_2$ is commutative. Next we state a number of propositions:

⁷ The proposition (86) has been removed.

⁸ The propositions (95) and (96) have been removed.

- $(102) \quad (H_1 \cap H_2) \cap H_3 = H_1 \cap (H_2 \cap H_3).$
- (103) $\{1\}_G \cap H = \{1\}_G \text{ and } H \cap \{1\}_G = \{1\}_G.$
- (104) For every strict group G and for every strict subgroup H of G holds $H \cap \Omega_G = H$ and $\Omega_G \cap H = H$.
- (105) For every strict group G holds $\Omega_G \cap \Omega_G = G$.
- (106) $H_1 \cap H_2$ is a subgroup of H_1 and $H_1 \cap H_2$ is a subgroup of H_2 .
- (107) For every strict subgroup H_1 of G holds H_1 is a subgroup of H_2 iff $H_1 \cap H_2 = H_1$.
- (108) If H_1 is a subgroup of H_2 , then $H_1 \cap H_3$ is a subgroup of H_2 .
- (109) If H_1 is a subgroup of H_2 and a subgroup of H_3 , then H_1 is a subgroup of $H_2 \cap H_3$.
- (110) If H_1 is a subgroup of H_2 , then $H_1 \cap H_3$ is a subgroup of $H_2 \cap H_3$.
- (111) If H_1 is finite or H_2 is finite, then $H_1 \cap H_2$ is finite.

Let us consider G, H, A. The functor $A \cdot H$ yielding a subset of G is defined by:

(Def. 11)
$$A \cdot H = A \cdot \overline{H}$$
.

The functor $H \cdot A$ yields a subset of G and is defined by:

(Def. 12)
$$H \cdot A = \overline{H} \cdot A$$
.

One can prove the following propositions:

- $(114)^9$ $x \in A \cdot H$ iff there exist g_1, g_2 such that $x = g_1 \cdot g_2$ and $g_1 \in A$ and $g_2 \in H$.
- (115) $x \in H \cdot A$ iff there exist g_1, g_2 such that $x = g_1 \cdot g_2$ and $g_1 \in H$ and $g_2 \in A$.
- $(116) \quad (A \cdot B) \cdot H = A \cdot (B \cdot H).$
- $(117) \quad (A \cdot H) \cdot B = A \cdot (H \cdot B).$
- (118) $(H \cdot A) \cdot B = H \cdot (A \cdot B)$.
- (119) $(A \cdot H_1) \cdot H_2 = A \cdot (H_1 \cdot \overline{H_2}).$
- (120) $(H_1 \cdot A) \cdot H_2 = H_1 \cdot (A \cdot H_2).$
- $(121) \quad (H_1 \cdot \overline{H_2}) \cdot A = H_1 \cdot (H_2 \cdot A).$
- (122) If G is a commutative group, then $A \cdot H = H \cdot A$.

Let us consider G, H, a. The functor $a \cdot H$ yielding a subset of G is defined as follows:

(Def. 13)
$$a \cdot H = a \cdot \overline{H}$$
.

The functor $H \cdot a$ yields a subset of G and is defined by:

(Def. 14)
$$H \cdot a = \overline{H} \cdot a$$
.

We now state a number of propositions:

- $(125)^{10}$ $x \in a \cdot H$ iff there exists g such that $x = a \cdot g$ and $g \in H$.
- (126) $x \in H \cdot a$ iff there exists g such that $x = g \cdot a$ and $g \in H$.
- $(127) \quad (a \cdot b) \cdot H = a \cdot (b \cdot H).$
- $(128) \quad (a \cdot H) \cdot b = a \cdot (H \cdot b).$
- $(129) \quad (H \cdot a) \cdot b = H \cdot (a \cdot b).$
- (130) $a \in a \cdot H$ and $a \in H \cdot a$.
- $(132)^{11}$ $1_G \cdot H = \overline{H}$ and $H \cdot 1_G = \overline{H}$.

⁹ The propositions (112) and (113) have been removed.

¹⁰ The propositions (123) and (124) have been removed.

¹¹ The proposition (131) has been removed.

