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The articles [14], [6], [17], [18], [2], [15], [1], [16], [8], [10], [5], [4], [13], [3], [7], [12], [9], and
[11] provide the notation and terminology for this paper.

In this paperx, y denote sets,D denotes a non empty set, andU1 denotes a universal class.
One can prove the following three propositions:

(2)1 Let X, Y, A be sets andz be a set. Supposez∈ A andA⊆ [:X, Y :]. Then there exists an
elementx of X and there exists an elementy of Y such thatz= 〈〈x, y〉〉.

(3) For all elementsu1, u2, u3, u4 of U1 holds 〈〈u1, u2, u3〉〉 is an element ofU1 and
〈〈u1,u2,u3,u4〉〉 is an element ofU1.

(4) For allx, y such thatx∈ y andy∈U1 holdsx∈U1.

In this article we present several logical schemes. The schemePartLambda2deals with setsA ,
B, C , a binary functorF yielding a set, and a binary predicateP , and states that:

There exists a partial functionf from [:A , B :] to C such that for allx, y holds〈〈x,
y〉〉 ∈ dom f iff x∈ A andy∈ B andP [x,y] and for allx, y such that〈〈x, y〉〉 ∈ dom f
holds f (〈〈x, y〉〉) = F (x,y)

provided the following requirement is met:
• For allx, y such thatx∈ A andy∈ B andP [x,y] holdsF (x,y) ∈ C .

The schemePartLambda2Ddeals with non empty setsA , B, a setC , a binary functorF yielding
a set, and a binary predicateP , and states that:

There exists a partial functionf from [:A , B :] to C such that
(i) for every elementx of A and for every elementy of B holds〈〈x, y〉〉 ∈ dom f

iff P [x,y], and
(ii) for every elementx of A and for every elementy of B such that〈〈x, y〉〉 ∈ dom f

holds f (〈〈x, y〉〉) = F (x,y)
provided the following condition is satisfied:

• For every elementx of A and for every elementy of B such thatP [x,y] holds
F (x,y) ∈ C .

One can prove the following propositions:

1 The proposition (1) has been removed.
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(5) op2( /0, /0) = /0 and op1( /0) = /0 and op0 = /0.

(6) { /0} ∈U1 and〈〈{ /0}, { /0}〉〉 ∈U1 and[:{ /0}, { /0} :] ∈U1 and op2 ∈U1 and op1 ∈U1.

(7) 〈{ /0},op2,Extract( /0)〉 is midpoint operator.

Let us note that the trivial loop is midpoint operator.
One can prove the following proposition

(8)(i) For every elementx of the trivial loop holdsx = /0,

(ii) for all elementsx, y of the trivial loop holdsx+y = /0,

(iii) for every elementx of the trivial loop holds−x = /0, and

(iv) 0the trivial loop= /0.

In the sequelC is a category andO is a non empty subset of the objects ofC.
Let us considerC, O. The functor MorphsO yields a subset of the morphisms ofC and is defined

by:

(Def. 5)2 MorphsO =
⋃
{hom(a,b);a ranges over objects ofC, b ranges over objects ofC: a ∈

O ∧ b∈ O}.

Let us considerC, O. Observe that MorphsO is non empty.
Let us considerC, O. The functor domO yields a function from MorphsO into O and is defined

by:

(Def. 6) domO = (the dom-map ofC)�MorphsO.

The functor codO yielding a function from MorphsO into O is defined by:

(Def. 7) codO = (the cod-map ofC)�MorphsO.

The functor compO yielding a partial function from[:MorphsO, MorphsO:] to MorphsO is defined
as follows:

(Def. 8) compO = (the composition ofC)�([:MorphsO, MorphsO:] qua set).

The functor IO yields a function fromO into MorphsO and is defined as follows:

(Def. 9) IO = (the id-map ofC)�O.

Next we state the proposition

(9) 〈O,MorphsO,domO,codO,compO, IO〉 is full subcategory ofC.

Let us considerC, O. The functor catO yields a subcategory ofC and is defined as follows:

(Def. 10) catO = 〈O,MorphsO,domO,codO,compO, IO〉.

