Oriented Chains

Yatsuka Nakamura
Shinshu University
Nagano

Piotr Rudnicki
University of Alberta
Edmonton

Abstract

Summary. In [8] we introduced a number of notions about vertex sequences associated with undirected chains of edges in graphs. In this article, we introduce analogous concepts for oriented chains and use them to prove properties of cutting and glueing of oriented chains, and the existence of a simple oriented chain in an oriented chain.

MML Identifier: GRAPH_4.
WWW: http://mizar.org/JFM/Vol10/graph_4.html

The articles [10], [12], [13], [4], [3], [5], [11], [1], [6], [2], [7], [8], and [9] provide the notation and terminology for this paper.

1. Oriented Vertex Sequences

For simplicity, we use the following convention: p, q are finite sequences, e, X are sets, m, n are natural numbers, G is a graph, and $x, y, v, v_{1}, v_{2}, v_{3}, v_{4}$ are elements of the vertices of G.

Let us consider G, let us consider x, y, and let us consider e. We say that e orientedly joins x, y if and only if:
(Def. 1) (The source of $G)(e)=x$ and (the target of $G)(e)=y$.
Next we state the proposition
(1) If e orientedly joins v_{1}, v_{2}, then e joins v_{1} with v_{2}.

Let us consider G and let x, y be elements of the vertices of G. We say that x, y are orientedly incident if and only if:
(Def. 2) There exists a set v such that $v \in$ the edges of G and v orientedly joins x, y.
The following proposition is true
(2) If e orientedly joins v_{1}, v_{2} and e orientedly joins v_{3}, v_{4}, then $v_{1}=v_{3}$ and $v_{2}=v_{4}$.

We adopt the following rules: v_{5}, v_{6}, v_{7} denote finite sequences of elements of the vertices of G and c, c_{1}, c_{2} denote oriented chains of G.

Let us consider G. One can check that there exists a chain of G which is empty and oriented.
Let us consider G, X. The functor G-SVSet X yielding a set is defined as follows:
(Def. 3) $G-\operatorname{SVSet} X=\left\{v: \bigvee_{e: \text { element of the edges of } G}(e \in X \wedge v=(\right.$ the source of $\left.G)(e))\right\}$.
Let us consider G, X. The functor G-TVSet X yielding a set is defined as follows:
(Def. 4) $\quad G$-TVSet $X=\left\{v: \bigvee_{e}\right.$:element of the edges of $G(e \in X \wedge v=($ the target of $\left.G)(e))\right\}$.

We now state the proposition
(4) G-SVSet $\emptyset=\emptyset$ and $G-$ TVSet $\emptyset=\emptyset$.

Let us consider G, v_{5} and let c be a finite sequence. We say that v_{5} is oriented vertex seq of c if and only if:
(Def. 5) len $v_{5}=$ len $c+1$ and for every n such that $1 \leq n$ and $n \leq$ len c holds $c(n)$ orientedly joins $\left(v_{5}\right)_{n},\left(v_{5}\right)_{n+1}$.

Next we state four propositions:
(5) If v_{5} is oriented vertex seq of c, then v_{5} is vertex sequence of c.
(6) If v_{5} is oriented vertex seq of c, then G-SVSetrng $c \subseteq \operatorname{rng} v_{5}$.
(7) If v_{5} is oriented vertex seq of c, then G-TVSetrng $c \subseteq \operatorname{rng} v_{5}$.
(8) If $c \neq \emptyset$ and v_{5} is oriented vertex seq of c, then $\operatorname{rng} v_{5} \subseteq(G$-SVSetrng $c) \cup(G$-TVSetrng $c)$.

2. Cutting and Glueing of Oriented Chains

One can prove the following three propositions:
(9) $\langle v\rangle$ is oriented vertex seq of \emptyset.
(10) There exists v_{5} such that v_{5} is oriented vertex seq of c.
(11) If $c \neq \emptyset$ and v_{6} is oriented vertex seq of c and v_{7} is oriented vertex seq of c, then $v_{6}=v_{7}$.

