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Summary. The article formalizes Dijkstra’s shortest path algorithmi [11]. A path from
a source vertex to a target vertexu is said to be the shortest path if its total cost is minimum
among allv-to-u paths. Dijkstra’s algorithm is based on the following assumptions:

e All edge costs are non-negative.
e The number of vertices is finite.
e The source is a single vertex, but the target may be all other vertices.

The underlying principle of the algorithm may be described as follows: the algorithm starts
with the source; it visits the vertices in order of increasing cost, and maintain¥ abeisited
vertices (denoted by UsedVx in the article) whose cost from the source has been computed,
and a tentative codD(u) to each unvisited verten. In the article, the set of all unvisited
vertices is denoted by UnusedVP(u) is the cost of the shortest path from the source to

u in the subgraph induced byU {u}. We denote the set of all unvisited vertices wh@se
values are not infinite (i.e. in the subgraph each of which has a path from the source to itself)
by OuterVx. Dijkstra’s algorithm repeatedly searches OuterVx for the vertex with minimum
tentative cost (this procedure is called findmin in the article), adds it to thé aetl modifies
D-values by a procedure, called Relax. Suppose the unvisited vertex with minimum tentative
cost isx, the procedure Relax replacBgu) with min{D(u),D(u) + cost(x,u)} whereu is a

vertex in UnusedVx, and cdstu) is the cost of edgéx,u). In the Mizar library, there are
several computer models, e.g. SCMFSA and SCMPDS etc. However, it is extremely difficult
to use these models to formalize the algorithm. Instead, we adopt functions in the Mizar
library, which seem to be pseudo-codes, and are similar to those in the functional programming
language, e.g. Lisp. To date, there is no rigorous justification with respect to the correctness
of Dijkstra’s algorithm. The article presents first the rigorous justification.

MML Identifier: GRAPHSP.

WWW: http://mizar.org/JFM/Voll5/graphsp.html

The articles([12],[[2],[[20],[[18],[122],123]/15],.13],.18],.[21],[T1],[120], . [13],17],.16],.115], 7], [L6],
[L7], [€], [24], [19], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we follow the rulesX denotes a set, j, k, m, n denote natural numberp,denotes
a finite sequence of elementsXfandi; denotes an integer.
Next we state three propositions:

(1) For every finite sequengeand for every set holdsx ¢ rngp andp is one-to-one iffp ™ (x)
is one-to-one.

(2) If1<ijyandii <lenp,thenp(i1) € X.
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(3) If1<ijandiy <lenp, thenp;, = p(i1).

For simplicity, we follow the rulesG denotes a graplmz, g; denote finite sequences of elements
of the edges 06, p, q denote oriented chains &, W denotes a function), V, e, e; denote sets,
andvy, Vo, v3, V4 denote vertices db.

The following three propositions are true:

(4) If Wis weight ofG and lerp; = 1, then costp:, W) = W(p1(1)).
(5) If ecthe edges 06, then(e) is a Simple oriented chain .

(6) Letpbea Simple oriented chain &. Supposg = p1~ 0 and lenp; > 1 and lerg; > 1.

Then (the target oB) (p(lenp)) # (the target of5) (p1(lenps)) and (the source @) (p(1)) #
(the source 0o6G)(gi1(1)).

2. THE FUNDAMENTAL PROPERTIES OFDIRECTED PATHS AND SHORTESTPATHS

We now state several propositions:

(7) pis oriented path fromry to v2 in V iff pis oriented path fromr to vo inV U {v2}.

(8) pis shortest path fronm to v in V w.r.t. Wiff pis shortest path froni to vo inV U {v2}
w.r.t. W.

(9) Suppose is shortest path froma; to v, in V w.r.t. W andq is shortest path frona; to v,
inV w.r.t. W. Then costp,W) = cos{q,W).

(10) LetG be an oriented graplvg, v» be vertices ofG, ande,, e3 be sets. Suppos® € the
edges ofG andes € the edges o6 ande, orientedly joinsvy, v, andes orientedly joinsvy,

Vo. Thene; = e3.
(11) Suppose that
(i) the verticesolG=UUYV,
(i) weu,
(i) v eV, and

(iv) for all vs, v4 such thatiz € U andvys € V it is not true that there existssuch thae € the
edges ofG ande orientedly joinsvs, v;.