Let us considerC, O. One can verify that catO is strict.
Next we state the proposition

(10) The objects of catO = O.

Let G be a 1-sorted structure. The functor idG yielding a map fromG into G is defined as
follows:

(Def. 11) idG = idthe carrier ofG.

Next we state two propositions:

(11) For every non empty 1-sorted structureG and for every elementx of G holds idG(x) = x.

2 The definitions (Def. 1)–(Def. 4) have been removed.
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(12) LetG be a 1-sorted structure,H be a non empty 1-sorted structure, andf be a map fromG
into H. Then f · idG = f and idH · f = f .

Let G, H be non empty zero structures. The functor ZeroMap(G,H) yields a map fromG into
H and is defined as follows:

(Def. 12) ZeroMap(G,H) = (the carrier ofG) 7−→ 0H .

Let G, H be non empty loop structures and letf be a map fromG into H. We say thatf is
additive if and only if:

(Def. 13) For all elementsx, y of G holds f (x+y) = f (x)+ f (y).

One can prove the following four propositions:

(13) comp(the trivial loop)= op1 .

(14) LetG1, G2, G3 be non empty loop structures,f be a map fromG1 into G2, andg be a map
from G2 into G3. If f is additive andg is additive, theng· f is additive.

(15) For every non empty zero structureG and for every non empty loop structureH and for
every elementx of G holds(ZeroMap(G,H))(x) = 0H .

(16) For every non empty loop structureG and for every right zeroed non empty loop structure
H holds ZeroMap(G,H) is additive.

In the sequelG, H denote groups.
We consider group morphism structures as systems
〈 a dom-map, a cod-map, aFun 〉,

where the dom-map and the cod-map are groups and theFun is a map from the dom-map into the
cod-map.

Let f be a group morphism structure. The functor domf yielding a group is defined by:

(Def. 14) domf = the dom-map off .

The functor codf yields a group and is defined as follows:

(Def. 15) codf = the cod-map off .

Let f be a group morphism structure. The functor funf yields a map from domf into codf and
is defined by:

(Def. 16) funf = theFun of f .

We now state the proposition

(17) Let f be a group morphism structure,G1, G2 be groups, andf0 be a map fromG1 into G2.
If f = 〈G1,G2, f0〉, then domf = G1 and codf = G2 and funf = f0.

Let us considerG, H. The functor ZERO(G,H) yielding a group morphism structure is defined
as follows:

(Def. 17) ZERO(G,H) = 〈G,H,ZeroMap(G,H)〉.

Let us considerG, H. One can verify that ZERO(G,H) is strict.
Let I1 be a group morphism structure. We say thatI1 is morphism of groups-like if and only if:

(Def. 18) funI1 is additive.

One can check that there exists a group morphism structure which is strict and morphism of
groups-like.

A morphism of groups is a morphism of groups-like group morphism structure.
Next we state the proposition
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(18) For every morphismF of groups holds theFun of F is additive.

Let us considerG, H. Observe that ZERO(G,H) is morphism of groups-like.
Let us considerG, H. A morphism of groups is said to be a morphism fromG to H if:

(Def. 19) domit= G and codit= H.

Let us considerG, H. Note that there exists a morphism fromG to H which is strict.
One can prove the following three propositions:

(19) Let f be a strict group morphism structure. Suppose domf = G and codf = H and funf
is additive. Thenf is a strict morphism fromG to H.

(20) For every mapf from G into H such thatf is additive holds〈G,H, f 〉 is a strict morphism
from G to H.

(21) For every non empty loop structureG holds idG is additive.

Let us considerG. The functor IG yielding a morphism fromG to G is defined by:

(Def. 20) IG = 〈G,G, idG〉.

Let us considerG. Note that IG is strict.
Let us considerG, H. Then ZERO(G,H) is a strict morphism fromG to H.
One can prove the following propositions:

(22) LetF be a morphism fromG to H. Then there exists a mapf from G into H such that the
group morphism structure ofF = 〈G,H, f 〉 and f is additive.