Let us consider G, c. Let us assume that $c \neq \emptyset$. The functor oriented-vertex-seq c yields a finite sequence of elements of the vertices of G and is defined by:
(Def. 6) oriented-vertex-seq c is oriented vertex seq of c.
One can prove the following propositions:
(12) If v_{5} is oriented vertex seq of c and $c_{1}=c \upharpoonright \operatorname{Seg} n$ and $v_{6}=v_{5} \upharpoonright \operatorname{Seg}(n+1)$, then v_{6} is oriented vertex seq of c_{1}.
(13) If $1 \leq m$ and $m \leq n$ and $n \leq$ len c and $q=\langle c(m), \ldots, c(n)\rangle$, then q is an oriented chain of G.
(14) Suppose $1 \leq m$ and $m \leq n$ and $n \leq \operatorname{len} c$ and $c_{1}=\langle c(m), \ldots, c(n)\rangle$ and v_{5} is oriented vertex seq of c and $v_{6}=\left\langle v_{5}(m), \ldots, v_{5}(n+1)\right\rangle$. Then v_{6} is oriented vertex seq of c_{1}.
(15) Suppose v_{6} is oriented vertex seq of c_{1} and v_{7} is oriented vertex seq of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=$ $v_{7}(1)$. Then $c_{1}{ }^{\wedge} c_{2}$ is an oriented chain of G.
(16) Suppose v_{6} is oriented vertex seq of c_{1} and v_{7} is oriented vertex seq of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=$ $v_{7}(1)$ and $c=c_{1}^{\wedge} c_{2}$ and $v_{5}=v_{6} \cap v_{7}$. Then v_{5} is oriented vertex seq of c.

[^0]
3. Oriented Simple Chains in Oriented Chains

Let us consider G and let I_{1} be an oriented chain of G. We say that I_{1} is Simple if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exists v_{5} such that v_{5} is oriented vertex seq of I_{1} and for all n, m such that $1 \leq n$ and $n<m$ and $m \leq \operatorname{len} v_{5}$ and $v_{5}(n)=v_{5}(m)$ holds $n=1$ and $m=\operatorname{len} v_{5}$.

Let us consider G. One can verify that there exists an oriented chain of G which is Simple.
Let us consider G. One can check that there exists a chain of G which is oriented and simple. We now state the proposition
$(18)^{2}$ For every oriented chain q of G holds $q \upharpoonright \operatorname{Seg} n$ is an oriented chain of G.
In the sequel s_{1} denotes an oriented simple chain of G.
One can prove the following propositions:
(19) $s_{1} \upharpoonright \operatorname{Seg} n$ is an oriented simple chain of G.
(20) For every oriented chain s_{1}^{\prime} of G such that $s_{1}^{\prime}=s_{1}$ holds s_{1}^{\prime} is Simple.
(21) Every Simple oriented chain of G is an oriented simple chain of G.
(22) Suppose c is not Simple and v_{5} is oriented vertex seq of c. Then there exists a FinSubsequence f_{1} of c and there exists a FinSubsequence f_{2} of v_{5} and there exist c_{1}, v_{6} such that len $c_{1}<\operatorname{len} c$ and v_{6} is oriented vertex seq of c_{1} and len $v_{6}<\operatorname{len} v_{5}$ and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=v_{6}\left(\operatorname{len} v_{6}\right)$ and $\operatorname{Seq} f_{1}=c_{1}$ and $\operatorname{Seq} f_{2}=v_{6}$.
(23) Suppose v_{5} is oriented vertex seq of c. Then there exists a FinSubsequence f_{1} of c and there exists a FinSubsequence f_{2} of v_{5} and there exist s_{1}, v_{6} such that Seq $f_{1}=s_{1}$ and Seq $f_{2}=v_{6}$ and v_{6} is oriented vertex seq of s_{1} and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=v_{6}\left(\operatorname{len} v_{6}\right)$.

Let us consider G. Note that every oriented chain of G which is empty is also one-to-one. One can prove the following three propositions:
(24) If p is an oriented path of G, then $p \upharpoonright \operatorname{Seg} n$ is an oriented path of G.
(25) s_{1} is an oriented path of G.
(26) Let c_{1} be a finite sequence. Then
(i) c_{1} is a Simple oriented chain of G iff c_{1} is an oriented simple chain of G, and
(ii) if c_{1} is an oriented simple chain of G, then c_{1} is an oriented path of G.

References

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[7] Krzysztof Hryniewiecki. Graphs. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/graph_1.html

[^1][8] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/graph_2.html
[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[11] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html
[12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received August 19, 1998
Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (3) has been removed.

[^1]: 2 The proposition (17) has been removed.

