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Summary. A path from a source vertexv to a target vertexu is said to be a shortest
path if its total cost is minimum among allv-to-u paths. Dijkstra’s algorithm is a classic short-
est path algorithm, which is described in many textbooks. To justify its correctness (whose
rigorous proof will be given in the next article), it is necessary to clarify its underlying prin-
ciple. For this purpose, the article justifies the following basic facts, which are the core of
Dijkstra’s algorithm.

• A graph is given, its vertex set is denoted byV. AssumeU is the subset ofV, and if a
pathp from s to t is the shortest among the set of paths, each of which passes through
only the vertices inU, except the source and sink, and its source and sink iss and in
V, respectively, thenp is a shortest path froms to t in the graph, and for any subgraph
which contains at leastU, it is also the shortest.

• Let p(s,x,U) denote the shortest path froms to x in a subgraph whose the vertex set is
the union of{s,x} andU, and cost(p) denote the cost of pathp(s,x,U), cost(x,y) the
cost of the edge fromx to y. Give p(s,x,U), q(s,y,U) andr(s,y,U ∪{x}). If cost(p) =
min{cost(w) : w(s, t,U)∧ t ∈V}, then we have

cost(r) = min(cost(p)+cost(x,y),cost(q)).

This is the well-known triangle comparison of Dijkstra’s algorithm.

MML Identifier: GRAPH_5.

WWW: http://mizar.org/JFM/Vol15/graph_5.html

The articles [13], [16], [14], [17], [4], [3], [6], [15], [1], [8], [9], [2], [10], [5], [12], [7], and [11]
provide the notation and terminology for this paper.

1. PRELIMINARIES

We use the following convention:n, m, i, j, k denote natural numbers,x, y, e, X, V, U denote sets,
andW, f , g denote functions.

The following two propositions are true:

(1) For every finite functionf holds cardrngf ≤ carddomf .

(2) If rng f ⊆ rngg andx∈ dom f , then there existsy such thaty∈ domg and f (x) = g(y).

The schemeLambdaABdeals with setsA , B and a unary functorF yielding a set, and states
that:

There exists a functionf such that domf = A and for every elementx of B such that
x∈ A holds f (x) = F (x)
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for all values of the parameters.
One can prove the following propositions:

(3) LetD be a finite set,n be a natural number, andX be a set. IfX = {x;x ranges over elements
of D∗: 1≤ lenx ∧ lenx≤ n}, thenX is finite.

(4) LetD be a finite set,n be a natural number, andX be a set. IfX = {x;x ranges over elements
of D∗: lenx≤ n}, thenX is finite.

(5) For every finite setD holds cardD 6= 0 iff D 6= /0.

(6) Let D be a finite set andk be a natural number. Suppose cardD = k+1. Then there exists
an elementx of D and there exists a subsetC of D such thatD = C∪{x} and cardC = k.

(7) For every finite setD such that cardD = 1 there exists an elementx of D such thatD = {x}.

The schemeMinValuedeals with a non empty finite setA and a unary functorF yielding a real
number, and states that:

There exists an elementx of A such that for every elementy of A holdsF (x)≤F (y)
for all values of the parameters.

Let D be a set and letX be a non empty subset ofD∗. We see that the element ofX is a finite
sequence of elements ofD.

2. ADDITIONAL PROPERTIES OFFINITE SEQUENCES

In the sequelp, q are finite sequences.
The following three propositions are true:

(8) p 6= /0 iff len p≥ 1.

(9) For alln, msuch that 1≤ n andn< mandm≤ lenp holdsp(n) 6= p(m) iff p is one-to-one.

(10) For alln, m such that 1≤ n andn < m andm≤ lenp holds p(n) 6= p(m) iff cardrngp =
lenp.

In the sequelG denotes a graph andp1, q1 denote finite sequences of elements of the edges of
G.

The following two propositions are true:

(11) If i ∈ domp1, then (the source ofG)(p1(i)) ∈ the vertices ofG and (the target of
G)(p1(i)) ∈ the vertices ofG.

(12) If qa 〈x〉 is one-to-one and rng(qa 〈x〉) ⊆ rngp, then there exist finite sequencesp2, p3

such thatp = p2
a 〈x〉a p3 and rngq⊆ rng(p2

a p3).