Then there exists np which is oriented path frona; to v».

(12) Suppose that
(i) theverticesofG=UUV,
(i) wveu,

(iii)  forall v3, v4 such thatv3 € U andv, €V it is not true that there existssuch thae € the
edges ofG ande orientedly joinsvs, v4, and

(iv) pis oriented path fromv to vs.
Thenpis oriented path fromr; tov, in U.

3. THE BASIC THEOREMS FORDIJKSTRA'S SHORTESTPATH ALGORITHM (CONTINUE)
We adopt the following conventior is a finite graphP, Q are oriented chains @, andvy, v, v3

are vertices ofs.
One can prove the following proposition
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(13) Suppose that/ is nonnegative weight d& andP is shortest path froma; to vo in V w.r.t.
W andv; # vo andvy # vz andQ is shortest path frona; to vz in V w.r.t. W and it is not true
that there existe such thake € the edges o6 ande orientedly joinsv,, v3 andP is longest
in shortest path fromr; in V w.r.t. W. ThenQ is shortest path frong to vz in VU {v2} w.r.t.
W.

For simplicity, we adopt the following rulesG is a finite oriented graph?, Q are oriented
chains ofG, W is a function from the edges @& into R>q, andvy, vo, v3, v4 are vertices o6.
One can prove the following propositions:

(14) Suppose < the edges o6 andv; # vo andP = (e) ande orientedly joinsvy, vo. ThenP
is shortest path fron# to v in {vi} w.r.t. W.

(15) Suppose that € the edges ofs andP is shortest path fromr; to vo in V w.r.t. W and
vi1 # vz andQ = P~ (e) ande orientedly joinsv,, vz andvs € V and for every, such that
V4 €V it is not true that there existg such that; € the edges o6 ande; orientedly joins
Vs, V3. ThenQ is shortest path frona; tovs in V U {vs} w.r.t. W.

(16) Suppose that
(i) theverticesofG=UUV,
(i) wvpeU,and

(iii)  for all vs, v4 such thatiz € U andvys € V it is not true that there existssuch thae € the
edges ofs ande orientedly joinsvs, vj.

ThenP is shortest path frons to v, in U w.r.t. W if and only if P is shortest path fronx to
Vo in W.

4. THE DEFINITION OF ASSIGNMENT STATEMENT

Let f be a function and let x be sets. We introducg:=x as a synonym of +- (i, x).
We now state the proposition

(17) For all set, y and for every functiorf holds rnd fx:=y) C rngf U {y}.

Let f be a finite sequence of elementsiflet x be a set, and letbe a real number. Thefy:=r
is a finite sequence of elementsRf

Leti, k be natural numbers, Idtbe a finite sequence of elementsqfand letr be a real number.
The functor(f,i) := (k,r) yielding a finite sequence of elementsibfs defined as follows:

(Def. 1) (f,i):=(kr)= fi:=kq=r.

In the sequef, g, hdenote elements &* andr denotes a real number.
One can prove the following propositions:

(18) Ifi #kandi € domf, then((f,i):= (k,r))(i)
(19) Ifm#iandms#kandme domf, then((f,i):= (k,r))(m)= f(m).
(20) Ifk e domf, then((f,i):= (k,r))(k)=r.

(21) don{(f,i):=(k,r)) = domf.

k.
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5. THE DEFINITION OF PASCAL—LIKE “WHILE” - “ DO” STATEMENT

Let X be a set. Then idis an element oKX,

Let X be a set and let, g be functions fronX into X. Theng- f is a function fromX into X.

Let X be a set and let, g be elements okX. Theng- f is an element oKX,

Let X be a set, lef be an element oKX, and letg be an element ok. Thenf(g) is an element
of X.

Let X be a set and let be an element ok*. The functor repedt yields a function fronN into
XX and is defined as follows:

(Def. 2) (repeatf)(0) =idx and for every natural numbeholds(repeaf )(i+1) = f - (repeaf ) (i).
We now state two propositions:

(22) For every elemerf of (R*)®" and for every element of R* and for all natural numbers
n, i holds(repeaf)(0)(f) = f.

