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The articles[[14],[[6],[[1/7],[[18],[12],[[15],11],[1161,18],[1101,[15], 141, [[18],[18], 171, [[1R],[18], and
[11] provide the notation and terminology for this paper.
In this papetx, y denote setd) denotes a non empty set, ddgddenotes a universal class.
One can prove the following three propositions:

(ZH Let X, Y, A be sets and be a set. Supposec A andA C [:X,Y]. Then there exists an
elementx of X and there exists an elemandf Y such thaz = (x, y).

(3) For all elementsu;, up, us, ug of U holds (uy, up, uz) is an element ofJ; and
{u1,Up, U3, us) is an element of);.

(4) For allx, ysuch thai € y andy € U holdsx € U;.

In this article we present several logical schemes. The sciRamteambdaeals with sets7,
B, C, a binary functor¥ yielding a set, and a binary predicafe and states that:
There exists a partial functioh from .4, B to C such that for allx, y holds (X,
y) € domf iff x € 4 andy € B andP[x,y] and for allx, y such that(x, y) € domf
holds f((x, y)) =  (x.y)
provided the following requirement is met:
e For allx, y such tha € 2 andy € B and?[x,y] holds  (x,y) € C.
The schem@artLambda2Ddeals with non empty set8, B, a setC, a binary functorf yielding
a set, and a binary predicate and states that:
There exists a partial functiohfrom [: 4, B to C such that
(i) for every elemenk of 4 and for every element of B holds(x, y) € domf
iff P[x,y], and
(i) for every elemenk of 4 and for every elementof B such that{x, y) € domf
holds f((x, y)) = 7 (x.y)
provided the following condition is satisfied:
e For every elemenk of 4 and for every elemeny of B such that?[x,y] holds
F(xy) € C.
One can prove the following propositions:

1 The proposition (1) has been removed.
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(5) op,(0,0) =0and op(0) =0 and op = 0.
(6) {0} €Ujand({0}, {0}) € U; and[: {0}, {0} ] € U1 and op € U; and op € U;.
(7) ({0},o0p,,Extrac{0)) is midpoint operator.

Let us note that the trivial loop is midpoint operator.
One can prove the following proposition

(8)()) For every element of the trivial loop holdsx = 0,
(i) for all elementsx, y of the trivial loop holdsx+y = 0,
(i)  for every elemeni of the trivial loop holds—x = 0, and

(iV) Othe trivial loop = 0.

In the sequeC is a category an@® is a non empty subset of the objectIbf
Let us conside€, O. The functor Morph® yields a subset of the morphisms®énd is defined

by:

(Def. SE] MorphsO = |J{hom(a,b);a ranges over objects @, b ranges over objects @&: a €
O A beO}.

Let us conside€, O. Observe that Morph3 is non empty.
Let us conside€, O. The functor don® yields a function from Morph® into O and is defined

by:
(Def. 6) domO = (the dom-map o€) [ MorphsO.

The functor cod yielding a function from Morph® into O is defined by:
(Def. 7) codD = (the cod-map o€) | MorphsO.

The functor com® yielding a partial function fronf MorphsO, MorphsO] to MorphsO is defined
as follows:

(Def. 8) compD = (the composition o€) [ ([: MorphsO, MorphsO ] qua sel.
The functor § yields a function fromO into MorphsO and is defined as follows:
(Def. 9) lo = (the id-map ofC)|O.
Next we state the proposition
(9) (O,MorphsO,domO, codO,compO, lo) is full subcategory o€.
Let us conside€, O. The functor ca® yields a subcategory & and is defined as follows:
(Def. 10) caD = (O,MorphsO,domO, codO, compO, | o).

Let us conside€, O. One can verify that c& is strict.
Next we state the proposition

(10) The objects of ca = O.

Let G be a 1-sorted structure. The functogigtielding a map fromG into G is defined as
follows:

(Def. 11) itk = idthe carrier ofG-

Next we state two propositions:

(11) For every non empty 1-sorted struct@and for every elementof G holds idz(x) = x.

2 The definitions (Def. 1)—(Def. 4) have been removed.
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(12) LetG be a 1-sorted structurkl be a non empty 1-sorted structure, dnble a map fronG
intoH. Thenf.idg=fandidy - f = f.

Let G, H be non empty zero structures. The functor Zerof@&pl) yields a map fronG into
H and is defined as follows:

(Def. 12) ZeroMagG,H) = (the carrier ofG) — Oy.

Let G, H be non empty loop structures and febe a map fron's into H. We say thatf is
additive if and only if:

(Def. 13) For all elements, y of G holds f (x+y) = f(x) + f(y).

One can prove the following four propositions:

(13) comp(the trivial loop}= op; .

