Graphs of Functions

Czesław Byliński Warsaw University Białystok

Summary. The graph of a function is defined in [1]. In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

MML Identifier: GRFUNC_1.
WWW: http://mizar.org/JFM/Vol1/grfunc_1.html

The articles [2], [3], and [1] provide the notation and terminology for this paper. We adopt the following convention: *X*, *Y*, *x*, *x*₁, *x*₂, *y*, *y*₁, *y*₂, *z* are sets and *f*, *g*, *h* are functions. The following propositions are true:

- (6)¹ For every set G such that $G \subseteq f$ holds G is a function.
- (8)² $f \subseteq g$ iff dom $f \subseteq$ dom g and for every x such that $x \in$ dom f holds f(x) = g(x).
- (9) If dom f = dom g and $f \subseteq g$, then f = g.
- (12)³ If $\langle x, z \rangle \in g \cdot f$, then $\langle x, f(x) \rangle \in f$ and $\langle f(x), z \rangle \in g$.
- (13) If $h \subseteq f$, then $g \cdot h \subseteq g \cdot f$ and $h \cdot g \subseteq f \cdot g$.
- $(15)^4 \quad \{\langle x, y \rangle\}$ is a function.
- (16) If $f = \{ \langle x, y \rangle \}$, then f(x) = y.
- (18)⁵ If dom $f = \{x\}$, then $f = \{\langle x, f(x) \rangle\}$.
- (19) $\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle\}$ is a function iff if $x_1 = x_2$, then $y_1 = y_2$.
- (25)⁶ f is one-to-one iff for all x_1, x_2, y such that $\langle x_1, y \rangle \in f$ and $\langle x_2, y \rangle \in f$ holds $x_1 = x_2$.
- (26) If $g \subseteq f$ and f is one-to-one, then g is one-to-one.
- (27) $f \cap X$ is a function and $X \cap f$ is a function.
- (28) If $h = f \cap g$, then dom $h \subseteq \text{dom } f \cap \text{dom } g$ and $\text{rng } h \subseteq \text{rng } f \cap \text{rng } g$.
- (29) If $h = f \cap g$ and $x \in \text{dom } h$, then h(x) = f(x) and h(x) = g(x).

¹ The propositions (1)–(5) have been removed.

 $^{^{2}}$ The proposition (7) has been removed.

³ The propositions (10) and (11) have been removed.

⁴ The proposition (14) has been removed.

⁵ The proposition (17) has been removed.

⁶ The propositions (20)–(24) have been removed.

- (30) If f is one-to-one or g is one-to-one and if $h = f \cap g$, then h is one-to-one.
- (31) If dom f misses dom g, then $f \cup g$ is a function.
- (32) If $f \subseteq h$ and $g \subseteq h$, then $f \cup g$ is a function.
- (33) If $h = f \cup g$, then dom $h = \text{dom } f \cup \text{dom } g$ and rng $h = \text{rng } f \cup \text{rng } g$.
- (34) If $x \in \text{dom } f$ and $h = f \cup g$, then h(x) = f(x).
- (35) If $x \in \text{dom } g$ and $h = f \cup g$, then h(x) = g(x).
- (36) If $x \in \text{dom } h$ and $h = f \cup g$, then h(x) = f(x) or h(x) = g(x).
- (37) If f is one-to-one and g is one-to-one and $h = f \cup g$ and rng f misses rng g, then h is one-to-one.
- (38) $f \setminus X$ is a function.
- $(46)^7$ If $f = \emptyset$, then f is one-to-one.
- (47) If *f* is one-to-one, then for all *x*, *y* holds $\langle y, x \rangle \in f^{-1}$ iff $\langle x, y \rangle \in f$.
- (49)⁸ If $f = \emptyset$, then $f^{-1} = \emptyset$.
- $(52)^9$ $x \in \text{dom } f \text{ and } x \in X \text{ iff } \langle x, f(x) \rangle \in f \mid X.$
- $(54)^{10}$ $(f \upharpoonright X) \cdot h \subseteq f \cdot h \text{ and } g \cdot (f \upharpoonright X) \subseteq g \cdot f.$
- (64)¹¹ If $g \subseteq f$, then $f \upharpoonright \operatorname{dom} g = g$.
- $(67)^{12}$ $x \in \text{dom } f \text{ and } f(x) \in Y \text{ iff } \langle x, f(x) \rangle \in Y \upharpoonright f.$
- $(69)^{13} \quad (Y \upharpoonright f) \cdot h \subseteq f \cdot h \text{ and } g \cdot (Y \upharpoonright f) \subseteq g \cdot f.$
- (79)¹⁴ If $g \subseteq f$ and f is one-to-one, then $\operatorname{rng} g \upharpoonright f = g$.
- $(87)^{15}$ $x \in f^{-1}(Y)$ iff $\langle x, f(x) \rangle \in f$ and $f(x) \in Y$.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [3] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received April 14, 1989

Published January 2, 2004

⁷ The propositions (39)–(45) have been removed.

⁸ The proposition (48) has been removed.

⁹ The propositions (50) and (51) have been removed.

¹⁰ The proposition (53) has been removed.

¹¹ The propositions (55)–(63) have been removed.

¹² The propositions (65) and (66) have been removed.

¹³ The proposition (68) has been removed.

¹⁴ The propositions (70)–(78) have been removed.

¹⁵ The propositions (80)–(86) have been removed.