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Summary. The article formalizes Dijkstra’s shortest path algorithm [11]. A path from
a source vertexv to a target vertexu is said to be the shortest path if its total cost is minimum
among allv-to-u paths. Dijkstra’s algorithm is based on the following assumptions:

• All edge costs are non-negative.

• The number of vertices is finite.

• The source is a single vertex, but the target may be all other vertices.

The underlying principle of the algorithm may be described as follows: the algorithm starts
with the source; it visits the vertices in order of increasing cost, and maintains a setV of visited
vertices (denoted by UsedVx in the article) whose cost from the source has been computed,
and a tentative costD(u) to each unvisited vertexu. In the article, the set of all unvisited
vertices is denoted by UnusedVx.D(u) is the cost of the shortest path from the source to
u in the subgraph induced byV ∪{u}. We denote the set of all unvisited vertices whoseD-
values are not infinite (i.e. in the subgraph each of which has a path from the source to itself)
by OuterVx. Dijkstra’s algorithm repeatedly searches OuterVx for the vertex with minimum
tentative cost (this procedure is called findmin in the article), adds it to the setV and modifies
D-values by a procedure, called Relax. Suppose the unvisited vertex with minimum tentative
cost isx, the procedure Relax replacesD(u) with min{D(u),D(u)+ cost(x,u)} whereu is a
vertex in UnusedVx, and cost(x,u) is the cost of edge(x,u). In the Mizar library, there are
several computer models, e.g. SCMFSA and SCMPDS etc. However, it is extremely difficult
to use these models to formalize the algorithm. Instead, we adopt functions in the Mizar
library, which seem to be pseudo-codes, and are similar to those in the functional programming
language, e.g. Lisp. To date, there is no rigorous justification with respect to the correctness
of Dijkstra’s algorithm. The article presents first the rigorous justification.

MML Identifier: GRAPHSP.

WWW: http://mizar.org/JFM/Vol15/graphsp.html

The articles [12], [2], [20], [18], [22], [23], [5], [3], [8], [21], [1], [10], [13], [7], [6], [15], [?], [16],
[17], [9], [14], [19], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we follow the rules:X denotes a set,i, j, k, m, n denote natural numbers,p denotes
a finite sequence of elements ofX, andi1 denotes an integer.

Next we state three propositions:

(1) For every finite sequencep and for every setx holdsx /∈ rngp andp is one-to-one iffpa 〈x〉
is one-to-one.

(2) If 1 ≤ i1 andi1 ≤ lenp, thenp(i1) ∈ X.
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(3) If 1 ≤ i1 andi1 ≤ lenp, thenpi1 = p(i1).

For simplicity, we follow the rules:G denotes a graph,p1, q1 denote finite sequences of elements
of the edges ofG, p, q denote oriented chains ofG, W denotes a function,U , V, e, e1 denote sets,
andv1, v2, v3, v4 denote vertices ofG.

The following three propositions are true:

(4) If W is weight ofG and lenp1 = 1, then cost(p1,W) = W(p1(1)).

(5) If e∈ the edges ofG, then〈e〉 is a Simple oriented chain ofG.

(6) Let p be a Simple oriented chain ofG. Supposep = p1
a q1 and lenp1 ≥ 1 and lenq1 ≥ 1.

Then (the target ofG)(p(lenp)) 6= (the target ofG)(p1(lenp1)) and (the source ofG)(p(1)) 6=
(the source ofG)(q1(1)).

2. THE FUNDAMENTAL PROPERTIES OFDIRECTED PATHS AND SHORTESTPATHS

We now state several propositions:

(7) p is oriented path fromv1 to v2 in V iff p is oriented path fromv1 to v2 in V ∪{v2}.

(8) p is shortest path fromv1 to v2 in V w.r.t. W iff p is shortest path fromv1 to v2 in V ∪{v2}
w.r.t. W.