(23) For every strict morphismF from G to H there exists a mapf from G into H such that
F = 〈G,H, f 〉.

(24) For every morphismF of groups there existG, H such thatF is a morphism fromG to H.

(25) LetF be a strict morphism of groups. Then there exist groupsG, H and there exists a map
f from G into H such thatF is a morphism fromG to H andF = 〈G,H, f 〉 and f is additive.

(26) Letg, f be morphisms of groups. Suppose domg = cod f . Then there exist groupsG1, G2,
G3 such thatg is a morphism fromG2 to G3 and f is a morphism fromG1 to G2.

Let G, F be morphisms of groups. Let us assume that domG= codF. The functorG·F yielding
a strict morphism of groups is defined by the condition (Def. 21).

(Def. 21) LetG1, G2, G3 be groups,g be a map fromG2 into G3, and f be a map fromG1 into G2.
Suppose the group morphism structure ofG = 〈G2,G3,g〉 and the group morphism structure
of F = 〈G1,G2, f 〉. ThenG·F = 〈G1,G3,g· f 〉.

Next we state the proposition

(28)3 Let G1, G2, G3 be groups,G be a morphism fromG2 to G3, andF be a morphism from
G1 to G2. ThenG·F is a morphism fromG1 to G3.

Let G1, G2, G3 be groups, letG be a morphism fromG2 to G3, and letF be a morphism from
G1 to G2. ThenG·F is a strict morphism fromG1 to G3.

The following propositions are true:

(29) LetG1, G2, G3 be groups,G be a morphism fromG2 to G3, F be a morphism fromG1 to
G2, g be a map fromG2 into G3, and f be a map fromG1 into G2. If G = 〈G2,G3,g〉 and
F = 〈G1,G2, f 〉, thenG·F = 〈G1,G3,g· f 〉.

3 The proposition (27) has been removed.
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(30) Let f , g be strict morphisms of groups. Suppose domg = cod f . Then there exist groups
G1, G2, G3 and there exists a mapf0 from G1 into G2 and there exists a mapg0 from G2 into
G3 such thatf = 〈G1,G2, f0〉 andg = 〈G2,G3,g0〉 andg· f = 〈G1,G3,g0 · f0〉.

(31) For all strict morphismsf , g of groups such that domg = cod f holds dom(g · f ) = dom f
and cod(g· f ) = codg.

(32) LetG1, G2, G3, G4 be groups,f be a strict morphism fromG1 to G2, g be a strict morphism
from G2 to G3, andh be a strict morphism fromG3 to G4. Thenh· (g· f ) = (h·g) · f .

(33) For all strict morphismsf , g, h of groups such that domh = codg and domg = cod f holds
h· (g· f ) = (h·g) · f .

(34)(i) dom(IG) = G,

(ii) cod(IG) = G,

(iii) for every strict morphismf of groups such that codf = G holds IG · f = f , and

(iv) for every strict morphismg of groups such that domg = G holdsg· IG = g.

Let I1 be a set. We say thatI1 is non empty set of groups-like if and only if:

(Def. 22) For every setx such thatx∈ I1 holdsx is a strict group.

Let us note that there exists a set which is non empty set of groups-like and non empty.
A non empty set of groups is a non empty set of groups-like non empty set.
In the sequelV is a non empty set of groups.
Let us considerV. We see that the element ofV is a group.
Let us considerV. One can verify that there exists an element ofV which is strict.
Let I1 be a set. We say thatI1 is non empty set of morphisms of groups-like if and only if:

(Def. 23) For every setx such thatx∈ I1 holdsx is a strict morphism of groups.

Let us mention that there exists a set which is non empty set of morphisms of groups-like and
non empty.

A non empty set of morphisms of groups is a non empty set of morphisms of groups-like non
empty set.

Let M be a non empty set of morphisms of groups. We see that the element ofM is a morphism
of groups.

Let M be a non empty set of morphisms of groups. Note that there exists an element ofM which
is strict.

Next we state the proposition

(37)4 For every strict morphismf of groups holds{ f} is a non empty set of morphisms of
groups.

