Graphs

Krzysztof Hryniewiecki Warsaw University

Summary. Definitions of graphs are introduced and their basic properties are proved. The following notions related to graph theory are introduced: subgraph, finite graph, chain and oriented chain - as a finite sequence of edges, path and oriented path - as a finite sequence of different edges, cycle and oriented cycle, incidency of graph's vertices, a sum of two graphs, a degree of a vertice, a set of all subgraphs of a graph. Many ideas of this article have been taken from [11].

MML Identifier: GRAPH_1.

WWW: http://mizar.org/JFM/Vol2/graph_1.html

The articles [9], [7], [10], [12], [4], [5], [3], [8], [6], [1], and [2] provide the notation and terminology for this paper.

We use the following convention: x, y, v are sets and n, m are natural numbers.

We consider multi graph structures as systems

⟨ vertices, edges, a source, a target ⟩,

where the vertices and the edges constitute sets and the source and the target are functions from the edges into the vertices.

Let I_1 be a multi graph structure. We say that I_1 is graph-like if and only if:

(Def. 1) The vertices of I_1 are a non empty set.

Let us note that there exists a multi graph structure which is strict and graph-like.

A graph is a graph-like multi graph structure.

In the sequel G, G_1 , G_2 , G_3 denote graphs.

Let us consider G_1 , G_2 . Let us assume that the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 . The functor $G_1 \cup G_2$ yielding a strict graph is defined by the conditions (Def. 2).

- (Def. 2)(i) The vertices of $G_1 \cup G_2 =$ (the vertices of G_1) \cup (the vertices of G_2),
 - (ii) the edges of $G_1 \cup G_2$ = (the edges of G_1) \cup (the edges of G_2),
 - (iii) for every v such that $v \in$ the edges of G_1 holds (the source of $G_1 \cup G_2$)(v) = (the source of $G_1)(v)$ and (the target of $G_1 \cup G_2$)(v) = (the target of $G_1)(v)$, and
 - (iv) for every v such that $v \in$ the edges of G_2 holds (the source of $G_1 \cup G_2$)(v) = (the source of G_2)(v) and (the target of $G_1 \cup G_2$)(v) = (the target of G_2)(v).
- Let G, G_1 , G_2 be graphs. We say that G is a sum of G_1 and G_2 if and only if the conditions (Def. 3) are satisfied.
- (Def. 3)(i) The target of $G_1 \approx$ the target of G_2 ,
 - (ii) the source of $G_1 \approx$ the source of G_2 , and
 - (iii) the multi graph structure of $G = G_1 \cup G_2$.

Let I_1 be a graph. We say that I_1 is oriented if and only if the condition (Def. 4) is satisfied.

- (Def. 4) Let given x, y. Suppose that
 - (i) $x \in \text{the edges of } I_1$,
 - (ii) $y \in \text{the edges of } I_1$,
 - (iii) (the source of I_1)(x) = (the source of I_1)(y), and
 - (iv) (the target of I_1)(x) = (the target of I_1)(y).

Then x = y.

We say that I_1 is non-multi if and only if the condition (Def. 5) is satisfied.

- (Def. 5) Let given x, y. Suppose that
 - (i) $x \in \text{the edges of } I_1$,
 - (ii) $y \in \text{the edges of } I_1, \text{ and } I_2$
 - (iii) (the source of I_1)(x) = (the source of I_1)(y) and (the target of I_1)(x) = (the target of I_1)(y) or (the source of I_1)(x) = (the target of I_1)(x) and (the source of I_1)(x) = (the target of I_1)(x). Then x = y.

We say that I_1 is simple if and only if:

(Def. 6) It is not true that there exists x such that $x \in$ the edges of I_1 and (the source of I_1)(x) = (the target of I_1)(x).

We say that I_1 is connected if and only if:

(Def. 7) It is not true that there exist graphs G_1 , G_2 such that the vertices of G_1 misses the vertices of G_2 and I_1 is a sum of G_1 and G_2 .