(9) Supposep is shortest path fromv1 to v2 in V w.r.t. W andq is shortest path fromv1 to v2

in V w.r.t. W. Then cost(p,W) = cost(q,W).

(10) LetG be an oriented graph,v1, v2 be vertices ofG, ande2, e3 be sets. Supposee2 ∈ the
edges ofG ande3 ∈ the edges ofG ande2 orientedly joinsv1, v2 ande3 orientedly joinsv1,
v2. Thene2 = e3.

(11) Suppose that

(i) the vertices ofG = U ∪V,

(ii) v1 ∈U,

(iii) v2 ∈V, and

(iv) for all v3, v4 such thatv3 ∈U andv4 ∈V it is not true that there existse such thate∈ the
edges ofG andeorientedly joinsv3, v4.

Then there exists nop which is oriented path fromv1 to v2.

(12) Suppose that

(i) the vertices ofG = U ∪V,

(ii) v1 ∈U,

(iii) for all v3, v4 such thatv3 ∈U andv4 ∈V it is not true that there existse such thate∈ the
edges ofG andeorientedly joinsv3, v4, and

(iv) p is oriented path fromv1 to v2.

Thenp is oriented path fromv1 to v2 in U .

3. THE BASIC THEOREMS FORDIJKSTRA’ S SHORTESTPATH ALGORITHM (CONTINUE)

We adopt the following convention:G is a finite graph,P, Q are oriented chains ofG, andv1, v2, v3

are vertices ofG.
One can prove the following proposition
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(13) Suppose thatW is nonnegative weight ofG andP is shortest path fromv1 to v2 in V w.r.t.
W andv1 6= v2 andv1 6= v3 andQ is shortest path fromv1 to v3 in V w.r.t. W and it is not true
that there existse such thate∈ the edges ofG ande orientedly joinsv2, v3 andP is longest
in shortest path fromv1 in V w.r.t. W. ThenQ is shortest path fromv1 to v3 in V ∪{v2} w.r.t.
W.

For simplicity, we adopt the following rules:G is a finite oriented graph,P, Q are oriented
chains ofG, W is a function from the edges ofG into R≥0, andv1, v2, v3, v4 are vertices ofG.

One can prove the following propositions:

(14) Supposee∈ the edges ofG andv1 6= v2 andP = 〈e〉 ande orientedly joinsv1, v2. ThenP
is shortest path fromv1 to v2 in {v1} w.r.t. W.

(15) Suppose thate∈ the edges ofG andP is shortest path fromv1 to v2 in V w.r.t. W and
v1 6= v3 andQ = Pa 〈e〉 ande orientedly joinsv2, v3 andv1 ∈V and for everyv4 such that
v4 ∈V it is not true that there existse1 such thate1 ∈ the edges ofG ande1 orientedly joins
v4, v3. ThenQ is shortest path fromv1 to v3 in V ∪{v2} w.r.t. W.

(16) Suppose that

(i) the vertices ofG = U ∪V,

(ii) v1 ∈U, and

(iii) for all v3, v4 such thatv3 ∈U andv4 ∈V it is not true that there existse such thate∈ the
edges ofG andeorientedly joinsv3, v4.

ThenP is shortest path fromv1 to v2 in U w.r.t. W if and only if P is shortest path fromv1 to
v2 in W.

4. THE DEFINITION OF ASSIGNMENTSTATEMENT

Let f be a function and leti, x be sets. We introducefi :=x as a synonym off +· (i,x).
We now state the proposition

(17) For all setsx, y and for every functionf holds rng( fx:=y)⊆ rng f ∪{y}.

Let f be a finite sequence of elements ofR, let x be a set, and letr be a real number. Thenfx:=r
is a finite sequence of elements ofR.

Let i, k be natural numbers, letf be a finite sequence of elements ofR, and letr be a real number.
The functor( f , i) := (k, r) yielding a finite sequence of elements ofR is defined as follows:

(Def. 1) ( f , i) := (k, r) = fi :=kk:=r.