(14) LetGs, Gy, Gz be non empty loop structuregbe a map fronG; into G,, andg be a map
from G, into G3. If f is additive andj is additive, therg- f is additive.

(15) For every non empty zero structugeand for every non empty loop structureand for
every elemenk of G holds(ZeroMaf{G,H))(x) = On.

(16) For every non empty loop structuBand for every right zeroed non empty loop structure
H holds ZeroMapG, H) is additive.

In the sequeG, H denote groups.

We consider group morphism structures as systems

(adom-map, a cod-mapFan ),
where the dom-map and the cod-map are groups ansithés a map from the dom-map into the
cod-map.

Let f be a group morphism structure. The functor dowyielding a group is defined by:

(Def. 14) domf = the dom-map of.
The functor cod yields a group and is defined as follows:
(Def. 15) codf = the cod-map of .

Let f be a group morphism structure. The functor fuyields a map from donf into codf and
is defined by:

(Def. 16) funf = theFun of f.

We now state the proposition

(17) Letf be a group morphism structui®;, G, be groups, andy be a map fron; into G,.
If f=(G1,Gy, fo), then domf = G; and codf = G, and funf = fo.

Let us conside6, H. The functor ZERQG, H) yielding a group morphism structure is defined
as follows:

(Def. 17) ZERQG,H) = (G,H,ZeroMagG,H)).

Let us conside6, H. One can verify that ZER@, H) is strict.
LetI; be a group morphism structure. We say thas morphism of groups-like if and only if:

(Def. 18) funl is additive.

One can check that there exists a group morphism structure which is strict and morphism of
groups-like.

A morphism of groups is a morphism of groups-like group morphism structure.

Next we state the proposition
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(18) For every morphisrir of groups holds theun of F is additive.

Let us consides, H. Observe that ZER@@, H) is morphism of groups-like.
Let us considefs, H. A morphism of groups is said to be a morphism fr@o H if:

(Def. 19) domit=Gand codit=H.

Let us conside6, H. Note that there exists a morphism fr@to H which is strict.
One can prove the following three propositions:

(19) Letf be a strict group morphism structure. Suppose flemG and codf = H and funf
is additive. Therf is a strict morphism front to H.

(20) For every mag from G into H such thatf is additive holdSG, H, f) is a strict morphism
from G to H.

(21) For every non empty loop structugholds id; is additive.

Let us consides. The functor § yielding a morphism fronG to G is defined by:
(Def. 20) It =(G,G,idg).

Let us considefs. Note that § is strict.
Let us conside6, H. Then ZERQG, H) is a strict morphism fronG to H.
One can prove the following propositions:

(22) LetF be a morphism fron® to H. Then there exists a mapfrom G into H such that the
group morphism structure & = (G,H, f) and f is additive.

(23) For every strict morphisrg from G to H there exists a magp from G into H such that
F =(G,H,f).

(24) For every morphisri of groups there exiss, H such thaF is a morphism fronG to H.

(25) LetF be a strict morphism of groups. Then there exist graapd and there exists a map
f from G into H such thaf is a morphism fronG toH andF = (G,H, f) and f is additive.

(26) Letg, f be morphisms of groups. Suppose dpsmcodf. Then there exist groups;, Gy,
G3 such thag is a morphism fronG, to Gz and f is a morphism fronG; to Go.

Let G, F be morphisms of groups. Let us assume that @omcodF. The functorG- F yielding
a strict morphism of groups is defined by the condition (Def. 21).

(Def. 21) LetGy, Gy, G3 be groupsg be a map fronG; into Gz, andf be a map fronG; into Gp.
Suppose the group morphism structuressf (G, Gz, g) and the group morphism structure
of F = (Gy1,Gy, f). ThenG-F = (Gy1,G3,9- f).

Next we state the proposition

(28 Let G1, Gp, Gz be groupsG be a morphism front; to Gz, andF be a morphism from
G1 t0 G,. ThenG-F is a morphism fronG; to Gs.

Let G1, G2, G3 be groups, le6G be a morphism front, to Gz, and letF be a morphism from
G;1 to G,. ThenG-F is a strict morphism fron®; to Gs.
The following propositions are true:

(29) LetGy, Gp, G3 be groups be a morphism front, to Gs, F be a morphism fronG; to
G2, g be a map fronG; into Gz, and f be a map fron5; into Gy. If G = (Gy,G3,0) and
F =(G1,Gy, f), thenG-F = (G1,G3,g- f).

3 The proposition (27) has been removed.
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(30) Letf, gbe strict morphisms of groups. Suppose dpmcodf. Then there exist groups
G1, G, Gs and there exists a mdip from G; into G, and there exists a mayp from Gy into
Gs such thatf = (G1, Gy, fo) andg = (G, Gs,00) andg- f = (G1,Gs,do- fo).