3. ADDITIONAL PROPERTIES OFCHAINS AND ORIENTED PATHS

One can prove the following three propositions:

(13) If pa q is a chain ofG, thenp is a chain ofG andq is a chain ofG.

(14) If pa q is an oriented chain ofG, thenp is an oriented chain ofG andq is an oriented chain
of G.

(15) Let p, q be oriented chains ofG. Suppose (the target ofG)(p(lenp)) = (the source of
G)(q(1)). Thenpa q is an oriented chain ofG.
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4. ADDITIONAL PROPERTIES OFACYCLIC ORIENTED PATHS

Next we state several propositions:

(16) /0 is a Simple oriented chain ofG.

(17) Supposepa q is a Simple oriented chain ofG. Thenp is a Simple oriented chain ofG and
q is a Simple oriented chain ofG.

(18) If lenp1 = 1, thenp1 is a Simple oriented chain ofG.

(19) Let p be a Simple oriented chain ofG andq be a finite sequence of elements of the edges
of G. Suppose that

(i) lenp≥ 1,

(ii) lenq = 1,

(iii) (the source ofG)(q(1)) = (the target ofG)(p(lenp)),

(iv) (the source ofG)(p(1)) 6= (the target ofG)(p(lenp)), and

(v) it is not true that there existsk such that 1≤ k andk≤ lenp and (the target ofG)(p(k)) =
(the target ofG)(q(1)).

Thenpa q is a Simple oriented chain ofG.

(20) Every Simple oriented chain ofG is one-to-one.

5. THE SET OF THEVERTICESON A PATH OR AN EDGE

Let G be a graph and letebe an element of the edges ofG. The functor verticese is defined by:

(Def. 1) verticese= {(the source ofG)(e), (the target ofG)(e)}.

Let us considerG, p1. The functor verticesp1 yielding a subset of the vertices ofG is defined
by:

(Def. 2) verticesp1 = {v;v ranges over vertices ofG:
∨

i (i ∈ domp1 ∧ v∈ vertices((p1)i))}.

One can prove the following propositions:

(21) Let p be a Simple oriented chain ofG. Supposep = p1
a q1 and lenp1 ≥ 1 and lenq1 ≥ 1

and (the source ofG)(p(1)) 6= (the target ofG)(p(lenp)). Then (the source ofG)(p(1)) /∈
verticesq1 and (the target ofG)(p(lenp)) /∈ verticesp1.

(22) verticesp1 ⊆V iff for every i such thati ∈ domp1 holds vertices((p1)i)⊆V.

(23) Suppose verticesp1 6⊆ V. Then there exists a natural numberi and there exist finite se-
quencesq, r of elements of the edges ofG such thati +1≤ lenp1 and vertices((p1)i+1) 6⊆V
and lenq = i andp1 = qa r and verticesq⊆V.

(24) If rngq1 ⊆ rngp1, then verticesq1 ⊆ verticesp1.

(25) If rngq1 ⊆ rngp1 and verticesp1\X ⊆V, then verticesq1\X ⊆V.

(26) If vertices(p1
a q1)\X ⊆V, then verticesp1\X ⊆V and verticesq1\X ⊆V.

In the sequelv, v1, v2, v3 are elements of the vertices ofG.
One can prove the following propositions:

(27) For every elemente of the edges ofG such thatv = (the source ofG)(e) or v = (the target
of G)(e) holdsv∈ verticese.

(28) If i ∈ domp1 and if v = (the source ofG)(p1(i)) or v = (the target ofG)(p1(i)), then
v∈ verticesp1.
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(29) If lenp1 = 1, then verticesp1 = vertices((p1)1).

(30) verticesp1 ⊆ vertices(p1
a q1) and verticesq1 ⊆ vertices(p1

a q1).

In the sequelp, q are oriented chains ofG.
The following propositions are true:

(31) If p = qa p1 and lenq ≥ 1 and lenp1 = 1, then verticesp = verticesq∪ {(the target of
G)(p1(1))}.

(32) If v 6= (the source ofG)(p(1)) andv ∈ verticesp, then there existsi such that 1≤ i and
i ≤ lenp andv = (the target ofG)(p(i)).

6. DIRECTED PATHS BETWEENTWO VERTICES

Let us considerG, p, v1, v2. We say thatp is oriented path fromv1 to v2 if and only if:

(Def. 3) p 6= /0 and (the source ofG)(p(1)) = v1 and (the target ofG)(p(lenp)) = v2.

