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Summary. A path from a source vertexto a target vertexi is said to be a shortest
path if its total cost is minimum among afito-u paths. Dijkstra’s algorithm is a classic short-
est path algorithm, which is described in many textbooks. To justify its correctness (whose
rigorous proof will be given in the next article), it is necessary to clarify its underlying prin-
ciple. For this purpose, the article justifies the following basic facts, which are the core of
Dijkstra’s algorithm.

e A graph is given, its vertex set is denotedVyAssumeU is the subset o, and if a
pathp from stot is the shortest among the set of paths, each of which passes through
only the vertices iJ, except the source and sink, and its source and sislkaigd in
V, respectively, them is a shortest path fromtot in the graph, and for any subgraph
which contains at least, it is also the shortest.

e Let p(s,x,U) denote the shortest path frao x in a subgraph whose the vertex set is
the union of{s,x} andU, and cost(p) denote the cost of path(s,x,U), cos(x,y) the
cost of the edge fromtoy. Give p(s,x,U), q(s,y,U) andr(s,y,U U{x}). If cost(p) =
min{cos{w) : w(s,t,U) At € V}, then we have

cos{r) = min(cos{p) + cos(x,y),cos{(q)).

This is the well-known triangle comparison of Dijkstra’s algorithm.

MML Identifier: GRAPH_5.

WWW: http://mizar.org/JFM/Voll5/graph_5.html

The articles([1B],[16],[114],[117],[141,[13],[16],[115],14],[18],[19], 2], [[10], [[55], [12],[I7], and [11]
provide the notation and terminology for this paper.

1. PRELIMINARIES

We use the following conventiom, m, i, j, k denote natural numbers,y, €, X, V, U denote sets,
andWw, f, g denote functions.
The following two propositions are true:

(1) For every finite functiorf holds cardrng < carddomf.
(2) Ifrngf Crnggandx € domf, then there existg such thaty € domg and f (x) = g(y).

The schemé.ambdaABdeals with sets7, B and a unary functofF yielding a set, and states
that:
There exists a functiofi such that doni = 2 and for every elementof B such that
x € 4 holdsf (x) = F(x)
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for all values of the parameters.
One can prove the following propositions:

(3) LetD be afinite setn be a natural number, antbe a set. IX = {x;x ranges over elements
of D*: 1 <lenx A lenx < n}, thenX is finite.

(4) LetD be afinite setn be a natural number, andbe a set. )X = {x;xranges over elements
of D*: lenx < n}, thenX is finite.

(5) For every finite seb holds card # 0 iff D # 0.

(6) LetD be a finite set an#t be a natural number. Suppose darg k+ 1. Then there exists
an elemenk of D and there exists a subsebf D such thaD = Cu {x} and car€ = k.

(7) Forevery finite séb such that car® = 1 there exists an elemexbf D such thaD = {x}.

The schemdlinValuedeals with a non empty finite sétand a unary functo§ yielding a real
number, and states that:
There exists an elemenrbdf A4 such that for every elemenbf 4 holds F (x) < F(y)
for all values of the parameters.
Let D be a set and leX be a non empty subset Bf. We see that the element Xfis a finite
sequence of elements Df

2. ADDITIONAL PROPERTIES OFFINITE SEQUENCES

In the sequep, g are finite sequences.
The following three propositions are true:

(8) p#0ifflenp>1.
(9) For alln, msuch that X nandn < mandm< lenp holdsp(n) # p(m) iff pis one-to-one.

(10) For alln, msuch that 1< nandn < mandm < lenp holds p(n) # p(m) iff cardrngp =
lenp.

In the sequel denotes a graph anul, g; denote finite sequences of elements of the edges of
G.
The following two propositions are true:

(11) If i € domps, then (the source of5)(pi(i)) € the vertices ofG and (the target of
G)(pa(i)) € the vertices of.