Let I_1 be a multi graph structure. We say that I_1 is finite if and only if:

(Def. 8) The vertices of I_1 are finite and the edges of I_1 are finite.

One can verify that there exists a multi graph structure which is finite and there exists a graph which is finite, non-multi, oriented, simple, and connected.

In the sequel x, y denote elements of the vertices of G.

Let us consider G, let us consider x, y, and let us consider v. We say that v joins x with y if and only if:

(Def. 9) (The source of G)(v) = x and (the target of G)(v) = y or (the source of G)(v) = y and (the target of G)(v) = x.

Let us consider G and let x, y be elements of the vertices of G. We say that x and y are incident if and only if:

(Def. 10) There exists a set v such that $v \in$ the edges of G and v joins x with y.

Let G be a graph. A finite sequence is called a chain of G if it satisfies the conditions (Def. 11).

- (Def. 11)(i) For every n such that $1 \le n$ and $n \le \text{len}$ it holds it $(n) \in \text{the edges of } G$, and
 - (ii) there exists a finite sequence p such that $\operatorname{len} p = \operatorname{len} \operatorname{it} + 1$ and for every n such that $1 \le n$ and $n \le \operatorname{len} p$ holds $p(n) \in \operatorname{the}$ vertices of G and for every n such that $1 \le n$ and $n \le \operatorname{len} \operatorname{it}$ there exist elements x', y' of the vertices of G such that x' = p(n) and y' = p(n+1) and $\operatorname{it}(n)$ joins x' with y'.

Let G be a graph. We see that the chain of G is a finite sequence of elements of the edges of G. Let G be a graph and let I_1 be a chain of G. We say that I_1 is oriented if and only if:

(Def. 12) For every n such that $1 \le n$ and $n < \text{len } I_1$ holds (the source of G) $(I_1(n+1)) = \text{(the target of } G)(I_1(n))$.

Let G be a graph. Note that there exists a chain of G which is oriented.

Let G be a graph and let I_1 be a chain of G. Let us observe that I_1 is one-to-one if and only if:

(Def. 13) For all n, m such that $1 \le n$ and n < m and $m \le \text{len } I_1 \text{ holds } I_1(n) \ne I_1(m)$.

Let G be a graph. One can check that there exists a chain of G which is one-to-one.

Let G be a graph. A path of G is an one-to-one chain of G.

Let G be a graph. Note that there exists a chain of G which is one-to-one and oriented.

Let G be a graph. An oriented path of G is an one-to-one oriented chain of G.

Let G be a graph and let I_1 be a path of G. We say that I_1 is cyclic if and only if the condition (Def. 15) is satisfied.

- (Def. 15)¹ There exists a finite sequence p such that
 - (i) $len p = len I_1 + 1$,
 - (ii) for every n such that $1 \le n$ and $n \le \text{len } p$ holds $p(n) \in \text{the vertices of } G$,
 - (iii) for every n such that $1 \le n$ and $n \le \text{len } I_1$ there exist elements x', y' of the vertices of G such that x' = p(n) and y' = p(n+1) and $I_1(n)$ joins x' with y', and
 - (iv) p(1) = p(len p).

Let G be a graph. One can verify that there exists a path of G which is cyclic.

Let G be a graph. A cycle of G is a cyclic path of G.

Let G be a graph. Observe that there exists an oriented path of G which is cyclic.

Let G be a graph. An oriented cycle of G is a cyclic oriented path of G.

Let G be a graph. A graph is called a subgraph of G if it satisfies the conditions (Def. 17).

- (Def. 17)²(i) The vertices of it \subseteq the vertices of G,
 - (ii) the edges of it \subseteq the edges of G, and
 - (iii) for every v such that $v \in$ the edges of it holds (the source of it)(v) = (the source of G)(v) and (the target of it)(v) = (the target of G)(v) and (the source of $G)(v) \in$ the vertices of it and (the target of $G)(v) \in$ the vertices of it.

