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Summary. Notions of group and abelian group are introduced. The power of an ele-
ment of a group, order of group and order of an element of a group are defined. Basic theorems
concerning those notions are presented.
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The articles[[1B],1[6],[17],1[14],[[18],[14],.[9],[[5],[[18],[[10],[[15],[{2],[],.[12],[[1],[[8],[[B], and

[11] provide the notation and terminology for this paper.
For simplicity, we use the following conventiom, n are natural numbers, j are integersSis

a non empty groupoid, amgs, s1, S, t are elements db.
Leti be an integer. The}ji| is a natural number.
Let Abe a non empty set and letbe a binary operation o.. One can check thg, m) is non

empty.
LetI; be a non empty groupoid. We say thats unital if and only if:
(Def. 1) There exists an elemeatof I; such that for every elemeiit of 1, holdsh-e = h and
e-h=h.

We say that; is group-like if and only if the condition (Def. 3) is satisfied.
(Def. SE] There exists an elemeabdf |1 such that for every elemehtof |1 holds
h-e=hande-h=hand there exists an elemeantf |1 such thah-g=eandg-h=-e

Let us observe that every non empty groupoid which is group-like is also unital.
One can check that there exists a non empty groupoid which is strict, group-like, and associative.

A group is a group-like associative non empty groupoid.
The following propositions are true:

(SE] Suppose for alt, s, t holds(r-s)-t =r-(s-t) and there exists such that for eveng
holdss; -t = 51 andt - s; = 51 and there exists, such thas; - s, =t ands, - s; =t. ThenSis
a group.

(6) Suppose for alf, s, t holds(r-s)-t =r-(s-t) and for allr, s holds there existssuch that
r-t = sand there existssuch that - r = s. ThenSis associative and group-like.

(7) (R,+g) is associative and group-like.
In the sequet denotes a group-like non empty groupoid @&t denote elements @.
Let G be a unital non empty groupoid. The functaf fielding an element o6 is defined as

follows:

1 The definition (Def. 2) has been removed.
2 The propositions (1)-(4) have been removed.
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(Def. 4) For every elemeititof G holdsh-1gc =hand -h=h.

The following proposition is true
(10 If for every h holdsh-e=h ande-h = h, thene= 1.

In the sequet denotes a group anid g, h denote elements @.
Let us conside6, h. The functorh~?! yielding an element of is defined as follows:

(Def.5) h-h™l=1gandh™1 -h=1g.
The following propositions are true:
(12f] 1f h-g=1g andg-h=1g, theng=h"1.
(14F] 1fh-g=h-forg-h=f-h theng=f.
(15) Ifh-g=horg-h=h,theng=1g.
(16) (1) '=1c.
(17) Ifht=g* thenh=g.
(18) Ifh~t=1g,thenh=1g.
(19) (hhH=1=nh
(20) Ifh-g=1gorg-h=1g,thenh=gtandg=h1.
(21) h-f=giff f=h"1.g
(22) f-h=giff f=g-h™L.
(23) There exist$ such thag- f = h.
(24) There exist$ such thatf -g=h.
(25) (h-g)t=gtht
(26) g-h=h-.giff (g-h)y"t=g~1.nhL.
(27) g-h=h-.giffgt-h"t=h"1.g°L1
(28) g-h=h-giffg-h"1=h"1.g.

Let us considefs. The functor-g1 yields a unary operation on the carrier@fand is defined
by:

(Def. 6) -g'(h)=h1.
Next we state several propositions:
(31@ For every associative non empty group@idholds the multiplication oG is associative.
(32) For every unital non empty groupd@@lholds % is a unity w.r.t. the multiplication o®.
(33) For every unital non empty groupdiholdslie mutiplication ofc = 1G-
(34) For every unital non empty groupd@lholds the multiplication oG has a unity.

(35) -51 is an inverse operation w.r.t. the multiplication®f

3 The propositions (8) and (9) have been removed.

4 The proposition (11) has been removed.

5 The proposition (13) has been removed.

6 The propositions (29) and (30) have been removed.
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(36) The multiplication ofG has an inverse operation.

(37) The inverse operation w.r.t. the multiplication@f= -gl.