(12) If g~ (x) is one-to-one and rrig "~ (x)) C rngp, then there exist finite sequencps ps
such thatp = 2~ (x) ™ ps and mgj < mg(p2 "~ Pa).

3. ADDITIONAL PROPERTIES OFCHAINS AND ORIENTED PATHS
One can prove the following three propositions:

(13) If p~gisachain ofG, thenpis a chain ofG andq is a chain ofG.

(14) If p~qis an oriented chain @b, thenpis an oriented chain &b andqis an oriented chain
of G.

(15) Letp, q be oriented chains db. Suppose (the target @&)(p(lenp)) = (the source of
G)(g(1)). Thenp™ qis an oriented chain d&.
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4. ADDITIONAL PROPERTIES OFACYCLIC ORIENTED PATHS
Next we state several propositions:

(16) 0is a Simple oriented chain @&.

(17) Suppose ™ gis a Simple oriented chain &. Thenpis a Simple oriented chain & and
g is a Simple oriented chain @.

(18) Iflenpy =1, thenp; is a Simple oriented chain @&.

(19) Letpbe a Simple oriented chain & andq be a finite sequence of elements of the edges

of G. Suppose that
() lenp>1,
(i) leng=1,
(iii)  (the source ofG)(q(1)) = (the target ofG)(p(lenp)),
(iv) (the source of3)(p(1)) # (the target ofG)(p(lenp)), and

(v) itis not true that there existssuch that I< k andk < lenp and (the target oB)(p(k)) =
(the target 0fG)(q(1)).

Thenp~™ qis a Simple oriented chain @.

(20) Every Simple oriented chain & is one-to-one.

5. THE SET OF THEVERTICESON A PATH OR AN EDGE

Let G be a graph and letbe an element of the edges®f The functor verticesis defined by:
(Def. 1) verticeg = {(the source of5)(e), (the target ofG)(e)}.

Let us considef5, p;. The functor verticep; yielding a subset of the vertices &fis defined
by:

(Def. 2) verticep; = {v;vranges over vertices @: \/; (i € dompy A v € verticeg(p1)i))}-

One can prove the following propositions:

(21) Letpbe a Simple oriented chain &. Supposg = p; ~q: and lenp; > 1 and lemy; > 1
and (the source 0B)(p(1)) # (the target ofG)(p(lenp)). Then (the source oB)(p(1)) ¢
verticegy; and (the target oB)(p(lenp)) ¢ verticesp;.

(22) verticegy CV iff for every i such thai € domp; holds vertice§p;)i) C V.

(23) Suppose verticgg Z V. Then there exists a natural numbeand there exist finite se-
quenceg, r of elements of the edges & such thai + 1 < lenp; and vertice§(p1)i+1) ZV
and leg=iandp; =q~r and verticeg C V.

(24) Ifrngags C rngps, then vertices; C verticesp;.
(25) Ifrnggy C rngps and verticep; \ X CV, then verticeg; \ X C V.
(26) If verticegps ~a1) \ X CV, then verticep; \ X CV and vertices; \ X C V.

In the sequel, vi, Vo, v3 are elements of the vertices Gf
One can prove the following propositions:

(27) For every elemerg of the edges o6 such thaw = (the source o6)(e) or v = (the target
of G)(e) holdsv € vertice.

(28) If i € domp; and if v = (the source ofG)(p4(i)) or v = (the target ofG)(pi(i)), then
Vv € verticesp;.
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(29) Iflenpy = 1, then verticep; = verticeg(p1)1).
(30) verticeg, C verticegps ~ g1) and vertices); C verticegp: ~ q1).

In the sequep, q are oriented chains @.
The following propositions are true:

(31) If p=qg~ p1andlemm> 1 and lerp; = 1, then verticep = verticeqqU {(the target of
G)(p2(1))}-

(32) If v# (the source of5)(p(1)) andv € verticesp, then there exists such that 1< i and
i <lenpandv = (the target ofG)(p(i)).