In the sequelf , g, h denote elements ofR∗ andr denotes a real number.
One can prove the following propositions:

(18) If i 6= k andi ∈ dom f , then(( f , i) := (k, r))(i) = k.

(19) If m 6= i andm 6= k andm∈ dom f , then(( f , i) := (k, r))(m) = f (m).

(20) If k∈ dom f , then(( f , i) := (k, r))(k) = r.

(21) dom(( f , i) := (k, r)) = dom f .
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5. THE DEFINITION OF PASCAL–LIKE “ WHILE” - “ DO” STATEMENT

Let X be a set. Then idX is an element ofXX.
Let X be a set and letf , g be functions fromX into X. Theng· f is a function fromX into X.
Let X be a set and letf , g be elements ofXX. Theng· f is an element ofXX.
Let X be a set, letf be an element ofXX, and letg be an element ofX. Then f (g) is an element

of X.
Let X be a set and letf be an element ofXX. The functor repeatf yields a function fromN into

XX and is defined as follows:

(Def. 2) (repeatf )(0) = idX and for every natural numberi holds(repeatf )(i+1) = f ·(repeatf )(i).

We now state two propositions:

(22) For every elementF of (R∗)R∗
and for every elementf of R∗ and for all natural numbers

n, i holds(repeatF)(0)( f ) = f .

(23) LetF , G be elements of(R∗)R∗
, f be an element ofR∗, andi be a natural number. Then

(repeat(F ·G))(i +1)( f ) = F(G((repeat(F ·G))(i)( f ))).

Let g be an element of(R∗)R∗
and let f be an element ofR∗. Theng( f ) is an element ofR∗.

Let f be an element ofR∗ and letn be a natural number. The functor OuterVx( f ,n) yielding a
subset ofN is defined as follows:

(Def. 3) OuterVx( f ,n) = {i : i ∈ dom f ∧ 1≤ i ∧ i ≤ n ∧ f (i) 6=−1 ∧ f (n+ i) 6=−1}.

Let f be an element of(R∗)R∗
, let g be an element ofR∗, and letn be a natural number. Let us

assume that there existsi such that OuterVx((repeatf )(i)(g),n) = /0. The functor LifeSpan( f ,g,n)
yields a natural number and is defined by:

(Def. 4) OuterVx((repeatf )(LifeSpan( f ,g,n))(g),n) = /0 and for every natural numberk such that
OuterVx((repeatf )(k)(g),n) = /0 holds LifeSpan( f ,g,n)≤ k.

Let f be an element of(R∗)R∗
and letn be a natural number. The functor WhileDo( f ,n) yielding

an element of(R∗)R∗
is defined by:

(Def. 5) domWhileDo( f ,n) = R∗ and for every elementh of R∗ holds (WhileDo( f ,n))(h) =
(repeatf )(LifeSpan( f ,h,n))(h).

6. DEFINING A WEIGHT FUNCTION FOR AN ORIENTED GRAPH

Let G be an oriented graph and letv1, v2 be vertices ofG. Let us assume that there exists a sete
such thate∈ the edges ofG ande orientedly joinsv1, v2. The functor Edge(v1,v2) is defined as
follows:

(Def. 6) There exists a setesuch that Edge(v1,v2) = eande∈ the edges ofG andeorientedly joins
v1, v2.

Let G be an oriented graph, letv1, v2 be vertices ofG, and letW be a function. The functor
Weight(v1,v2,W) is defined as follows:

(Def. 7) Weight(v1,v2,W)=
{

W(Edge(v1,v2)), if thereexists a setesuch thate∈ the edges ofG andeorientedly joinsv1, v2,
−1, otherwise.

Let G be an oriented graph, letv1, v2 be vertices ofG, and letW be a function from the edges of
G into R≥0. Then Weight(v1,v2,W) is a real number.

In the sequelG denotes an oriented graph,v1, v2 denote vertices ofG, andW denotes a function
from the edges ofG into R≥0.

