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Summary. Notions of group and abelian group are introduced. The power of an ele-
ment of a group, order of group and order of an element of a group are defined. Basic theorems
concerning those notions are presented.
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The articles [13], [6], [17], [14], [18], [4], [9], [5], [16], [10], [15], [2], [7], [12], [1], [8], [3], and
[11] provide the notation and terminology for this paper.

For simplicity, we use the following convention:m, n are natural numbers,i, j are integers,S is
a non empty groupoid, andr, s, s1, s2, t are elements ofS.

Let i be an integer. Then|i| is a natural number.
Let A be a non empty set and letmbe a binary operation onA. One can check that〈A,m〉 is non

empty.
Let I1 be a non empty groupoid. We say thatI1 is unital if and only if:

(Def. 1) There exists an elemente of I1 such that for every elementh of I1 holds h · e = h and
e·h = h.

We say thatI1 is group-like if and only if the condition (Def. 3) is satisfied.

(Def. 3)1 There exists an elementeof I1 such that for every elementh of I1 holds

h·e= h ande·h = h and there exists an elementg of I1 such thath·g = eandg·h = e.

Let us observe that every non empty groupoid which is group-like is also unital.
One can check that there exists a non empty groupoid which is strict, group-like, and associative.
A group is a group-like associative non empty groupoid.
The following propositions are true:

(5)2 Suppose for allr, s, t holds(r · s) · t = r · (s· t) and there existst such that for everys1

holdss1 · t = s1 andt ·s1 = s1 and there existss2 such thats1 ·s2 = t ands2 ·s1 = t. ThenS is
a group.

(6) Suppose for allr, s, t holds(r ·s) · t = r · (s· t) and for allr, s holds there existst such that
r · t = s and there existst such thatt · r = s. ThenS is associative and group-like.

(7) 〈R,+R〉 is associative and group-like.

In the sequelG denotes a group-like non empty groupoid ande, h denote elements ofG.
Let G be a unital non empty groupoid. The functor 1G yielding an element ofG is defined as

follows:
1 The definition (Def. 2) has been removed.
2 The propositions (1)–(4) have been removed.
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(Def. 4) For every elementh of G holdsh·1G = h and 1G ·h = h.

The following proposition is true

(10)3 If for everyh holdsh·e= h ande·h = h, thene= 1G.

In the sequelG denotes a group andf , g, h denote elements ofG.
Let us considerG, h. The functorh−1 yielding an element ofG is defined as follows:

(Def. 5) h·h−1 = 1G andh−1 ·h = 1G.

The following propositions are true:

(12)4 If h·g = 1G andg·h = 1G, theng = h−1.

(14)5 If h·g = h· f or g·h = f ·h, theng = f .

(15) If h·g = h or g·h = h, theng = 1G.

(16) (1G)−1 = 1G.

(17) If h−1 = g−1, thenh = g.

(18) If h−1 = 1G, thenh = 1G.

(19) (h−1)−1 = h.

(20) If h·g = 1G or g·h = 1G, thenh = g−1 andg = h−1.

(21) h· f = g iff f = h−1 ·g.

(22) f ·h = g iff f = g·h−1.

(23) There existsf such thatg· f = h.

(24) There existsf such thatf ·g = h.

(25) (h·g)−1 = g−1 ·h−1.

(26) g·h = h·g iff (g·h)−1 = g−1 ·h−1.

(27) g·h = h·g iff g−1 ·h−1 = h−1 ·g−1.

(28) g·h = h·g iff g·h−1 = h−1 ·g.

Let us considerG. The functor·−1
G yields a unary operation on the carrier ofG and is defined

by:

(Def. 6) ·−1
G (h) = h−1.

Next we state several propositions:

(31)6 For every associative non empty groupoidG holds the multiplication ofG is associative.

(32) For every unital non empty groupoidG holds 1G is a unity w.r.t. the multiplication ofG.

(33) For every unital non empty groupoidG holds1the multiplication ofG = 1G.

(34) For every unital non empty groupoidG holds the multiplication ofG has a unity.

(35) ·−1
G is an inverse operation w.r.t. the multiplication ofG.

3 The propositions (8) and (9) have been removed.
4 The proposition (11) has been removed.
5 The proposition (13) has been removed.
6 The propositions (29) and (30) have been removed.



GROUPS 3

(36) The multiplication ofG has an inverse operation.

(37) The inverse operation w.r.t. the multiplication ofG = ·−1
G .

Let G be a unital non empty groupoid. The functor powerG yielding a function from[: the carrier
of G, N :] into the carrier ofG is defined by:

(Def. 7) For every elementh of G holds powerG(h, 0) = 1G and for everyn holds powerG(h, n+
1) = powerG(h, n) ·h.