6. DIRECTEDPATHS BETWEENTWO VERTICES

Let us conside6, p, vi, V2. We say thap is oriented path fromr; to v, if and only if:
(Def. 3) p+# 0and (the source d&)(p(1)) = v1 and (the target oB)(p(lenp)) = vo.
Let us conside6, vi, Vo, p, V. We say thap is oriented path fromr; to v in V if and only if:
(Def. 4) pis oriented path fron; to v, and verticep )\ {v2} C V.

LetGbe agraph and let, v» be elements of the vertices@f The functor OrientedPaths, v,)
yields a subset of (the edges®f* and is defined as follows:

(Def. 5) OrientedPatlis,v2) = {p; p ranges over oriented chains@f p is oriented path fronv;
tovy}.

We now state several propositions:

(33) If pis oriented path from; to v,, thenvy € verticesp andv, € verticesp.

(34) x e OrientedPathwy, Vo) iff there existsp such thatp = x and p is oriented path fronvy
to vo.

(35) If pis oriented path fromry to v, inV andvy # vo, thenvy € V.

(36) If pis oriented path fromr; to v, inV andV C U, thenp is oriented path fromr; to v» in
u.

(37) Suppose lep> 1 andpis oriented path from; to v, andps (1) orientedly joinsv,, v3 and
lenp; = 1. Then there existg such thatj= p~ p; andq s oriented path fromr; to vs.

(88) Supposg = p~ p; andlerp > 1 and lemp; = 1 andpis oriented path fronv; to vz inV
andpy (1) orientedly joinsv,, v3. Thenq is oriented path fromr; to vz in V U {v,}.

7. AcycLIC (OR SIMPLE) PATHS

Let G be a graph, lep be an oriented chain @, and letv, v» be elements of the vertices Gf We
say thatp is acyclic path fromv; to v, if and only if:

(Def. 6) pis Simple and oriented path frowm to v,.

Let G be a graph, lep be an oriented chain @, letvi, vo be elements of the vertices Gf and
letV be a set. We say thatis acyclic path fronvy to v, in V if and only if:

(Def. 7) pis Simple and oriented path from tov, in V.

Let G be a graph and lef, v» be elements of the vertices@f The functor AcyclicPath1,v»)
yields a subset of (the edges®f* and is defined by:
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(Def. 8) AcyclicPathévi,v») = {p; p ranges over Simple oriented chains@f p is acyclic path
fromvy to vy }.

Let G be a graph, lety, v» be elements of the vertices & and letV be a set. The functor
AcyclicPathgvy, vo,V) yields a subset of (the edges®jf* and is defined as follows:

(Def. 9) AcyclicPathévi,v»,V) = {p; p ranges over Simple oriented chains@f p is acyclic path
fromvytove inV}.

Let G be a graph and lgb be an oriented chain @. The functor AcyclicPathp) yielding a
subset of (the edges &)* is defined by the condition (Def. 10).

(Def. 10) AcyclicPathgp) = {q;q ranges over Simple oriented chains@f q # 0 A (the source
of G)(q(1)) = (the source ofG)(p(1)) A (the target ofG)(q(lenq)) = (the target of

G)(p(lenp)) A rngq C rngp}.

Let G be a graph. The functor AcyclicPatl®) yields a subset of (the edges®f* and is
defined as follows:

(Def. 11) AcyclicPath&G) = {q: g ranges over Simple oriented chains®f.
We now state a number of propositions:
(39) If p=0,thenpis not acyclic path fronvy to vo.
(40) If pis acyclic path fromvy to vp, thenp is oriented path fronv; to vs.
(41) AcyclicPathévy,vo) C OrientedPathyy, Vo).
(42) AcyclicPathgp) C AcyclicPathgG).
(43) AcyclicPathévi,v») C AcyclicPathsG).
(44) If pis oriented path fromv; to v,, then AcyclicPath) C AcyclicPathgvs,vs).
(45) If pis oriented path fromy; to v in V, then AcyclicPath@) C AcyclicPathgvi, vo,V).
(46) If g € AcyclicPathgp), then lerg < lenp.
(47) If pis oriented path fromy; to v, then AcyclicPath@) # 0 and AcyclicPath6rs, vo) # 0.