(23) LetF, G be elements ofR*)¥", f be an element dR*, andi be a natural number. Then
(repeatF - G))(i +1)(f) = F(G((repeatF - G))(i)(f)))-

Letg be an element ofR*)®" and letf be an element dk*. Theng(f) is an element oR*.
Let f be an element dR* and letn be a natural number. The functor Outef\¥xn) yielding a
subset ofN is defined as follows:

(Def. 3) OuterVXf,n)={i:iedomf A 1<iAi<nA f(i)#—-1A f(n+i)#—1}.

Let f be an element ofR*)¥", letg be an element dR*, and letn be a natural number. Let us
assume that there existsuch that OuterVirepeatff)(i)(g),n) = 0. The functor LifeSpaff,g,n)
yields a natural number and is defined by:

(Def. 4) OuterVX(repeatff)(LifeSpar(f,g,n))(g),n) = 0 and for every natural numbérsuch that
OuterVX(repeatf)(k)(g),n) = 0 holds LifeSpagf,g,n) < k.

Let f be an element dfR*)*" and letn be a natural number. The functor WhileQ¥on) yielding
an element of R*)¥" is defined by:

(Def. 5) domWhileD¢f,n) = R* and for every elemenih of R* holds (WhileDo(f,n))(h) =
(repeatff)(LifeSpar(f,h,n))(h).

6. DEFINING A WEIGHT FUNCTION FOR AN ORIENTED GRAPH

Let G be an oriented graph and let, vo be vertices ofG. Let us assume that there exists aeset
such that € the edges of5 ande orientedly joinsvi, vo. The functor Edgér, Vo) is defined as
follows:

(Def. 6) There exists a setsuch that Edgey, v2) = eande € the edges o6 ande orientedly joins
Vi1, V2.

Let G be an oriented graph, let, v, be vertices ofG, and letW be a function. The functor
Weight(vi, v2,W) is defined as follows:

W (Edgdvi,Vy)), if thereexists a set such thake € the edges o6 ande orientedly joinsvy,

(Def. 7)  Weightvy,vo,W) :{ ~1, otherwise.

Let G be an oriented graph, let, v, be vertices of5, and letwW be a function from the edges of
Ginto R>o. Then Weightv,vo,W) is a real number.

In the sequels denotes an oriented graph, v, denote vertices db, andW denotes a function
from the edges o6 into R>o.

We now state three propositions:
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(24) Weightvy,vo,W) > 0 iff there exists a set such thake € the edges o6 ande orientedly
joinsvy, Vo.

(25) Weightvi,v2,W) = —1 iff it is not true that there exists a sesuch thae € the edges of
G ande orientedly joinsvy, V.

(26) If e€ the edges o6 ande orientedly joinsvy, vo, then Weighfvy, vo, W) =W(e).

7. BASIC OPERATIONS FORDIJKSTRA' S SHORTESTPATH ALGORITHM

Let f be an element oR* and letn be a natural number. The functor Unused¥)n) yields a
subset ofN and is defined by:

(Def. 8) UnusedVxf,n)={i:iedomf A 1<iAi<nA f(i)#—1}.

Let f be an element dR* and letn be a natural number. The functor Used¥xn) yielding a
subset ofN is defined by:

(Def.9) Usedvxf,n)={i:iedomf A 1<iAi<nA f(i)=-1}.
Next we state the proposition
(27) UnusedVxf,n) C Seq.

Let f be an element dR* and letn be a natural number. Observe that UnusedVR) is finite.
The following propositions are true:

(28) OuterVXf,n) C UnusedVXf,n).
(29) Outervxf,n) C Seon.

Let f be an element dR* and letn be a natural number. Note that Oute\¥xn) is finite.
Let X be a finite subset o, let f be an element oR*, and let us considen. The functor
Argmin(X, f,n) yields a natural number and is defined by the conditions (Def. 10).

(Def. 10)(i) If X # 0, then there existssuch thai = Argmin(X, f,n) andi € X and for everyk such
thatk € X holdsfa.nyi < fonik and for evenk such thak € X andfa.nyi = fo.nik holdsi <Kk,
and

(i) if X=0,then Argmir(X, f,n)=0.
The following propositions are true:

(30) If OuterVx(f,n) # 0 andj = Argmin(OuterVx(f,n), f,n), thenj € domf and 1< j and
j<nandf(j)# —landf(n+j)# -1

(31) Argmin(OuterVxf,n), f,n) <n.
Let n be a natural number. The functor findmigielding an element o@R*)R* is defined by:

(Def. 11) domfindmim = R* and for every elemertt of R* holds(findminn)(f) = (f,n-n+3-n+
1) := (Argmin(OuterVXf,n), f,n),—1).