Let us considerG, v1, v2, p, V. We say thatp is oriented path fromv1 to v2 in V if and only if:

(Def. 4) p is oriented path fromv1 to v2 and verticesp\{v2} ⊆V.

LetGbe a graph and letv1, v2 be elements of the vertices ofG. The functor OrientedPaths(v1,v2)
yields a subset of (the edges ofG)∗ and is defined as follows:

(Def. 5) OrientedPaths(v1,v2) = {p; p ranges over oriented chains ofG: p is oriented path fromv1

to v2}.

We now state several propositions:

(33) If p is oriented path fromv1 to v2, thenv1 ∈ verticesp andv2 ∈ verticesp.

(34) x∈ OrientedPaths(v1,v2) iff there existsp such thatp = x and p is oriented path fromv1

to v2.

(35) If p is oriented path fromv1 to v2 in V andv1 6= v2, thenv1 ∈V.

(36) If p is oriented path fromv1 to v2 in V andV ⊆U, thenp is oriented path fromv1 to v2 in
U .

(37) Suppose lenp≥ 1 andp is oriented path fromv1 to v2 andp1(1) orientedly joinsv2, v3 and
lenp1 = 1. Then there existsq such thatq = pa p1 andq is oriented path fromv1 to v3.

(38) Supposeq = pa p1 and lenp≥ 1 and lenp1 = 1 andp is oriented path fromv1 to v2 in V
andp1(1) orientedly joinsv2, v3. Thenq is oriented path fromv1 to v3 in V ∪{v2}.

7. ACYCLIC (OR SIMPLE) PATHS

Let G be a graph, letp be an oriented chain ofG, and letv1, v2 be elements of the vertices ofG. We
say thatp is acyclic path fromv1 to v2 if and only if:

(Def. 6) p is Simple and oriented path fromv1 to v2.

Let G be a graph, letp be an oriented chain ofG, let v1, v2 be elements of the vertices ofG, and
let V be a set. We say thatp is acyclic path fromv1 to v2 in V if and only if:

(Def. 7) p is Simple and oriented path fromv1 to v2 in V.

Let G be a graph and letv1, v2 be elements of the vertices ofG. The functor AcyclicPaths(v1,v2)
yields a subset of (the edges ofG)∗ and is defined by:
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(Def. 8) AcyclicPaths(v1,v2) = {p; p ranges over Simple oriented chains ofG: p is acyclic path
from v1 to v2}.

Let G be a graph, letv1, v2 be elements of the vertices ofG, and letV be a set. The functor
AcyclicPaths(v1,v2,V) yields a subset of (the edges ofG)∗ and is defined as follows:

(Def. 9) AcyclicPaths(v1,v2,V) = {p; p ranges over Simple oriented chains ofG: p is acyclic path
from v1 to v2 in V}.

Let G be a graph and letp be an oriented chain ofG. The functor AcyclicPaths(p) yielding a
subset of (the edges ofG)∗ is defined by the condition (Def. 10).

(Def. 10) AcyclicPaths(p) = {q;q ranges over Simple oriented chains ofG: q 6= /0 ∧ (the source
of G)(q(1)) = (the source ofG)(p(1)) ∧ (the target ofG)(q(lenq)) = (the target of
G)(p(lenp)) ∧ rngq⊆ rngp}.

Let G be a graph. The functor AcyclicPaths(G) yields a subset of (the edges ofG)∗ and is
defined as follows:

(Def. 11) AcyclicPaths(G) = {q : q ranges over Simple oriented chains ofG}.

We now state a number of propositions:

(39) If p = /0, thenp is not acyclic path fromv1 to v2.

(40) If p is acyclic path fromv1 to v2, thenp is oriented path fromv1 to v2.

(41) AcyclicPaths(v1,v2)⊆OrientedPaths(v1,v2).

(42) AcyclicPaths(p)⊆ AcyclicPaths(G).

(43) AcyclicPaths(v1,v2)⊆ AcyclicPaths(G).

(44) If p is oriented path fromv1 to v2, then AcyclicPaths(p)⊆ AcyclicPaths(v1,v2).