- (133) $\{\mathbf{1}\}_G \cdot a = \{a\} \text{ and } a \cdot \{\mathbf{1}\}_G = \{a\}.$
- (134) $a \cdot \Omega_G$ = the carrier of G and $\Omega_G \cdot a$ = the carrier of G.
- (135) If G is a commutative group, then $a \cdot H = H \cdot a$.
- (136) $a \in H \text{ iff } a \cdot H = \overline{H}.$
- (137) $a \cdot H = b \cdot H \text{ iff } b^{-1} \cdot a \in H.$
- (138) $a \cdot H = b \cdot H \text{ iff } a \cdot H \text{ meets } b \cdot H.$
- (139) $(a \cdot b) \cdot H \subseteq a \cdot H \cdot (b \cdot H)$.
- (140) $\overline{H} \subseteq a \cdot H \cdot (a^{-1} \cdot H)$ and $\overline{H} \subseteq a^{-1} \cdot H \cdot (a \cdot H)$.
- (141) $a^2 \cdot H \subseteq a \cdot H \cdot (a \cdot H)$.
- (142) $a \in H \text{ iff } H \cdot a = \overline{H}.$
- (143) $H \cdot a = H \cdot b \text{ iff } b \cdot a^{-1} \in H.$
- (144) $H \cdot a = H \cdot b$ iff $H \cdot a$ meets $H \cdot b$.
- (145) $(H \cdot a) \cdot b \subseteq H \cdot a \cdot (H \cdot b)$.
- (146) $\overline{H} \subseteq H \cdot a \cdot (H \cdot a^{-1})$ and $\overline{H} \subseteq H \cdot a^{-1} \cdot (H \cdot a)$.
- (147) $H \cdot a^2 \subseteq H \cdot a \cdot (H \cdot a)$.
- (148) $a \cdot (H_1 \cap H_2) = (a \cdot H_1) \cap (a \cdot H_2).$
- (149) $(H_1 \cap H_2) \cdot a = (H_1 \cdot a) \cap (H_2 \cdot a).$
- (150) There exists a strict subgroup H_1 of G such that the carrier of $H_1 = a \cdot H_2 \cdot a^{-1}$.
- (151) $a \cdot H \approx b \cdot H$.
- (152) $a \cdot H \approx H \cdot b$.
- (153) $H \cdot a \approx H \cdot b$.
- (154) $\overline{H} \approx a \cdot H$ and $\overline{H} \approx H \cdot a$.
- (155) $\operatorname{Ord}(H) = \overline{\overline{a \cdot H}} \text{ and } \operatorname{Ord}(H) = \overline{\overline{H \cdot a}}.$
- (156) If *H* is finite, then there exist finite sets *B*, *C* such that $B = a \cdot H$ and $C = H \cdot a$ and $\operatorname{ord}(H) = \operatorname{card} B$ and $\operatorname{ord}(H) = \operatorname{card} C$.

The scheme SubFamComp deals with a set \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a family \mathcal{C} of subsets of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

$$\mathcal{B}=\mathcal{C}$$

provided the following conditions are met:

- For every subset *X* of \mathcal{A} holds $X \in \mathcal{B}$ iff $\mathcal{P}[X]$, and
- For every subset *X* of \mathcal{A} holds $X \in \mathcal{C}$ iff $\mathcal{P}[X]$.

Let us consider G, H. The left cosets of H yielding a family of subsets of G is defined by:

(Def. 15) $A \in \text{the left cosets of } H \text{ iff there exists } a \text{ such that } A = a \cdot H.$

The right cosets of *H* yields a family of subsets of *G* and is defined as follows:

(Def. 16) $A \in \text{the right cosets of } H \text{ iff there exists } a \text{ such that } A = H \cdot a.$

The following propositions are true:

- $(164)^{12}$ If G is finite, then the right cosets of H is finite and the left cosets of H is finite.
- (165) $\overline{H} \in \text{the left cosets of } H \text{ and } \overline{H} \in \text{the right cosets of } H.$
- (166) The left cosets of $H \approx$ the right cosets of H.
- (167) \bigcup (the left cosets of H) = the carrier of G and \bigcup (the right cosets of H) = the carrier of G.
- (168) The left cosets of $\{1\}_G = \{\{a\}\}.$
- (169) The right cosets of $\{1\}_G = \{\{a\}\}.$
- (170) For every strict subgroup H of G such that the left cosets of $H = \{\{a\}\}\$ holds $H = \{1\}_G$.
- (171) For every strict subgroup H of G such that the right cosets of $H = \{\{a\}\}\$ holds $H = \{1\}_G$.
- (172) The left cosets of $\Omega_G = \{\text{the carrier of } G\}$ and the right cosets of $\Omega_G = \{\text{the carrier of } G\}$.
- (173) Let *G* be a strict group and *H* be a strict subgroup of *G*. If the left cosets of $H = \{\text{the carrier of } G\}$, then H = G.
- (174) Let G be a strict group and H be a strict subgroup of G. If the right cosets of $H = \{\text{the carrier of } G\}$, then H = G.

Let us consider G, H. The functor $| \bullet : H |$ yields a cardinal number and is defined as follows:

(Def. 17)
$$| \bullet : H | = \overline{\text{the left cosets of } H}$$
.

We now state the proposition

(175)
$$|\bullet:H| = \overline{\text{the left cosets of } H} \text{ and } |\bullet:H| = \overline{\text{the right cosets of } H}.$$

Let us consider G, H. Let us assume that the left cosets of H is finite. The functor $|\bullet:H|_{\mathbb{N}}$ yielding a natural number is defined as follows:

(Def. 18) There exists a finite set B such that B = the left cosets of H and $| \bullet : H |_{\mathbb{N}} = \operatorname{card} B$.

The following proposition is true

- (176) Suppose the left cosets of H is finite. Then
 - (i) there exists a finite set B such that B = the left cosets of H and $| \bullet : H |_{\mathbb{N}} = \text{card } B$, and
 - (ii) there exists a finite set C such that C = the right cosets of H and $| \bullet : H |_{\mathbb{N}} = \operatorname{card} C$.

Let D be a non empty set and let d be an element of D. Then $\{d\}$ is an element of Fin D. The following two propositions are true:

- (177) If *G* is finite, then $\operatorname{ord}(G) = \operatorname{ord}(H) \cdot |\bullet: H|_{\mathbb{N}}$.
- (178) If G is finite, then $ord(H) \mid ord(G)$.

In the sequel J denotes a subgroup of H. The following propositions are true:

- (179) If *G* is finite and I = J, then $| \bullet : I |_{\mathbb{N}} = | \bullet : J |_{\mathbb{N}} \cdot | \bullet : H |_{\mathbb{N}}$.
- (180) $| \bullet : \Omega_G |_{\mathbb{N}} = 1.$
- (181) Let G be a strict group and H be a strict subgroup of G. If the left cosets of H is finite and $|\bullet: H|_{\mathbb{N}} = 1$, then H = G.
- (182) $| \bullet : \{ \mathbf{1} \}_G | = \text{Ord}(G).$

¹² The propositions (157)–(163) have been removed.

- (183) If *G* is finite, then $|\bullet: \{\mathbf{1}\}_G|_{\mathbb{N}} = \operatorname{ord}(G)$.
- (184) For every strict subgroup H of G such that G is finite and $|\bullet:H|_{\mathbb{N}} = \operatorname{ord}(G)$ holds $H = \{1\}_G$.
- (185) For every strict subgroup H of G such that the left cosets of H is finite and $|\bullet:H| = \text{Ord}(G)$ holds G is finite and $H = \{1\}_G$.
- (186) Let X be a finite set. Suppose that for every Y such that $Y \in X$ there exists a finite set B such that B = Y and card B = k and for every Z such that $Z \in X$ and $Y \neq Z$ holds $Y \approx Z$ and Y misses Z. Then there exists a finite set C such that $C = \bigcup X$ and card $C = k \cdot \text{card } X$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/wellord2.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [8] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [12] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finsub 1.html.
- [13] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect 1.html.
- [14] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [17] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received July 23, 1990

Published January 2, 2004