Groups

Wojciech A. Trybulec Warsaw University

Summary. Notions of group and abelian group are introduced. The power of an element of a group, order of group and order of an element of a group are defined. Basic theorems concerning those notions are presented.

MML Identifier: GROUP_1.

WWW: http://mizar.org/JFM/Vol2/group_1.html

The articles [13], [6], [17], [14], [18], [4], [9], [5], [16], [10], [15], [2], [7], [12], [1], [8], [3], and [11] provide the notation and terminology for this paper.

For simplicity, we use the following convention: m, n are natural numbers, i, j are integers, S is a non empty groupoid, and r, s, s_1 , s_2 , t are elements of S.

Let *i* be an integer. Then |i| is a natural number.

Let A be a non empty set and let m be a binary operation on A. One can check that $\langle A, m \rangle$ is non empty.

Let I_1 be a non empty groupoid. We say that I_1 is unital if and only if:

(Def. 1) There exists an element e of I_1 such that for every element h of I_1 holds $h \cdot e = h$ and $e \cdot h = h$.

We say that I_1 is group-like if and only if the condition (Def. 3) is satisfied.

(Def. 3)¹ There exists an element e of I_1 such that for every element h of I_1 holds

 $h \cdot e = h$ and $e \cdot h = h$ and there exists an element g of I_1 such that $h \cdot g = e$ and $g \cdot h = e$.

Let us observe that every non empty groupoid which is group-like is also unital.

One can check that there exists a non empty groupoid which is strict, group-like, and associative. A group is a group-like associative non empty groupoid.

The following propositions are true:

- (5)² Suppose for all r, s, t holds $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ and there exists t such that for every s_1 holds $s_1 \cdot t = s_1$ and $t \cdot s_1 = s_1$ and there exists s_2 such that $s_1 \cdot s_2 = t$ and $s_2 \cdot s_1 = t$. Then S is a group.
- (6) Suppose for all r, s, t holds $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ and for all r, s holds there exists t such that $r \cdot t = s$ and there exists t such that $t \cdot r = s$. Then S is associative and group-like.
- (7) $\langle \mathbb{R}, +_{\mathbb{R}} \rangle$ is associative and group-like.

In the sequel G denotes a group-like non empty groupoid and e, h denote elements of G. Let G be a unital non empty groupoid. The functor 1_G yielding an element of G is defined as

follows:

¹ The definition (Def. 2) has been removed.

² The propositions (1)–(4) have been removed.

(Def. 4) For every element h of G holds $h \cdot 1_G = h$ and $1_G \cdot h = h$.

The following proposition is true

 $(10)^3$ If for every h holds $h \cdot e = h$ and $e \cdot h = h$, then $e = 1_G$.

In the sequel G denotes a group and f, g, h denote elements of G. Let us consider G, h. The functor h^{-1} yielding an element of G is defined as follows:

(Def. 5)
$$h \cdot h^{-1} = 1_G$$
 and $h^{-1} \cdot h = 1_G$.

The following propositions are true:

$$(12)^4$$
 If $h \cdot g = 1_G$ and $g \cdot h = 1_G$, then $g = h^{-1}$.

(14)⁵ If
$$h \cdot g = h \cdot f$$
 or $g \cdot h = f \cdot h$, then $g = f$.

(15) If
$$h \cdot g = h$$
 or $g \cdot h = h$, then $g = 1_G$.

(16)
$$(1_G)^{-1} = 1_G$$
.

(17) If
$$h^{-1} = g^{-1}$$
, then $h = g$.

(18) If
$$h^{-1} = 1_G$$
, then $h = 1_G$.

(19)
$$(h^{-1})^{-1} = h$$
.

(20) If
$$h \cdot g = 1_G$$
 or $g \cdot h = 1_G$, then $h = g^{-1}$ and $g = h^{-1}$.

(21)
$$h \cdot f = g \text{ iff } f = h^{-1} \cdot g.$$

(22)
$$f \cdot h = g \text{ iff } f = g \cdot h^{-1}.$$

- (23) There exists f such that $g \cdot f = h$.
- (24) There exists f such that $f \cdot g = h$.

(25)
$$(h \cdot g)^{-1} = g^{-1} \cdot h^{-1}$$
.