(48) If p is oriented path fromv; to v, in V, then AcyclicPathg) # 0 and
AcyclicPathgvy,vo,V) # 0.

(49) AcyclicPathévi,v2,V) C AcyclicPathgG).

8. WEIGHT GRAPHS AND THEIR BASIC PROPERTIES

The subseRq of R is defined by:
(Def. 12) R = {r;r ranges over real numbens>> 0}.

Let us observe thadk o is non empty.
Let G be a graph and l& be a function. We say th#lY is nonnegative weight db if and only
if:
(Def. 13) W is a function from the edges @ into R>o.
Let G be a graph and I&V be a function. We say thaY is weight ofG if and only if:
(Def. 14) W is a function from the edges & into R.

Let G be a graph, lep be a finite sequence of elements of the edge&,0nd letW be a
function. Let us assume th¥l¥ is weight of G. The functor RealSequengeW) yields a finite
sequence of elements Bfand is defined as follows:
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(Def. 15) donp =dom RealSequen¢p, W) and for every natural numbesuch that € domp holds
(RealSequend@,W))(i) = W(p(i)).

Let G be a graph, lep be a finite sequence of elements of the edge&,0nd letW be a
function. The functor co$p, W) yielding a real number is defined by:

(Def. 16) costp,W) = 5 RealSequeng¢@,W).

We now state a number of propositions:

(50) If W is nonnegative weight db, thenW is weight ofG.

(51) Letf be a finite sequence of elementskf Suppos&V is nonnegative weight & and
f = RealSequend@;,W). Let giveni. If i € domf, thenf(i) > 0.

(52) If rnggr C rngp1 andW is weight of G andi € domq;i, then there exist$ such thatj €
domp; and(RealSequendg@:,W))(j) = (RealSequendg:,W))(i).

(53) Ifleng; =1 and rngy; C rngp; andW is nonnegative weight oB, then cosfg;, W) <
cosi p1,W).

(54) If W is nonnegative weight db, then costp;,W) > 0.
(55) If pp =0andW is weight ofG, then costp;,W) = 0.

(56) LetD be a non empty finite subset of (the edge&gf. If D = AcyclicPathgvi, vo), then
there existsp; such thatp; € D and for everyq; such thatq; € D holds costp;, W) <
costqy,W).

(57) LetD be a non empty finite subset of (the edge&f. If D = AcyclicPathgvy, v2,V),
then there existg; such thatp; € D and for everyy; such thaig; € D holds costp;,W) <
cos{qi,W).

(58) If W is weight ofG, then costp; ™ g1,W) = cos{p1, W) + cos{qs,W).

(59) If g1 is one-to-one and rmy C rngp; and W is nonnegative weight of5, then
cos{g1,W) < costp1,W).

(60) If p1 € AcyclicPathgp) andW is nonnegative weight db, then costps, W) < cos{p,W).

9. SHORTESTPATHS AND THEIR BASIC PROPERTIES

Let G be a graph, let;, v» be vertices of5, let p be an oriented chain @, and letW be a function.
We say thap is shortest path fronm to v» in W if and only if the conditions (Def. 17) are satisfied.
(Def. 17)(i) pis oriented path fromr; to v,, and
(i) for every oriented chaig of G such thatyis oriented path from; to v» holds costp, W) <
cos{qg,W).

Let G be a graph, lety, v» be vertices of, let p be an oriented chain @, letV be a set, and
let W be a function. We say thai is shortest path from; to v» in V w.r.t. W if and only if the
conditions (Def. 18) are satisfied.