Let G be a unital non empty groupoid. The functor powsielding a function fronf: the carrier
of G, N into the carrier ofG is defined by:

(Def. 7) For every elemerit of G holds poweg(h, 0) = 1 and for everyn holds poweg(h, n+
1) = powei(h, n)-h.

Let us conside6, i, h. The functorh' yields an element oB and is defined by:

(Def.8) I = { Egzvvgggﬂz “Blllf, ?)tielz’rwise.

Let us conside6, n, h. Thenh" can be characterized by the condition:
(Def. 9) h"=powey(h, n).

Next we state a number of propositions:

42)] (16)"=1c.

(43) h°=1g.
(44) hl=h
(45) h=h-h.

(46) h3=h-h-h.

(47) W =1giffh-1=h.

(48) hMm—phn.pm,

(49) h*!l=h".handh™!=h.h"

(50) h™™ = (hm™,

(61) (h "= (")

(52) Ifg-h=h-g,theng-h"=h".g.
(53) Ifg-h=h-g,theng"-hm=hm.g"
(54) Ifg-h=h-g,then(g-h)"=g"-h".
(55) If0<i,thenh =hlil.

(56) If0<i,thenhi = (hlil)~1,

(59F] 1fi =0, thenh' = 1.

(60) Ifi <0, thenh' = (hlih)~1,

(61) (16)' =1c.

(62) hl=h1

(63) hiti=h.hi.

(64) h™i=h".hi

(65) hitM=h.hm

" The propositions (38)—(41) have been removed.
8 The propositions (57) and (58) have been removed.
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(66) hi*l=hi.handhi*t=h-hl.

(67) hi=(nhl.
(68) hMi = (h")i,
(69) him=(h)m
(70) h=(h)=L.
(71) h"= (M1

(72) (1) = (W)L
(73) Ifg-h=h-g,then(g-h)' =g -h'.
(74) Ifg-h=h-g, theng -hi =hi.g.
(75) lfg-h=h-g,theng"-hi =hi.g".
(77F] 1fg-h=h-g theng-h' =h'-g.
Let us conside6, h. We say thah is of order 0 if and only if:
(Def. 10) Ifh" = 1g, thenn=0.

We introduceh is of order 0 as a synonym ofis of order 0. We introduch is not of order 0 as an
antonym ofh is of order 0.
One can prove the following proposition

(7919 1g is not of order 0.

Let us conside6, h. The functor ordh) yielding a natural number is defined as follows:

(Def. 11)()) ordh) =0if his of order 0,

(i) hordh) = 15 and ordh) # 0 and for everynsuch thah™ = 1 andm+ 0 holds ordh) < m,
otherwise.

Next we state four propositions:
(82 herdh) — 14,
847 ord(1c) = 1.
(85) Iford(h) =1, thenh= 1.
(86) Ifh"=1g,thenordh)|n.
Let us conside6. The functor OrdG) yielding a cardinal number is defined by:

(Def. 12) OrdG) = the carrier ofG.
Let Sbe a 1-sorted structure. We say t&as finite if and only if:
(Def. 13) The carrier o8is finite.

We introduceSis infinite as an antonym @is finite.
Let us consides. Let us assume th& is finite. The functor or@G) yields a natural number
and is defined as follows:

9 The proposition (76) has been removed.

10 The proposition (78) has been removed.
11 The propositions (80) and (81) have been removed.
12 The proposition (83) has been removed.
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(Def. 14) There exists a finite sBtsuch thaB = the carrier ofG and ordG) = cardB.

One can prove the following proposition
(90 If Gis finite, then ordG) > 1.

One can verify that there exists a group which is strict and commutative.
One can prove the following proposition

924 (R, +x) is a commutative group.

In the sequeR denotes a commutative group amd denote elements &
The following three propositions are true:

49 (@b t=atbl
(95) (a-b)y"=a"-b".
(96) (a-b)=a-b.

Let A be a non empty set, leh be a binary operation oA, and letu be an element oA. One
can check thatA, m u) is non empty.
The following proposition is true

(97) (the carrier ofA, the multiplication ofA, 1a) is Abelian, add-associative, right zeroed, and
right complementable.

In the sequeB denotes an Abelian group.
We now state the proposition

(98) (the carrier ofB, the addition oB) is a commutative group.
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