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Summary. The graph of a function is defined in [1]. In this paper the graph of a func-
tion is redefined as a Relation. Operations on functions are interpreted as the corresponding
operations on relations. Some theorems about graphs of functions are proved.
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The articles [2], [3], and [1] provide the notation and terminology for this paper.
We adopt the following convention:X, Y, x, x1, x2, y, y1, y2, z are sets andf , g, h are functions.
The following propositions are true:

(6)1 For every setG such thatG⊆ f holdsG is a function.

(8)2 f ⊆ g iff dom f ⊆ domg and for everyx such thatx∈ dom f holds f (x) = g(x).

(9) If dom f = domg and f ⊆ g, then f = g.

(12)3 If 〈〈x, z〉〉 ∈ g· f , then〈〈x, f (x)〉〉 ∈ f and〈〈 f (x), z〉〉 ∈ g.

(13) If h⊆ f , theng·h⊆ g· f andh·g⊆ f ·g.

(15)4 {〈〈x, y〉〉} is a function.

(16) If f = {〈〈x, y〉〉}, then f (x) = y.

(18)5 If dom f = {x}, then f = {〈〈x, f (x)〉〉}.

(19) {〈〈x1, y1〉〉,〈〈x2, y2〉〉} is a function iff if x1 = x2, theny1 = y2.

(25)6 f is one-to-one iff for allx1, x2, y such that〈〈x1, y〉〉 ∈ f and〈〈x2, y〉〉 ∈ f holdsx1 = x2.

(26) If g⊆ f and f is one-to-one, theng is one-to-one.

(27) f ∩X is a function andX∩ f is a function.

(28) If h = f ∩g, then domh⊆ dom f ∩domg and rngh⊆ rng f ∩ rngg.

(29) If h = f ∩g andx∈ domh, thenh(x) = f (x) andh(x) = g(x).

1 The propositions (1)–(5) have been removed.
2 The proposition (7) has been removed.
3 The propositions (10) and (11) have been removed.
4 The proposition (14) has been removed.
5 The proposition (17) has been removed.
6 The propositions (20)–(24) have been removed.
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(30) If f is one-to-one org is one-to-one and ifh = f ∩g, thenh is one-to-one.

(31) If dom f misses domg, then f ∪g is a function.

(32) If f ⊆ h andg⊆ h, then f ∪g is a function.

(33) If h = f ∪g, then domh = dom f ∪domg and rngh = rng f ∪ rngg.

(34) If x∈ dom f andh = f ∪g, thenh(x) = f (x).

(35) If x∈ domg andh = f ∪g, thenh(x) = g(x).

(36) If x∈ domh andh = f ∪g, thenh(x) = f (x) or h(x) = g(x).

(37) If f is one-to-one andg is one-to-one andh = f ∪g and rngf misses rngg, thenh is one-
to-one.

(38) f \X is a function.

(46)7 If f = /0, then f is one-to-one.

(47) If f is one-to-one, then for allx, y holds〈〈y, x〉〉 ∈ f−1 iff 〈〈x, y〉〉 ∈ f .

(49)8 If f = /0, then f−1 = /0.

(52)9 x∈ dom f andx∈ X iff 〈〈x, f (x)〉〉 ∈ f �X.

(54)10 ( f �X) ·h⊆ f ·h andg· ( f �X)⊆ g· f .

(64)11 If g⊆ f , then f �domg = g.

(67)12 x∈ dom f and f (x) ∈Y iff 〈〈x, f (x)〉〉 ∈Y� f .

(69)13 (Y� f ) ·h⊆ f ·h andg· (Y� f )⊆ g· f .

(79)14 If g⊆ f and f is one-to-one, then rngg� f = g.

(87)15 x∈ f−1(Y) iff 〈〈x, f (x)〉〉 ∈ f and f (x) ∈Y.
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7 The propositions (39)–(45) have been removed.
8 The proposition (48) has been removed.
9 The propositions (50) and (51) have been removed.

10 The proposition (53) has been removed.
11 The propositions (55)–(63) have been removed.
12 The propositions (65) and (66) have been removed.
13 The proposition (68) has been removed.
14 The propositions (70)–(78) have been removed.
15 The propositions (80)–(86) have been removed.
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