(Def. 18)(i) pis oriented path fromr; tov, inV, and

(i)  for every oriented chairg of G such thatq is oriented path fromv;, to v, in V holds
cos{p,W) < cos(q,W).
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10. BasIC PROPERTIES OF AGRAPH WITH FINITE VERTICES

For simplicity, we use the following conventiof® is a finite graphp, is a Simple oriented chain
of G, P, Q are oriented chains @, v1, V>, v3 are elements of the vertices Gf andps, az are finite
sequences of elements of the edge§ of

Next we state two propositions:

(61) lenps < the number of vertices d&.

(62) lenps < the number of edges @.

Let us conside6. Observe that AcyclicPath8) is finite.

Let us conside6, P. Note that AcyclicPath®) is finite.

Let us conside6, vi, vo. One can check that AcyclicPatlg, v2) is finite.
Let us conside6, vi, 2, V. Observe that AcyclicPathe, v2,V) is finite.
One can prove the following four propositions:

(63) If AcyclicPathgvy,v») # 0, then there existp; such thatp; € AcyclicPathgvi, v») and for
everyq; such thaty; € AcyclicPathgvy,v») holds costp;, W) < cos{qg;,W).

(64) If AcyclicPathgvi,v»,V) #£ 0, then there existp; such thatp; € AcyclicPathgvy,vo,V)
and for everyg; such thaty; € AcyclicPathgvy,vo,V) holds cosfp;,W) < cos{q;,W).

(65) If P is oriented path fronv; to v andW is nonnegative weight dB, then there exists a
Simple oriented chain d& which is shortest path fromwy to v, in W.

(66) Supposé is oriented path fronvy to v, in V andW is nonnegative weight o&. Then
there exists a Simple oriented chain®fvhich is shortest path fromwy tov, inV w.r.t. W.

11. THREEBASIC THEOREMS FORDIJKSTRA S SHORTESTPATH ALGORITHM
We now state two propositions:

(67) Suppose that

(i) W is nonnegative weight db,

(i)  Pis shortest path fronm tove inV w.r.t. W,
(i) vy #w,and

(iv) for all Q, vz such thatvz ¢ V andQ is shortest path from to v3 in V w.r.t. W holds
cos{P,W) < cos{Q,W).

ThenP is shortest path frona; to vo in W.
(68) Suppose that
(i) W is nonnegative weight db,
(i)  Pis shortest path front tov, inV w.r.t. W,
(i) vi# Vo,
(v) VCU,and

(v) forall Q, v3 such thatvz ¢ V andQ is shortest path from to vz in V w.r.t. W holds
cos{P,W) < cos{Q,W).

ThenP is shortest path from to vo in U w.r.t. W.

Let G be a graph, lep; be a finite sequence of elements of the edges, détV be a set, lev;
be a vertex ofG, and letW be a function. We say that; is longest in shortest path from in V
w.r.t. W if and only if the condition (Def. 19) is satisfied.

(Def. 19) Letv be a vertex ofs. Supposer € V andv # vi. Then there exists an oriented chgjiof
G such thay is shortest path frona; tovin V w.r.t. W and costg, W) < cos{p;,W).
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One can prove the following proposition

(69) LetG be a finite oriented grapl, Q, R be oriented chains @, andvy, v,, v3 be elements

(1
(2]

(3]

(4

5]

6]

(7]

[8]
[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

of the vertices ofG such thate € the edges ofc andW is nonnegative weight o6 and
lenP > 1 andP is shortest path fromy to v in V w.r.t. W andvy # v, andv; # vz and
R=P~ (e) andQ is shortest path frony to vz in V w.r.t. W ande orientedly joinsv,, v and
P is longest in shortest path from in V w.r.t. W. Then

(i) if cost(Q,W) < cos{R,W), thenQ is shortest path fron# to vz in V U {v2} w.r.t. W, and

(i) if cost(Q,W) > cos{R W), thenR s shortest path frona; to vz in V U {v2} w.r.t. W.
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