Next we state four propositions:
(32) Ifi edomf andi > nandi #n-n+3-n+ 1, then(findminn)(f)(i) = f(i).
(33) Ifi edomf andf(i) =—1andi # n-n+3-n+ 1, then(findminn)(f)(i) = —1.
(34) don{findminn)(f) = domf.

(35) If OuterVx f,n) # 0, then there exist$ such thatj € OuterVx(f,n) and 1< j andj <n
and(findminn)(f)(j) = —1.



DIJKSTRA' S SHORTEST PATH ALGORITHM 6

Let f be an element oR* and letn, k be natural numbers. The functor newpath¢bgst, k)
yields a real number and is defined by:

(Def. 12) newpathcost,n,K) = foni oy gnig + 2060 foniania k-

Letn, k be natural numbers and létbe an element dR*. We say thatf has better path at, k
if and only if:

(Def. 13) f(n+Kk) = —1 or fonk > newpathcogtf,n,k) but fo.nin.f,,, 50,44k > 0 butf(k) # —1.

Let f be an element oR* and letn be a natural number. The functor Rel&yn) yields an
element ofR* and is defined by the conditions (Def. 14).

(Def. 14)()) domRelakf,n) =domf, and

(i) for every natural numbek such thak € domf holds ifn < k andk < 2-n, then if f has
better path an, k—"n, then(Relax f,n))(k) = fnni3n+1 and if f does not have better path
atn, k—'n, then(Relax f,n))(k) = f(k) and if 2-n < k andk < 3-n, then if f has better
path atn, k—'2-n, then (Relax f,n))(k) = newpathcostf,n,k—'2-n) and if f does not
have better path at, k—'2-n, then(Relax f,n))(k) = f(k) and ifk < nork > 3-n, then
(Relax f,n)) (k) = f(Kk).

Letn be a natural number. The functor Reteyielding an element ofR*)K" is defined by:
(Def. 15) domRelar = R* and for every elemerntt of R* holds(Relaxn)(f) = Relax f,n).
One can prove the following propositions:
(36) don{Relaxn)(f)=domf.
(37) Ifi<nori>3-nandifi e domf, then(Relaxn)(f)(i) = f(i).
(38) domnrepeatRelaxn-findminn))(i)(f) = dom(repeatRelaxn- findminn))(i 4+ 1)(f).

(39) If OuterVx((repeatRelaxn - findminn))(i)(f),n) # 0, then UnusedV{(repeatRelaxn -
findminn))(i +1)(f),n) C UnusedVX(repeatRelaxn-findminn))(i)(f),n).

(40) If g=(repeatRelaxn-findminn))(i)(f) andh = (repeatRelaxn-findminn))(i+ 1)(f) and
k= Argmin(OuterVx(g,n), g, n) and OuterVxg, n) # 0, then UsedVxh,n) = UsedVxg,n)U
{k} andk ¢ UsedVxg,n).

(41) There existssuch thai < nand OuterVX(repeatRelaxn-findminn))(i)(f),n) = 0.
(42) domf = dom(repeatRelaxn - findminn))(i)(f).

Let f, g be elements oR* and let us considem, n. We say thatf, g are equal amn, n if and
only if:

(Def. 16) domf = domg and for everyk such thak € domf andm < kandk < n holdsf (k) = g(k).
The following propositions are true:
(43) f, f are equal am, n.
(44) If f, gare equal at, nandg, h are equal at, n, thenf, h are equal am, n.

(45) (repeatRelaxn-findminn))(i)(f), (repeatRelaxn - findminn))(i + 1)(f) are equal at 3
n+1n-n+3-n.

(46) LetF be an element ofR*)¥", f be an element oR*, andn, i be natural numbers. If
i < LifeSpar(F, f,n), then OuterVX(repeaf)(i)(f),n) # 0.

(47) f, (repeatRelaxn-findminn))(i)(f) are equal at 3n+1, n-n+3-n.