Let G be a graph. Observe that there exists a subgraph of G which is strict.

Let G be a finite graph. The number of vertices of G yielding a natural number is defined as follows:

(Def. 18) There exists a finite set B such that B = the vertices of G and the number of vertices of G = card B.

The number of edges of G yielding a natural number is defined by:

(Def. 19) There exists a finite set B such that B = the edges of G and the number of edges of G = card B.

Let G be a finite graph and let x be an element of the vertices of G. The functor $\operatorname{EdgIn}(x)$ yielding a natural number is defined by the condition (Def. 20).

(Def. 20) There exists a finite set X such that for every set z holds $z \in X$ iff $z \in$ the edges of G and (the target of G)(z) = x and EdgIn(x) = card X.

The functor EdgOut(x) yielding a natural number is defined by the condition (Def. 21).

(Def. 21) There exists a finite set X such that for every set z holds $z \in X$ iff $z \in X$ the edges of G and (the source of G)(z) = x and EdgOut(x) = C and C

Let G be a finite graph and let x be an element of the vertices of G. The degree of x yields a natural number and is defined as follows:

¹ The definition (Def. 14) has been removed.

² The definition (Def. 16) has been removed.

(Def. 22) The degree of x = EdgIn(x) + EdgOut(x).

Let G_1 , G_2 be graphs. The predicate $G_1 \subseteq G_2$ is defined as follows:

(Def. 23) G_1 is a subgraph of G_2 .

Let us note that the predicate $G_1 \subseteq G_2$ is reflexive.

Let G be a graph. The functor 2^G yields a set and is defined by:

(Def. 24) For every set x holds $x \in 2^G$ iff x is a strict subgraph of G.

The scheme *GraphSeparation* deals with a graph \mathcal{A} and a unary predicate \mathcal{P} , and states that: There exists a set X such that for every set x holds $x \in X$ iff x is a strict subgraph of \mathcal{A} and $\mathcal{P}[x]$

for all values of the parameters.

One can prove the following propositions:

- (1) Let G be a graph. Then
- (i) dom (the source of G) = the edges of G,
- (ii) dom (the target of G) = the edges of G,
- (iii) rng (the source of G) \subseteq the vertices of G, and
- (iv) rng (the target of G) \subseteq the vertices of G.
- (2) For every element x of the vertices of G holds $x \in$ the vertices of G.
- (3) Let v be a set. Suppose $v \in$ the edges of G. Then (the source of G) $(v) \in$ the vertices of G and (the target of G) $(v) \in$ the vertices of G.
- (4) For every chain p of G holds $p \upharpoonright \operatorname{Seg} n$ is a chain of G.
- (5) If $G_1 \subseteq G$, then the source of $G_1 \subseteq$ the source of G and the target of $G_1 \subseteq$ the target of G.
- (6) Suppose the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 . Then
- (i) the source of $G_1 \cup G_2 =$ (the source of G_1) \cup (the source of G_2), and
- (ii) the target of $G_1 \cup G_2 =$ (the target of G_1) \cup (the target of G_2).
- (7) For every strict graph G holds $G = G \cup G$.
- (8) If the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 , then $G_1 \cup G_2 = G_2 \cup G_1$.
- (9) Suppose that
- (i) the source of $G_1 \approx$ the source of G_2 ,
- (ii) the target of $G_1 \approx$ the target of G_2 ,
- (iii) the source of $G_1 \approx$ the source of G_3 ,
- (iv) the target of $G_1 \approx$ the target of G_3 ,
- (v) the source of $G_2 \approx$ the source of G_3 , and
- (vi) the target of $G_2 \approx$ the target of G_3 .

Then
$$(G_1 \cup G_2) \cup G_3 = G_1 \cup (G_2 \cup G_3)$$
.