Let us considerG, H. A non empty set of morphisms of groups is said to be a non empty set of
morphisms fromG into H if:

(Def. 24) Every element of it is a strict morphism fromG to H.

The following propositions are true:

(38) D is a non empty set of morphisms fromG intoH iff every element ofD is a strict morphism
from G to H.

(39) For every strict morphismf from G to H holds{ f} is a non empty set of morphisms from
G into H.

Let G, H be 1-sorted structures. Set of maps fromG into H is defined by:

4 The propositions (35) and (36) have been removed.
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(Def. 25) For every setx such thatx∈ it holdsx is a map fromG into H.

Let G, H be 1-sorted structures. The functor Maps(G,H) yielding a set of maps fromG into H
is defined by:

(Def. 26) Maps(G,H) = (the carrier ofH)the carrier ofG.

Let G be a 1-sorted structure and letH be a non empty 1-sorted structure. Observe that
Maps(G,H) is non empty.

Let G be a 1-sorted structure and letH be a non empty 1-sorted structure. Observe that there
exists a set of maps fromG into H which is non empty.

Let G be a 1-sorted structure, letH be a non empty 1-sorted structure, and letM be a non empty
set of maps fromG into H. We see that the element ofM is a map fromG into H.

Let us considerG, H. The functor Morphs(G,H) yielding a non empty set of morphisms from
G into H is defined as follows:

(Def. 27) x∈ Morphs(G,H) iff x is a strict morphism fromG to H.

Let us considerG, H and letM be a non empty set of morphisms fromG into H. We see that
the element ofM is a morphism fromG to H.

Let us considerG, H and letM be a non empty set of morphisms fromG into H. Note that there
exists an element ofM which is strict.

Let us considerx, y. The predicate Pobx,y is defined by the condition (Def. 28).

(Def. 28) There exist setsx1, x2, x3, x4 such that

(i) x = 〈〈x1,x2,x3,x4〉〉, and

(ii) there exists a strict groupG such thaty= G andx1 = the carrier ofG andx2 = the addition
of G andx3 = compG andx4 = the zero ofG.

One can prove the following two propositions:

(40) For all setsx, y1, y2 such that Pobx,y1 and Pobx,y2 holdsy1 = y2.

(41) There existsx such thatx∈U1 and Pobx, the trivial loop.

Let us considerU1. The functor GroupObj(U1) yielding a set is defined as follows:

(Def. 29) For everyy holdsy∈ GroupObj(U1) iff there existsx such thatx∈U1 and Pobx,y.

We now state the proposition

(42) The trivial loop∈ GroupObj(U1).

Let us considerU1. One can check that GroupObj(U1) is non empty.
One can prove the following proposition

(43) Every element of GroupObj(U1) is a strict group.

Let us considerU1. Note that GroupObj(U1) is non empty set of groups-like.
Let us considerV. The functor MorphsV yielding a non empty set of morphisms of groups is

defined as follows:

(Def. 30) For everyx holdsx ∈ MorphsV iff there exist strict elementsG, H of V such thatx is a
strict morphism fromG to H.

Let us considerV and letF be an element of MorphsV. Then domF is a strict element ofV.
Then codF is a strict element ofV.

Let us considerV and letG be an element ofV. The functor IG yielding a strict element of
MorphsV is defined by:

(Def. 31) IG = IG.
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Let us considerV. The functor domV yields a function from MorphsV intoV and is defined by:

(Def. 32) For every elementf of MorphsV holds(domV)( f ) = dom f .

The functor codV yielding a function from MorphsV into V is defined by:

(Def. 33) For every elementf of MorphsV holds(codV)( f ) = cod f .

The functor IV yields a function fromV into MorphsV and is defined as follows:

(Def. 34) For every elementG of V holds IV(G) = IG.

The following two propositions are true:

(44) Letg, f be elements of MorphsV. Suppose domg = cod f . Then there exist strict elements
G1, G2, G3 of V such thatg is a morphism fromG2 to G3 and f is a morphism fromG1 to G2.

(45) For all elementsg, f of MorphsV such that domg = cod f holdsg· f ∈ MorphsV.