(26)
$$g \cdot h = h \cdot g \text{ iff } (g \cdot h)^{-1} = g^{-1} \cdot h^{-1}.$$

(27)
$$g \cdot h = h \cdot g \text{ iff } g^{-1} \cdot h^{-1} = h^{-1} \cdot g^{-1}.$$

(28)
$$g \cdot h = h \cdot g \text{ iff } g \cdot h^{-1} = h^{-1} \cdot g.$$

Let us consider G. The functor \cdot_G^{-1} yields a unary operation on the carrier of G and is defined by:

(Def. 6)
$$\cdot_G^{-1}(h) = h^{-1}$$
.

Next we state several propositions:

- $(31)^6$ For every associative non empty groupoid G holds the multiplication of G is associative.
- (32) For every unital non empty groupoid G holds 1_G is a unity w.r.t. the multiplication of G.
- (33) For every unital non empty groupoid G holds $\mathbf{1}_{\text{the multiplication of } G} = \mathbf{1}_G$.
- (34) For every unital non empty groupoid G holds the multiplication of G has a unity.
- (35) \cdot_G^{-1} is an inverse operation w.r.t. the multiplication of G.

³ The propositions (8) and (9) have been removed.

⁴ The proposition (11) has been removed.

⁵ The proposition (13) has been removed.

⁶ The propositions (29) and (30) have been removed.

- (36) The multiplication of G has an inverse operation.
- (37) The inverse operation w.r.t. the multiplication of $G = \frac{1}{G}$.

Let G be a unital non empty groupoid. The functor power_G yielding a function from [: the carrier of G, \mathbb{N} :] into the carrier of G is defined by:

(Def. 7) For every element h of G holds $\operatorname{power}_G(h,0) = 1_G$ and for every n holds $\operatorname{power}_G(h,n+1) = \operatorname{power}_G(h,n) \cdot h$.

Let us consider G, i, h. The functor h^i yields an element of G and is defined by:

$$(\text{Def. 8}) \quad h^i = \left\{ \begin{array}{ll} \operatorname{power}_G(h,|i|), \text{ if } 0 \leq i, \\ \operatorname{power}_G(h,|i|)^{-1}, \text{ otherwise.} \end{array} \right.$$

Let us consider G, n, h. Then h^n can be characterized by the condition:

(Def. 9) $h^n = power_G(h, n)$.

Next we state a number of propositions:

$$(42)^7 (1_G)^n = 1_G.$$

(43)
$$h^0 = 1_G$$
.

(44)
$$h^1 = h$$
.

(45)
$$h^2 = h \cdot h$$
.

$$(46) \quad h^3 = h \cdot h \cdot h.$$

(47)
$$h^2 = 1_G \text{ iff } h^{-1} = h.$$

$$(48) \quad h^{n+m} = h^n \cdot h^m.$$

(49)
$$h^{n+1} = h^n \cdot h \text{ and } h^{n+1} = h \cdot h^n.$$

$$(50) \quad h^{n \cdot m} = (h^n)^m.$$

(51)
$$(h^{-1})^n = (h^n)^{-1}$$
.

(52) If
$$g \cdot h = h \cdot g$$
, then $g \cdot h^n = h^n \cdot g$.

(53) If
$$g \cdot h = h \cdot g$$
, then $g^n \cdot h^m = h^m \cdot g^n$.

(54) If
$$g \cdot h = h \cdot g$$
, then $(g \cdot h)^n = g^n \cdot h^n$.

(55) If
$$0 \le i$$
, then $h^i = h^{|i|}$.

(56) If
$$0 \le i$$
, then $h^i = (h^{|i|})^{-1}$.

$$(59)^8$$
 If $i = 0$, then $h^i = 1_G$.

(60) If
$$i \le 0$$
, then $h^i = (h^{|i|})^{-1}$.

(61)
$$(1_G)^i = 1_G$$
.

(62)
$$h^{-1} = h^{-1}$$
.

$$(63) \quad h^{i+j} = h^i \cdot h^j.$$

$$(64) \quad h^{n+j} = h^n \cdot h^j.$$

$$(65) \quad h^{i+m} = h^i \cdot h^m.$$

⁷ The propositions (38)–(41) have been removed.

⁸ The propositions (57) and (58) have been removed.

(66)
$$h^{j+1} = h^j \cdot h \text{ and } h^{j+1} = h \cdot h^j.$$

(67)
$$h^{i \cdot j} = (h^i)^j$$
.

(68)
$$h^{n \cdot j} = (h^n)^j$$
.