Let us considerG, i, h. The functorhi yields an element ofG and is defined by:

(Def. 8) hi =
{

powerG(h, |i|), if 0 ≤ i,
powerG(h, |i|)−1, otherwise.

Let us considerG, n, h. Thenhn can be characterized by the condition:

(Def. 9) hn = powerG(h, n).

Next we state a number of propositions:

(42)7 (1G)n = 1G.

(43) h0 = 1G.

(44) h1 = h.

(45) h2 = h·h.

(46) h3 = h·h·h.

(47) h2 = 1G iff h−1 = h.

(48) hn+m = hn ·hm.

(49) hn+1 = hn ·h andhn+1 = h·hn.

(50) hn·m = (hn)m.

(51) (h−1)n = (hn)−1.

(52) If g·h = h·g, theng·hn = hn ·g.

(53) If g·h = h·g, thengn ·hm = hm ·gn.

(54) If g·h = h·g, then(g·h)n = gn ·hn.

(55) If 0≤ i, thenhi = h|i|.

(56) If 0 6≤ i, thenhi = (h|i|)−1.

(59)8 If i = 0, thenhi = 1G.

(60) If i ≤ 0, thenhi = (h|i|)−1.

(61) (1G)i = 1G.

(62) h−1 = h−1.

(63) hi+ j = hi ·h j .

(64) hn+ j = hn ·h j .

(65) hi+m = hi ·hm.

7 The propositions (38)–(41) have been removed.
8 The propositions (57) and (58) have been removed.
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(66) h j+1 = h j ·h andh j+1 = h·h j .

(67) hi· j = (hi) j .

(68) hn· j = (hn) j .

(69) hi·m = (hi)m.

(70) h−i = (hi)−1.

(71) h−n = (hn)−1.

(72) (h−1)i = (hi)−1.

(73) If g·h = h·g, then(g·h)i = gi ·hi .

(74) If g·h = h·g, thengi ·h j = h j ·gi .

(75) If g·h = h·g, thengn ·h j = h j ·gn.

(77)9 If g·h = h·g, theng·hi = hi ·g.

Let us considerG, h. We say thath is of order 0 if and only if:

(Def. 10) If hn = 1G, thenn = 0.

We introduceh is of order 0 as a synonym ofh is of order 0. We introduceh is not of order 0 as an
antonym ofh is of order 0.

One can prove the following proposition

(79)10 1G is not of order 0.

Let us considerG, h. The functor ord(h) yielding a natural number is defined as follows:

(Def. 11)(i) ord(h) = 0 if h is of order 0,

(ii) hord(h) = 1G and ord(h) 6= 0 and for everymsuch thathm = 1G andm 6= 0 holds ord(h)≤m,
otherwise.

Next we state four propositions:

(82)11 hord(h) = 1G.

(84)12 ord(1G) = 1.

(85) If ord(h) = 1, thenh = 1G.

(86) If hn = 1G, then ord(h) | n.

Let us considerG. The functor Ord(G) yielding a cardinal number is defined by:

(Def. 12) Ord(G) = the carrier ofG.

Let Sbe a 1-sorted structure. We say thatS is finite if and only if:

(Def. 13) The carrier ofS is finite.

We introduceS is infinite as an antonym ofS is finite.
Let us considerG. Let us assume thatG is finite. The functor ord(G) yields a natural number

and is defined as follows:
9 The proposition (76) has been removed.

10 The proposition (78) has been removed.
11 The propositions (80) and (81) have been removed.
12 The proposition (83) has been removed.
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(Def. 14) There exists a finite setB such thatB = the carrier ofG and ord(G) = cardB.

One can prove the following proposition

(90)13 If G is finite, then ord(G)≥ 1.

One can verify that there exists a group which is strict and commutative.
One can prove the following proposition

(92)14 〈R,+R〉 is a commutative group.

In the sequelA denotes a commutative group anda, b denote elements ofA.
The following three propositions are true:

(94)15 (a·b)−1 = a−1 ·b−1.

(95) (a·b)n = an ·bn.

(96) (a·b)i = ai ·bi .

Let A be a non empty set, letm be a binary operation onA, and letu be an element ofA. One
can check that〈A,m,u〉 is non empty.

The following proposition is true

(97) 〈the carrier ofA, the multiplication ofA, 1A〉 is Abelian, add-associative, right zeroed, and
right complementable.

In the sequelB denotes an Abelian group.
We now state the proposition

(98) 〈the carrier ofB, the addition ofB〉 is a commutative group.
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