Let us considerV. The functor compV yields a partial function from[:MorphsV, MorphsV :] to
MorphsV and is defined by the conditions (Def. 35).

(Def. 35)(i) For all elementsg, f of MorphsV holds〈〈g, f 〉〉 ∈ domcompV iff domg = cod f , and

(ii) for all elementsg, f of MorphsV such that〈〈g, f 〉〉 ∈ domcompV holds (compV)(〈〈g,
f 〉〉) = g· f .

Let us considerU1. The functor GroupCat(U1) yields a category structure and is defined as
follows:

(Def. 36) GroupCat(U1)= 〈GroupObj(U1),MorphsGroupObj(U1),domGroupObj(U1),codGroupObj(U1),
compGroupObj(U1), IGroupObj(U1)〉.

Let us considerU1. Observe that GroupCat(U1) is strict.
The following propositions are true:

(46) For all morphismsf , g of GroupCat(U1) holds 〈〈g, f 〉〉 ∈ dom(the composition of
GroupCat(U1)) iff domg = cod f .

(47) Let f be a morphism of GroupCat(U1), f ′ be an element of MorphsGroupObj(U1), b be
an object of GroupCat(U1), andb′ be an element of GroupObj(U1). Then

(i) f is a strict element of MorphsGroupObj(U1),

(ii) f ′ is a morphism of GroupCat(U1),

(iii) b is a strict element of GroupObj(U1), and

(iv) b′ is an object of GroupCat(U1).

(48) For every objectb of GroupCat(U1) and for every elementb′ of GroupObj(U1) such that
b = b′ holds idb = Ib′ .

(49) For every morphismf of GroupCat(U1) and for every elementf ′ of MorphsGroupObj(U1)
such thatf = f ′ holds domf = dom f ′ and codf = cod f ′.

(50) Let f , g be morphisms of GroupCat(U1) and f ′, g′ be elements of MorphsGroupObj(U1)
such thatf = f ′ andg = g′. Then

(i) domg = cod f iff domg′ = cod f ′,

(ii) domg = cod f iff 〈〈g′, f ′〉〉 ∈ domcompGroupObj(U1),

(iii) if dom g = cod f , theng· f = g′ · f ′,

(iv) dom f = domg iff dom f ′ = domg′, and

(v) cod f = codg iff cod f ′ = codg′.
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Let us considerU1. One can check that GroupCat(U1) is category-like.
Let us considerU1. The functor AbGroupObj(U1) yields a subset of the objects of GroupCat(U1)

and is defined by:

(Def. 37) AbGroupObj(U1) = {G;G ranges over elements of the objects of GroupCat(U1):∨
H :Abelian group G = H}.

One can prove the following proposition

(51) The trivial loop∈ AbGroupObj(U1).

Let us considerU1. One can check that AbGroupObj(U1) is non empty.
Let us considerU1. The functor AbGroupCat(U1) yielding a subcategory of GroupCat(U1) is

defined as follows:

(Def. 38) AbGroupCat(U1) = catAbGroupObj(U1).

Let us considerU1. Observe that AbGroupCat(U1) is strict.
One can prove the following proposition

(52) The objects of AbGroupCat(U1) = AbGroupObj(U1).

Let us considerU1. The functor12 GroupObj(U1) yielding a subset of the objects of AbGroupCat(U1)
is defined by:

(Def. 39) 1
2 GroupObj(U1) = {G;G ranges over elements of the objects of AbGroupCat(U1):∨

H : midpoint operator Abelian groupG = H}.

Let us considerU1. Observe that12 GroupObj(U1) is non empty.
Let us considerU1. The functor1

2 GroupCat(U1) yielding a subcategory of AbGroupCat(U1) is
defined by:

(Def. 40) 1
2 GroupCat(U1) = cat1

2 GroupObj(U1).

Let us considerU1. Note that12 GroupCat(U1) is strict.
One can prove the following propositions:

(53) The objects of12 GroupCat(U1) = 1
2 GroupObj(U1).

(54) The trivial loop∈ 1
2 GroupObj(U1).
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