- (10) If G is a sum of G_1 and G_2 , then G is a sum of G_2 and G_1 .
- (11) Every strict graph G is a sum of G and G.
- (12) If there exists G such that $G_1 \subseteq G$ and $G_2 \subseteq G$, then $G_1 \cup G_2 = G_2 \cup G_1$.
- (13) If there exists G such that $G_1 \subseteq G$ and $G_2 \subseteq G$ and $G_3 \subseteq G$, then $(G_1 \cup G_2) \cup G_3 = G_1 \cup (G_2 \cup G_3)$.

- (14) \emptyset is a cyclic oriented path of G.
- (15) Let H_1 , H_2 be strict subgraphs of G. Suppose the vertices of H_1 = the vertices of H_2 and the edges of H_1 = the edges of H_2 . Then $H_1 = H_2$.
- (16) For all strict graphs G_1 , G_2 such that $G_1 \subseteq G_2$ and $G_2 \subseteq G_1$ holds $G_1 = G_2$.
- (17) If $G_1 \subseteq G_2$ and $G_2 \subseteq G_3$, then $G_1 \subseteq G_3$.
- (18) If G is a sum of G_1 and G_2 , then $G_1 \subseteq G$ and $G_2 \subseteq G$.
- (19) If the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 , then $G_1 \subseteq G_1 \cup G_2$ and $G_2 \subseteq G_1 \cup G_2$.
- (20) If there exists G such that $G_1 \subseteq G$ and $G_2 \subseteq G$, then $G_1 \subseteq G_1 \cup G_2$ and $G_2 \subseteq G_1 \cup G_2$.
- (21) If $G_1 \subseteq G_3$ and $G_2 \subseteq G_3$ and G is a sum of G_1 and G_2 , then $G \subseteq G_3$.
- (22) If $G_1 \subseteq G$ and $G_2 \subseteq G$, then $G_1 \cup G_2 \subseteq G$.
- (23) For all strict graphs G_1 , G_2 such that $G_1 \subseteq G_2$ holds $G_1 \cup G_2 = G_2$ and $G_2 \cup G_1 = G_2$.
- (24) Suppose the source of $G_1 \approx$ the source of G_2 but the target of $G_1 \approx$ the target of G_2 but $G_1 \cup G_2 = G_2$ or $G_2 \cup G_1 = G_2$. Then $G_1 \subseteq G_2$.
- (27)³ For every oriented graph G such that $G_1 \subseteq G$ holds G_1 is oriented.
- (28) For every non-multi graph G such that $G_1 \subseteq G$ holds G_1 is non-multi.
- (29) For every simple graph G such that $G_1 \subseteq G$ holds G_1 is simple.
- (30) For every strict graph G_1 holds $G_1 \in 2^G$ iff $G_1 \subseteq G$.
- (31) For every strict graph G holds $G \in 2^G$.
- (32) For every strict graph G_1 holds $G_1 \subseteq G_2$ iff $2^{G_1} \subseteq 2^{G_2}$.
- $(34)^4$ For every strict graph G holds $\{G\} \subseteq 2^G$.
- (35) Let G_1 , G_2 be strict graphs. Suppose the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 and $2^{G_1 \cup G_2} \subseteq 2^{G_1} \cup 2^{G_2}$. Then $G_1 \subseteq G_2$ or $G_2 \subseteq G_1$.
- (36) If the source of $G_1 \approx$ the source of G_2 and the target of $G_1 \approx$ the target of G_2 , then $2^{G_1} \cup 2^{G_2} \subset 2^{G_1 \cup G_2}$.
- (37) If $G_1 \in 2^G$ and $G_2 \in 2^G$, then $G_1 \cup G_2 \in 2^G$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- $[6] \ \ Czesław \ Byliński. \ Partial functions. \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/partfunl.html}.$

³ The propositions (25) and (26) have been removed.

⁴ The proposition (33) has been removed.

[7] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.

- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [11] Robin Wilson. Wprowadzenie do teorii grafów. PWN, 1985.
- [12] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received December 5, 1990

Published January 2, 2004