DIJKSTRA' S SHORTEST PATH ALGORITHM 7

(48) Suppose that
@ 1<n,

(i) 1 edomf,

@iy f(n+1) # -1,

(iv) foreveryi such that I< i andi < nholdsf(i) =1, and

(v) foreveryi such that X i andi < nholdsf(n+i)=—1.
Then 1= Argmin(OuterVxf,n), f,n) and UsedVxf,n) = 0and{1} = UsedVX (repeatRelaxn-
findminn))(1)(f),n).

(49) If g = (repeatRelaxn - findminn))(1)(f) and h = (repeatRelaxn - findminn))(i)(f)
and 1<i andi < LifeSpar(Relaxn - findminn, f,n) and m € UsedVxg,n), then m €
UsedVxh,n).

Let p be a finite sequence of elementsiyflet f be an element oR*, and leti, n be natural
numbers. We say thatis vertex sequence &t i, n if and only if:
(Def. 17) p(lenp) =i and for everyk such that 1< k andk < lenp holds p(lenp— k) = f(n+
p(lenpfk)Jrl)’
Let p be a finite sequence of elementsiyflet f be an element oR*, and leti, n be natural
numbers. We say thatis simple vertex sequence fti, nif and only if:
(Def. 18) p(1) =1 and lerp > 1 andpis vertex sequence &t i, n and one-to-one.
One can prove the following proposition

(50) Letp, qbe finite sequences of elementshof f be an element aR*, andi, n be natural
numbers. Supposeis simple vertex sequence fti, n andqis simple vertex sequence &t
i,n. Thenp=gq.
Let G be a graph, lep be a finite sequence of elements of the edges,a&nd letvs be a finite
sequence. We say thpis oriented edge sequencevaif and only if:

(Def. 19) lervs =lenp+ 1 and for everyn such that 1< n andn < lenp holds (the source of
G)(p(n)) = vs(n) and (the target oB)(p(n)) = vs(n+1).

Next we state two propositions:

(51) LetG be an oriented graphys be a finite sequence, amg g be oriented chains d&.
Suppose is oriented edge sequencevatandq is oriented edge sequencevgt Thenp = g.

(52) LetG be a graphysg, v7 be finite sequences, amdoe an oriented chain @&. Suppose is
oriented edge sequencevgtand oriented edge sequenceraand lenp > 1. Thenvg = v7.

8. DATA STRUCTURE FORDIJKSTRA' S SHORTESTPATH ALGORITHM

Let f be an element oR*, let G be an oriented graph, letbe a natural number, and Mt be a
function from the edges @& into R>o. We say thatf is input of Dijkstra algorithnG to nin W if
and only if the conditions (Def. 20) are satisfied.
(Def. 20)(1)) lenf =n-n+3-n+1,
(i) Segn=the vertices of5,
(iii) for everyisuch that i< i andi <nholdsf(i) =1 andf(2-n+i) =0,
(iv) f(n+1)=0,
(v) foreveryi such that X i andi < nholdsf(n+i)= -1, and
(vi) forall verticesi, j of G and for allk, msuch thak =i andm= j holdsf(2-n+n-k+m) =
Weight(i, j,W).
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9. THE DEFINITION OF DIJKSTRA'S SHORTESTPATH ALGORITHM

Letn be a natural number. The functor DijkstraAlgorithiyielding an element ofR*)*" is defined

by:

(Def. 21) DijkstraAlgorithnrn = WhileDo(Relaxn - findminn, n).

10. MUSTIFYING THE CORRECTNESS ODIJKSTRA S SHORTESTPATH ALGORITHM

For simplicity, we adopt the following rulesp is a finite sequence of elementsf G is a finite
oriented graphP, Q are oriented chains @, W is a function from the edges & into R>q, andvy,
V, are vertices of.

Next we state the proposition

(53) Supposd is input of Dijkstra algorithnG to nin W andv; = 1 and 1# v, andv, =i and

n > 1 andg = (DijkstraAlgorithmn)(f). Then
(i) the vertices ofG = UsedVxg, n) UUnusedVXg,n),

(i) if v» € UsedVXg,n), then there exisp, P such thatp is simple vertex sequence@ti, n
andP is oriented edge sequencemand shortest path fromy to v» in W and costP,W) =
g(2-n+i), and

(i) if v, € UnusedVXg, n), then there exists nQ which is oriented path frona; to v».
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