We now state three propositions:
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(24) Weight(v1,v2,W) ≥ 0 iff there exists a sete such thate∈ the edges ofG ande orientedly
joinsv1, v2.

(25) Weight(v1,v2,W) = −1 iff it is not true that there exists a sete such thate∈ the edges of
G andeorientedly joinsv1, v2.

(26) If e∈ the edges ofG andeorientedly joinsv1, v2, then Weight(v1,v2,W) = W(e).

7. BASIC OPERATIONS FORDIJKSTRA’ S SHORTESTPATH ALGORITHM

Let f be an element ofR∗ and letn be a natural number. The functor UnusedVx( f ,n) yields a
subset ofN and is defined by:

(Def. 8) UnusedVx( f ,n) = {i : i ∈ dom f ∧ 1≤ i ∧ i ≤ n ∧ f (i) 6=−1}.

Let f be an element ofR∗ and letn be a natural number. The functor UsedVx( f ,n) yielding a
subset ofN is defined by:

(Def. 9) UsedVx( f ,n) = {i : i ∈ dom f ∧ 1≤ i ∧ i ≤ n ∧ f (i) =−1}.

Next we state the proposition

(27) UnusedVx( f ,n)⊆ Segn.

Let f be an element ofR∗ and letn be a natural number. Observe that UnusedVx( f ,n) is finite.
The following propositions are true:

(28) OuterVx( f ,n)⊆ UnusedVx( f ,n).

(29) OuterVx( f ,n)⊆ Segn.

Let f be an element ofR∗ and letn be a natural number. Note that OuterVx( f ,n) is finite.
Let X be a finite subset ofN, let f be an element ofR∗, and let us considern. The functor

Argmin(X, f ,n) yields a natural number and is defined by the conditions (Def. 10).

(Def. 10)(i) If X 6= /0, then there existsi such thati = Argmin(X, f ,n) andi ∈ X and for everyk such
thatk∈X holds f2·n+i ≤ f2·n+k and for everyk such thatk∈X and f2·n+i = f2·n+k holdsi ≤ k,
and

(ii) if X = /0, then Argmin(X, f ,n) = 0.

The following propositions are true:

(30) If OuterVx( f ,n) 6= /0 and j = Argmin(OuterVx( f ,n), f ,n), then j ∈ dom f and 1≤ j and
j ≤ n and f ( j) 6=−1 and f (n+ j) 6=−1.

(31) Argmin(OuterVx( f ,n), f ,n)≤ n.

Let n be a natural number. The functor findminn yielding an element of(R∗)R∗
is defined by:

(Def. 11) domfindminn= R∗ and for every elementf of R∗ holds(findminn)( f ) = ( f ,n·n+3·n+
1) := (Argmin(OuterVx( f ,n), f ,n),−1).

Next we state four propositions:

(32) If i ∈ dom f andi > n andi 6= n·n+3·n+1, then(findminn)( f )(i) = f (i).

(33) If i ∈ dom f and f (i) =−1 andi 6= n·n+3·n+1, then(findminn)( f )(i) =−1.

(34) dom(findminn)( f ) = dom f .

(35) If OuterVx( f ,n) 6= /0, then there existsj such thatj ∈ OuterVx( f ,n) and 1≤ j and j ≤ n
and(findminn)( f )( j) =−1.
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Let f be an element ofR∗ and letn, k be natural numbers. The functor newpathcost( f ,n,k)
yields a real number and is defined by:

(Def. 12) newpathcost( f ,n,k) = f2·n+ fn·n+3·n+1 + f2·n+n· fn·n+3·n+1+k.

Let n, k be natural numbers and letf be an element ofR∗. We say thatf has better path atn, k
if and only if:

(Def. 13) f (n+k) =−1 or f2·n+k > newpathcost( f ,n,k) but f2·n+n· fn·n+3·n+1+k ≥ 0 but f (k) 6=−1.

