Graphs of Functions

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The graph of a function is defined in [1]. In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

MML Identifier: GRFUNC_1.
WWW:http://mizar.org/JFM/Vol1/grfunc_1.html

The articles [2], [3], and [1] provide the notation and terminology for this paper.
We adopt the following convention: $X, Y, x, x_{1}, x_{2}, y, y_{1}, y_{2}, z$ are sets and f, g, h are functions.
The following propositions are true:
(6) For every set G such that $G \subseteq f$ holds G is a function.
(8) $)^{2} f \subseteq g$ iff $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(9) If $\operatorname{dom} f=\operatorname{dom} g$ and $f \subseteq g$, then $f=g$.
$(12)^{3}$ If $\langle x, z\rangle \in g \cdot f$, then $\langle x, f(x)\rangle \in f$ and $\langle f(x), z\rangle \in g$.
(13) If $h \subseteq f$, then $g \cdot h \subseteq g \cdot f$ and $h \cdot g \subseteq f \cdot g$.
$(15)^{4} \quad\{\langle x, y\rangle\}$ is a function.
(16) If $f=\{\langle x, y\rangle\}$, then $f(x)=y$.
(18) ${ }^{5}$ If $\operatorname{dom} f=\{x\}$, then $f=\{\langle x, f(x)\rangle\}$.
(19) $\left\{\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right\}$ is a function iff if $x_{1}=x_{2}$, then $y_{1}=y_{2}$.
$(25)^{6} f$ is one-to-one iff for all x_{1}, x_{2}, y such that $\left\langle x_{1}, y\right\rangle \in f$ and $\left\langle x_{2}, y\right\rangle \in f$ holds $x_{1}=x_{2}$.
(26) If $g \subseteq f$ and f is one-to-one, then g is one-to-one.
(27) $f \cap X$ is a function and $X \cap f$ is a function.
(28) If $h=f \cap g$, then $\operatorname{dom} h \subseteq \operatorname{dom} f \cap \operatorname{dom} g$ and $\operatorname{rng} h \subseteq \operatorname{rng} f \cap \operatorname{rng} g$.
(29) If $h=f \cap g$ and $x \in \operatorname{dom} h$, then $h(x)=f(x)$ and $h(x)=g(x)$.

[^0](30) If f is one-to-one or g is one-to-one and if $h=f \cap g$, then h is one-to-one.
(31) If $\operatorname{dom} f$ misses $\operatorname{dom} g$, then $f \cup g$ is a function.
(32) If $f \subseteq h$ and $g \subseteq h$, then $f \cup g$ is a function.
(33) If $h=f \cup g$, then $\operatorname{dom} h=\operatorname{dom} f \cup \operatorname{dom} g$ and $\operatorname{rng} h=\operatorname{rng} f \cup \operatorname{rng} g$.
(34) If $x \in \operatorname{dom} f$ and $h=f \cup g$, then $h(x)=f(x)$.
(35) If $x \in \operatorname{dom} g$ and $h=f \cup g$, then $h(x)=g(x)$.
(36) If $x \in \operatorname{dom} h$ and $h=f \cup g$, then $h(x)=f(x)$ or $h(x)=g(x)$.
(37) If f is one-to-one and g is one-to-one and $h=f \cup g$ and $\operatorname{rng} f$ misses rng g, then h is one-to-one.
(38) $f \backslash X$ is a function.
(46) If $f=\emptyset$, then f is one-to-one.
(47) If f is one-to-one, then for all x, y holds $\langle y, x\rangle \in f^{-1}$ iff $\langle x, y\rangle \in f$.
$(49)^{8}$ If $f=\emptyset$, then $f^{-1}=\emptyset$.
(52 $]^{9} x \in \operatorname{dom} f$ and $x \in X$ iff $\langle x, f(x)\rangle \in f \mid X$.
(54) $(f \upharpoonright X) \cdot h \subseteq f \cdot h$ and $g \cdot(f\lceil X) \subseteq g \cdot f$.
(64) If $g \subseteq f$, then $f \upharpoonright \operatorname{dom} g=g$.
(67) $\quad x \in \operatorname{dom} f$ and $f(x) \in Y$ iff $\langle x, f(x)\rangle \in Y \upharpoonright f$.
(69 ${ }^{13} \quad(Y \upharpoonright f) \cdot h \subseteq f \cdot h$ and $g \cdot(Y \upharpoonright f) \subseteq g \cdot f$.
(79 ${ }^{14}$ If $g \subseteq f$ and f is one-to-one, then $\operatorname{rng} g \upharpoonright f=g$.
(87) $x \in f^{-1}(Y)$ iff $\langle x, f(x)\rangle \in f$ and $f(x) \in Y$.

References

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[3] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received April 14, 1989
Published January 2, 2004

[^1]
[^0]: ${ }^{1}$ The propositions (1)-(5) have been removed.
 ${ }^{2}$ The proposition (7) has been removed.
 ${ }^{3}$ The propositions (10) and (11) have been removed.
 ${ }^{4}$ The proposition (14) has been removed.
 ${ }^{5}$ The proposition (17) has been removed.
 ${ }^{6}$ The propositions (20)-(24) have been removed.

[^1]: ${ }^{7}$ The propositions (39)-(45) have been removed.
 ${ }^{8}$ The proposition (48) has been removed.
 ${ }^{9}$ The propositions (50) and (51) have been removed.
 ${ }^{10}$ The proposition (53) has been removed.
 ${ }^{11}$ The propositions (55)-(63) have been removed.
 12 The propositions (65) and (66) have been removed.
 ${ }^{13}$ The proposition (68) has been removed.
 ${ }^{14}$ The propositions (70)-(78) have been removed.
 ${ }^{15}$ The propositions (80)-(86) have been removed.