(69)
$$h^{i \cdot m} = (h^i)^m$$
.

(70)
$$h^{-i} = (h^i)^{-1}$$
.

(71)
$$h^{-n} = (h^n)^{-1}$$
.

(72)
$$(h^{-1})^i = (h^i)^{-1}$$
.

(73) If
$$g \cdot h = h \cdot g$$
, then $(g \cdot h)^i = g^i \cdot h^i$.

(74) If
$$g \cdot h = h \cdot g$$
, then $g^i \cdot h^j = h^j \cdot g^i$.

(75) If
$$g \cdot h = h \cdot g$$
, then $g^n \cdot h^j = h^j \cdot g^n$.

$$(77)^9$$
 If $g \cdot h = h \cdot g$, then $g \cdot h^i = h^i \cdot g$.

Let us consider G, h. We say that h is of order 0 if and only if:

(Def. 10) If
$$h^n = 1_G$$
, then $n = 0$.

We introduce h is of order 0 as a synonym of h is of order 0. We introduce h is not of order 0 as an antonym of h is of order 0.

One can prove the following proposition

$$(79)^{10}$$
 1_G is not of order 0.

Let us consider G, h. The functor ord(h) yielding a natural number is defined as follows:

(Def. 11)(i)
$$\operatorname{ord}(h) = 0$$
 if h is of order 0,

(ii) $h^{\operatorname{ord}(h)} = 1_G$ and $\operatorname{ord}(h) \neq 0$ and for every m such that $h^m = 1_G$ and $m \neq 0$ holds $\operatorname{ord}(h) \leq m$, otherwise.

Next we state four propositions:

$$(82)^{11}$$
 $h^{\text{ord}(h)} = 1_G$.

$$(84)^{12}$$
 ord $(1_G) = 1$.

(85) If
$$ord(h) = 1$$
, then $h = 1_G$.

(86) If
$$h^n = 1_G$$
, then ord $(h) \mid n$.

Let us consider G. The functor Ord(G) yielding a cardinal number is defined by:

(Def. 12)
$$\operatorname{Ord}(G) = \overline{\text{the carrier of } G}$$
.

Let *S* be a 1-sorted structure. We say that *S* is finite if and only if:

(Def. 13) The carrier of S is finite.

We introduce *S* is infinite as an antonym of *S* is finite.

Let us consider G. Let us assume that G is finite. The functor ord(G) yields a natural number and is defined as follows:

⁹ The proposition (76) has been removed.

¹⁰ The proposition (78) has been removed.

¹¹ The propositions (80) and (81) have been removed.

¹² The proposition (83) has been removed.

(Def. 14) There exists a finite set B such that B = the carrier of G and ord(G) = card B.

One can prove the following proposition

 $(90)^{13}$ If G is finite, then $ord(G) \ge 1$.

One can verify that there exists a group which is strict and commutative. One can prove the following proposition

 $(92)^{14}$ $\langle \mathbb{R}, +_{\mathbb{R}} \rangle$ is a commutative group.

In the sequel A denotes a commutative group and a, b denote elements of A. The following three propositions are true:

$$(94)^{15}$$
 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$.

$$(95) \quad (a \cdot b)^n = a^n \cdot b^n.$$

$$(96) \quad (a \cdot b)^i = a^i \cdot b^i.$$

Let A be a non empty set, let m be a binary operation on A, and let u be an element of A. One can check that $\langle A, m, u \rangle$ is non empty.

The following proposition is true

(97) \langle the carrier of A, the multiplication of A, $1_A \rangle$ is Abelian, add-associative, right zeroed, and right complementable.

In the sequel B denotes an Abelian group.

We now state the proposition

(98) \langle the carrier of B, the addition of $B\rangle$ is a commutative group.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finsegop.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real 1.html.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [11] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [12] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.

¹³ The propositions (87)–(89) have been removed.

¹⁴ The proposition (91) has been removed.

¹⁵ The proposition (93) has been removed.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[15] \begin{tabular}{ll} Michał J. Trybulec. Integers. {\it Journal of Formalized Mathematics}, 2, 1990. $$ $$ http://mizar.org/JFM/Vol2/int_1.html. $$ $$$
- [16] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.
- $\textbf{[17]} \quad \textbf{Zinaida Trybulec. Properties of subsets. } \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \\ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [18] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 3, 1990

Published January 2, 2004