Let f be an element ofR∗ and letn be a natural number. The functor Relax( f ,n) yields an
element ofR∗ and is defined by the conditions (Def. 14).

(Def. 14)(i) domRelax( f ,n) = dom f , and

(ii) for every natural numberk such thatk ∈ dom f holds if n < k andk≤ 2 ·n, then if f has
better path atn, k−′ n, then(Relax( f ,n))(k) = fn·n+3·n+1 and if f does not have better path
at n, k−′ n, then(Relax( f ,n))(k) = f (k) and if 2·n < k andk ≤ 3 ·n, then if f has better
path atn, k−′ 2 · n, then (Relax( f ,n))(k) = newpathcost( f ,n,k−′ 2 · n) and if f does not
have better path atn, k−′ 2 ·n, then(Relax( f ,n))(k) = f (k) and if k ≤ n or k > 3 ·n, then
(Relax( f ,n))(k) = f (k).

Let n be a natural number. The functor Relaxn yielding an element of(R∗)R∗
is defined by:

(Def. 15) domRelaxn = R∗ and for every elementf of R∗ holds(Relaxn)( f ) = Relax( f ,n).

One can prove the following propositions:

(36) dom(Relaxn)( f ) = dom f .

(37) If i ≤ n or i > 3·n and if i ∈ dom f , then(Relaxn)( f )(i) = f (i).

(38) dom(repeat(Relaxn·findminn))(i)( f ) = dom(repeat(Relaxn·findminn))(i +1)( f ).

(39) If OuterVx((repeat(Relaxn · findminn))(i)( f ),n) 6= /0, then UnusedVx((repeat(Relaxn ·
findminn))(i +1)( f ),n)⊂ UnusedVx((repeat(Relaxn·findminn))(i)( f ),n).

(40) If g= (repeat(Relaxn·findminn))(i)( f ) andh= (repeat(Relaxn·findminn))(i+1)( f ) and
k= Argmin(OuterVx(g,n),g,n) and OuterVx(g,n) 6= /0, then UsedVx(h,n) = UsedVx(g,n)∪
{k} andk /∈ UsedVx(g,n).

(41) There existsi such thati ≤ n and OuterVx((repeat(Relaxn·findminn))(i)( f ),n) = /0.

(42) domf = dom(repeat(Relaxn·findminn))(i)( f ).

Let f , g be elements ofR∗ and let us considerm, n. We say thatf , g are equal atm, n if and
only if:

(Def. 16) domf = domg and for everyk such thatk∈ dom f andm≤ k andk≤ n holds f (k) = g(k).

The following propositions are true:

(43) f , f are equal atm, n.

(44) If f , g are equal atm, n andg, h are equal atm, n, then f , h are equal atm, n.

(45) (repeat(Relaxn · findminn))(i)( f ), (repeat(Relaxn · findminn))(i + 1)( f ) are equal at 3·
n+1, n·n+3·n.

(46) Let F be an element of(R∗)R∗
, f be an element ofR∗, andn, i be natural numbers. If

i < LifeSpan(F, f ,n), then OuterVx((repeatF)(i)( f ),n) 6= /0.

(47) f , (repeat(Relaxn·findminn))(i)( f ) are equal at 3·n+1, n·n+3·n.
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(48) Suppose that

(i) 1 ≤ n,

(ii) 1 ∈ dom f ,

(iii) f (n+1) 6=−1,

(iv) for every i such that 1≤ i andi ≤ n holds f (i) = 1, and

(v) for everyi such that 2≤ i andi ≤ n holds f (n+ i) =−1.

Then 1= Argmin(OuterVx( f ,n), f ,n) and UsedVx( f ,n)= /0 and{1}= UsedVx((repeat(Relaxn·
findminn))(1)( f ),n).

(49) If g = (repeat(Relaxn · findminn))(1)( f ) and h = (repeat(Relaxn · findminn))(i)( f )
and 1≤ i and i ≤ LifeSpan(Relaxn · findminn, f ,n) and m ∈ UsedVx(g,n), then m ∈
UsedVx(h,n).