(31) For all strict morphismg, g of groups such that dog= codf holds donfg- f) = domf
and codg- f) = codg.

(32) LetGy, Gy, Gz, G4 be groupsf be a strict morphism fror®; to G, g be a strict morphism
from G, to Gs, andh be a strict morphism frors; to G4. Thenh-(g- f) = (h-g)- f.

(33) For all strict morphism$, g, h of groups such that dom= codg and dong = codf holds
h-(g-f)=(h-g)-f.

(34)(i) dom(lc) =G,
(i) cod(lg) =G,

(iif)  for every strict morphismf of groups such that cod= G holds ;- f = f, and
(iv) for every strict morphisng of groups such that dogi= G holdsg-Ig = g.

Letl; be a set. We say thét is non empty set of groups-like if and only if:
(Def. 22) For every set such thak € I; holdsx is a strict group.

Let us note that there exists a set which is non empty set of groups-like and non empty.
A non empty set of groups is a non empty set of groups-like non empty set.

In the sequeY is a non empty set of groups.

Let us consideY. We see that the element\éfis a group.

Let us consideY. One can verify that there exists an elemen¥ afhich is strict.

Letl; be a set. We say thét is non empty set of morphisms of groups-like if and only if:

(Def. 23) For every setsuch thak € |1 holdsx is a strict morphism of groups.

Let us mention that there exists a set which is non empty set of morphisms of groups-like and
non empty.

A non empty set of morphisms of groups is a non empty set of morphisms of groups-like non
empty set.

Let M be a non empty set of morphisms of groups. We see that the elemdnisaf morphism
of groups.

LetM be a non empty set of morphisms of groups. Note that there exists an elenvkmntto€h
is strict.

Next we state the proposition

(37@ For every strict morphisnf of groups holds{ f} is a non empty set of morphisms of
groups.

Let us considef, H. A non empty set of morphisms of groups is said to be a non empty set of
morphisms fronGG into H if:

(Def. 24) Every element of it is a strict morphism fragnto H.

The following propositions are true:

(38) Disanonempty set of morphisms fra&into H iff every element oD is a strict morphism
from GtoH.

(39) For every strict morphism from G to H holds{f} is a non empty set of morphisms from
GintoH.

Let G, H be 1-sorted structures. Set of maps fr@mto H is defined by:

4 The propositions (35) and (36) have been removed.



CATEGORIES OF GROUPS 6

(Def. 25) For every set such thak € it holdsx is a map fromG into H.

Let G, H be 1-sorted structures. The functor M&psH ) yielding a set of maps fror® into H
is defined by:

(Def. 26) Map$G,H) = (the carrier ofH )the carier oG,

Let G be a 1-sorted structure and let be a non empty 1-sorted structure. Observe that
MapsG,H) is non empty.

Let G be a 1-sorted structure and ldtbe a non empty 1-sorted structure. Observe that there
exists a set of maps fro@ into H which is non empty.

Let G be a 1-sorted structure, letbe a non empty 1-sorted structure, andViehe a non empty
set of maps fron® into H. We see that the element Bfis a map fromG into H.

Let us conside6, H. The functor Morph&G,H) yielding a non empty set of morphisms from
Ginto H is defined as follows:

(Def. 27) x e MorphgG,H) iff xis a strict morphism fron® to H.

Let us considefs, H and letM be a non empty set of morphisms fraginto H. We see that
the element oM is a morphism fronG to H.

Let us conside6, H and letM be a non empty set of morphisms fr@into H. Note that there
exists an element & which is strict.

Let us consideg, y. The predicate X,y is defined by the condition (Def. 28).

(Def. 28) There exist setg, X2, X3, X4 such that
()  x={X1,%2,X3,Xa), and

(i) there exists a strict grou@ such thalyy = G andx; = the carrier ofG andx; = the addition
of G andxs = compG andx4 = the zero ofG.

One can prove the following two propositions:

(40) For all setx, yi1, y2 such that ByX,y1 and RpX,y» holdsy; = y».

(41) There existg such thaix € U; and RpX, the trivial loop

Let us considet);. The functor GroupOl§J;) yielding a set is defined as follows:
(Def. 29) For every holdsy € GroupObjU, ) iff there existsx such tha € U; and RpX,y.

We now state the proposition
(42) The trivial loope GroupObjU;).

Let us considet);. One can check that Group@by; ) is non empty.
One can prove the following proposition

(43) Every element of GroupOttj,) is a strict group.

Let us considet;. Note that GroupOlgY1) is non empty set of groups-like.
Let us conside¥. The functor Morph¥ yielding a non empty set of morphisms of groups is
defined as follows:

(Def. 30) For every holdsx € MorphsV iff there exist strict element§, H of V such thatx is a
strict morphism fron to H.