(45) If p is oriented path fromv1 to v2 in V, then AcyclicPaths(p)⊆ AcyclicPaths(v1,v2,V).

(46) If q∈ AcyclicPaths(p), then lenq≤ lenp.

(47) If p is oriented path fromv1 to v2, then AcyclicPaths(p) 6= /0 and AcyclicPaths(v1,v2) 6= /0.

(48) If p is oriented path from v1 to v2 in V, then AcyclicPaths(p) 6= /0 and
AcyclicPaths(v1,v2,V) 6= /0.

(49) AcyclicPaths(v1,v2,V)⊆ AcyclicPaths(G).

8. WEIGHT GRAPHS AND THEIR BASIC PROPERTIES

The subsetR≥0 of R is defined by:

(Def. 12) R≥0 = {r; r ranges over real numbers:r ≥ 0}.

Let us observe thatR≥0 is non empty.
Let G be a graph and letW be a function. We say thatW is nonnegative weight ofG if and only

if:

(Def. 13) W is a function from the edges ofG into R≥0.

Let G be a graph and letW be a function. We say thatW is weight ofG if and only if:

(Def. 14) W is a function from the edges ofG into R.

Let G be a graph, letp be a finite sequence of elements of the edges ofG, and letW be a
function. Let us assume thatW is weight ofG. The functor RealSequence(p,W) yields a finite
sequence of elements ofR and is defined as follows:
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(Def. 15) domp= domRealSequence(p,W) and for every natural numberi such thati ∈ domp holds
(RealSequence(p,W))(i) = W(p(i)).

Let G be a graph, letp be a finite sequence of elements of the edges ofG, and letW be a
function. The functor cost(p,W) yielding a real number is defined by:

(Def. 16) cost(p,W) = ∑RealSequence(p,W).

We now state a number of propositions:

(50) If W is nonnegative weight ofG, thenW is weight ofG.

(51) Let f be a finite sequence of elements ofR. SupposeW is nonnegative weight ofG and
f = RealSequence(p1,W). Let giveni. If i ∈ dom f , then f (i)≥ 0.

(52) If rngq1 ⊆ rngp1 andW is weight ofG and i ∈ domq1, then there existsj such thatj ∈
domp1 and(RealSequence(p1,W))( j) = (RealSequence(q1,W))(i).

(53) If lenq1 = 1 and rngq1 ⊆ rngp1 andW is nonnegative weight ofG, then cost(q1,W) ≤
cost(p1,W).

(54) If W is nonnegative weight ofG, then cost(p1,W)≥ 0.

(55) If p1 = /0 andW is weight ofG, then cost(p1,W) = 0.

(56) LetD be a non empty finite subset of (the edges ofG)∗. If D = AcyclicPaths(v1,v2), then
there existsp1 such thatp1 ∈ D and for everyq1 such thatq1 ∈ D holds cost(p1,W) ≤
cost(q1,W).

(57) Let D be a non empty finite subset of (the edges ofG)∗. If D = AcyclicPaths(v1,v2,V),
then there existsp1 such thatp1 ∈ D and for everyq1 such thatq1 ∈ D holds cost(p1,W) ≤
cost(q1,W).

(58) If W is weight ofG, then cost(p1
a q1,W) = cost(p1,W)+cost(q1,W).

(59) If q1 is one-to-one and rngq1 ⊆ rngp1 and W is nonnegative weight ofG, then
cost(q1,W)≤ cost(p1,W).

(60) If p1 ∈ AcyclicPaths(p) andW is nonnegative weight ofG, then cost(p1,W)≤ cost(p,W).

9. SHORTESTPATHS AND THEIR BASIC PROPERTIES

Let G be a graph, letv1, v2 be vertices ofG, let p be an oriented chain ofG, and letW be a function.
We say thatp is shortest path fromv1 to v2 in W if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) p is oriented path fromv1 to v2, and

(ii) for every oriented chainq of G such thatq is oriented path fromv1 to v2 holds cost(p,W)≤
cost(q,W).

Let G be a graph, letv1, v2 be vertices ofG, let p be an oriented chain ofG, letV be a set, and
let W be a function. We say thatp is shortest path fromv1 to v2 in V w.r.t. W if and only if the
conditions (Def. 18) are satisfied.