Let p be a finite sequence of elements ofN, let f be an element ofR∗, and leti, n be natural
numbers. We say thatp is vertex sequence atf , i, n if and only if:

(Def. 17) p(lenp) = i and for everyk such that 1≤ k and k < lenp holds p(lenp− k) = f (n+
p(lenp−k)+1).

Let p be a finite sequence of elements ofN, let f be an element ofR∗, and leti, n be natural
numbers. We say thatp is simple vertex sequence atf , i, n if and only if:

(Def. 18) p(1) = 1 and lenp > 1 andp is vertex sequence atf , i, n and one-to-one.

One can prove the following proposition

(50) Let p, q be finite sequences of elements ofN, f be an element ofR∗, andi, n be natural
numbers. Supposep is simple vertex sequence atf , i, n andq is simple vertex sequence atf ,
i, n. Thenp = q.

Let G be a graph, letp be a finite sequence of elements of the edges ofG, and letv5 be a finite
sequence. We say thatp is oriented edge sequence atv5 if and only if:

(Def. 19) lenv5 = lenp+ 1 and for everyn such that 1≤ n and n ≤ lenp holds (the source of
G)(p(n)) = v5(n) and (the target ofG)(p(n)) = v5(n+1).

Next we state two propositions:

(51) Let G be an oriented graph,v5 be a finite sequence, andp, q be oriented chains ofG.
Supposep is oriented edge sequence atv5 andq is oriented edge sequence atv5. Thenp = q.

(52) LetG be a graph,v6, v7 be finite sequences, andp be an oriented chain ofG. Supposep is
oriented edge sequence atv6 and oriented edge sequence atv7 and lenp≥ 1. Thenv6 = v7.

8. DATA STRUCTURE FORDIJKSTRA’ S SHORTESTPATH ALGORITHM

Let f be an element ofR∗, let G be an oriented graph, letn be a natural number, and letW be a
function from the edges ofG into R≥0. We say thatf is input of Dijkstra algorithmG to n in W if
and only if the conditions (Def. 20) are satisfied.

(Def. 20)(i) lenf = n·n+3·n+1,

(ii) Segn = the vertices ofG,

(iii) for every i such that 1≤ i andi ≤ n holds f (i) = 1 and f (2·n+ i) = 0,

(iv) f (n+1) = 0,

(v) for everyi such that 2≤ i andi ≤ n holds f (n+ i) =−1, and

(vi) for all verticesi, j of G and for allk, msuch thatk= i andm= j holds f (2·n+n·k+m) =
Weight(i, j,W).
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9. THE DEFINITION OF DIJKSTRA’ S SHORTESTPATH ALGORITHM

Let n be a natural number. The functor DijkstraAlgorithmn yielding an element of(R∗)R∗
is defined

by:

(Def. 21) DijkstraAlgorithmn = WhileDo(Relaxn·findminn,n).

10. JUSTIFYING THE CORRECTNESS OFDIJKSTRA’ S SHORTESTPATH ALGORITHM

For simplicity, we adopt the following rules:p is a finite sequence of elements ofN, G is a finite
oriented graph,P, Q are oriented chains ofG, W is a function from the edges ofG into R≥0, andv1,
v2 are vertices ofG.

Next we state the proposition

(53) Supposef is input of Dijkstra algorithmG to n in W andv1 = 1 and 16= v2 andv2 = i and
n≥ 1 andg = (DijkstraAlgorithmn)( f ). Then

(i) the vertices ofG = UsedVx(g,n)∪UnusedVx(g,n),

(ii) if v2 ∈ UsedVx(g,n), then there existp, P such thatp is simple vertex sequence atg, i, n
andP is oriented edge sequence atp and shortest path fromv1 to v2 in W and cost(P,W) =
g(2·n+ i), and

(iii) if v2 ∈ UnusedVx(g,n), then there exists noQ which is oriented path fromv1 to v2.
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