Let us consideV and letF be an element of Morphé Then don¥ is a strict element of/.
Then codF is a strict element 0¥ .

Let us consideV and letG be an element of. The functor § yielding a strict element of
MorphsV is defined by:

(Def.31) ks =lg.
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Let us consideY. The functor dorV yields a function from Morphg intoV and is defined by:
(Def. 32) For every elemerft of MorphsV holds(domV)(f) = domf.
The functor cod/ yielding a function from Morph¥ intoV is defined by:
(Def. 33) For every elemerft of MorphsV holds(codV)(f) = codf.
The functor |, yields a function fromV into Morphsv and is defined as follows:
(Def. 34) For every elemei@ of V holds I, (G) = I¢.

The following two propositions are true:

(44) Letg, f be elements of Morphs Suppose domg = codf. Then there exist strict elements
G1, Gy, G3 of V such thag is a morphism fronG, to Gz and f is a morphism fron; to G,.

(45) For all elementg, f of MorphsV such that dorg = codf holdsg- f € Morphsv.

Let us consideY. The functor comp' yields a partial function froni MorphsV, MorphsV ] to
MorphsV and is defined by the conditions (Def. 35).
(Def. 35)()) For all elementg, f of MorphsV holds{g, f} € domcomp iff domg = codf, and
(i) for all elementsg, f of MorphsV such that{g, f) € domcomp/ holds (compV)((g,
f))=g-f.
Let us considet);. The functor GroupCé#t;) yields a category structure and is defined as
follows:
(Def. 36) GroupCdt;) = (GroupObjU;), Morphs GroupOkjJs ),dom GroupOhjU; ), cod GroupOhjus ),
comp GroupOlJ1), | roupobjuy)) -

Let us considet;. Observe that GroupGat; ) is strict.
The following propositions are true:

(46) For all morphismsf, g of GroupCatU;) holds (g, f) € dom(the composition of
GroupCatU,)) iff domg = codf.

(47) Letf be a morphism of GroupCgt; ), f’ be an element of Morphs GroupQUj ), b be
an object of GroupC#; ), andb’ be an element of GroupQOfy;). Then
(i) fisastrict element of Morphs GroupQb ),
(i)  f'is a morphism of GroupCé; ),
(iii)  bis a strict element of GroupOftj; ), and
(iv) b'is an object of GroupCét).

(48) For every objech of GroupCatU;) and for every elemertt’ of GroupObjU;) such that
b="b holdsid, = ly.

(49) For every morphisnfi of GroupCatU ) and for every elemerit’ of Morphs GroupOhjJ;)
such thatf = f’ holds domf = domf’ and codf = codf’.

(50) Letf, g be morphisms of GroupCl;) and f/, g be elements of Morphs GroupQbj; )
such thatf = f" andg=¢'. Then
(i) domg= codf iff domg = codf’,
(i) domg= codf iff {(¢/, ') € domcompGroupOKy,),
(i) ifdomg=codf,theng-f =¢ - f/,
(iv) domf =domgiff dom f’ = domg’, and
(v) codf = codgiff cod f’ = codg'.
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Let us considet;. One can check that Group@&i ) is category-like.
Let us consided;. The functor AbGroupOHRYJ; ) yields a subset of the objects of GroupAl)
and is defined by:

(Def. 37) AbGroupOhjU;) = {G;G ranges over elements of the objects of Groudat
\/H :Abelian groqu =H }

One can prove the following proposition
(51) The trivial loope AbGroupObjU,).

Let us considet);. One can check that AbGroupQUj ) is non empty.
Let us considel;. The functor AbGroupC#lt;) yielding a subcategory of GroupQHl ) is
defined as follows:

(Def. 38) AbGroupCat);) = catAbGroupOhjU;).

Let us considet);. Observe that AbGroupGét; ) is strict.
One can prove the following proposition

(52) The objects of AbGroupCi;) = AbGroupObjUs).

Let us conside;. The functor% GroupObjU,) yielding a subset of the objects of AbGroup(t)
is defined by:

(Def. 39) %GroupOb[Ul) = {G;G ranges over elements of the objects of AbGroudat
VH: midpoint operator Abelian groqu = H}-

Let us considet;. Observe tha$ GroupObjU, ) is non empty.

Let us considet);. The functor% GroupCatU,) yielding a subcategory of AbGroupQhl; ) is
defined by:

(Def. 40) 1 GroupCatU;) = cat3 GroupObjU, ).

Let us considets. Note that} GroupCatUs) is strict.
One can prove the following propositions:

(53) The objects of GroupCatUs) = 3 GroupObjUy).

(54) The trivial loope 2 GroupObjUy).
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