(Def. 18)(i) p is oriented path fromv1 to v2 in V, and

(ii) for every oriented chainq of G such thatq is oriented path fromv1 to v2 in V holds
cost(p,W)≤ cost(q,W).
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10. BASIC PROPERTIES OF AGRAPH WITH FINITE VERTICES

For simplicity, we use the following convention:G is a finite graph,p4 is a Simple oriented chain
of G, P, Q are oriented chains ofG, v1, v2, v3 are elements of the vertices ofG, andp1, q1 are finite
sequences of elements of the edges ofG.

Next we state two propositions:

(61) lenp4 ≤ the number of vertices ofG.

(62) lenp4 ≤ the number of edges ofG.

Let us considerG. Observe that AcyclicPaths(G) is finite.
Let us considerG, P. Note that AcyclicPaths(P) is finite.
Let us considerG, v1, v2. One can check that AcyclicPaths(v1,v2) is finite.
Let us considerG, v1, v2, V. Observe that AcyclicPaths(v1,v2,V) is finite.
One can prove the following four propositions:

(63) If AcyclicPaths(v1,v2) 6= /0, then there existsp1 such thatp1 ∈AcyclicPaths(v1,v2) and for
everyq1 such thatq1 ∈ AcyclicPaths(v1,v2) holds cost(p1,W)≤ cost(q1,W).

(64) If AcyclicPaths(v1,v2,V) 6= /0, then there existsp1 such thatp1 ∈ AcyclicPaths(v1,v2,V)
and for everyq1 such thatq1 ∈ AcyclicPaths(v1,v2,V) holds cost(p1,W)≤ cost(q1,W).

(65) If P is oriented path fromv1 to v2 andW is nonnegative weight ofG, then there exists a
Simple oriented chain ofG which is shortest path fromv1 to v2 in W.

(66) SupposeP is oriented path fromv1 to v2 in V andW is nonnegative weight ofG. Then
there exists a Simple oriented chain ofG which is shortest path fromv1 to v2 in V w.r.t. W.

11. THREE BASIC THEOREMS FORDIJKSTRA’ S SHORTESTPATH ALGORITHM

We now state two propositions:

(67) Suppose that

(i) W is nonnegative weight ofG,

(ii) P is shortest path fromv1 to v2 in V w.r.t. W,

(iii) v1 6= v2, and

(iv) for all Q, v3 such thatv3 /∈ V andQ is shortest path fromv1 to v3 in V w.r.t. W holds
cost(P,W)≤ cost(Q,W).

ThenP is shortest path fromv1 to v2 in W.

(68) Suppose that

(i) W is nonnegative weight ofG,

(ii) P is shortest path fromv1 to v2 in V w.r.t. W,

(iii) v1 6= v2,

(iv) V ⊆U, and

(v) for all Q, v3 such thatv3 /∈ V andQ is shortest path fromv1 to v3 in V w.r.t. W holds
cost(P,W)≤ cost(Q,W).

ThenP is shortest path fromv1 to v2 in U w.r.t. W.

Let G be a graph, letp1 be a finite sequence of elements of the edges ofG, letV be a set, letv1

be a vertex ofG, and letW be a function. We say thatp1 is longest in shortest path fromv1 in V
w.r.t. W if and only if the condition (Def. 19) is satisfied.

(Def. 19) Letv be a vertex ofG. Supposev∈V andv 6= v1. Then there exists an oriented chainq of
G such thatq is shortest path fromv1 to v in V w.r.t. W and cost(q,W)≤ cost(p1,W).
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One can prove the following proposition

(69) LetG be a finite oriented graph,P, Q, Rbe oriented chains ofG, andv1, v2, v3 be elements
of the vertices ofG such thate∈ the edges ofG andW is nonnegative weight ofG and
lenP≥ 1 andP is shortest path fromv1 to v2 in V w.r.t. W andv1 6= v2 andv1 6= v3 and
R= Pa 〈e〉 andQ is shortest path fromv1 to v3 in V w.r.t. W andeorientedly joinsv2, v3 and
P is longest in shortest path fromv1 in V w.r.t. W. Then

(i) if cost(Q,W)≤ cost(R,W), thenQ is shortest path fromv1 to v3 in V ∪{v2} w.r.t. W, and

(ii) if cost(Q,W)≥ cost(R,W), thenR is shortest path fromv1 to v3 in V ∪{v2} w.r.t. W.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.
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