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Summary. Definitions of graphs are introduced and their basic properties are proved.
The following notions related to graph theory are introduced: subgraph, finite graph, chain and
oriented chain - as a finite sequence of edges, path and oriented path - as a finite sequence of
different edges, cycle and oriented cycle, incidency of graph’s vertices, a sum of two graphs,
a degree of a vertice, a set of all subgraphs of a graph. Many ideas of this article have been
taken from[[11].

MML Identifier: GRAPH_1.

WWW: http://mizar.org/JFM/Vol2/graph_1.html

The articles[[9],17],[10],[[12],14],15], 3], 18], [6], [1], and.[2] provide the notation and terminol-
ogy for this paper.
We use the following conventiorx, y, v are sets and, mare natural numbers.
We consider multi graph structures as systems
( vertices, edges, a source, a target
where the vertices and the edges constitute sets and the source and the target are functions from the
edges into the vertices.
LetI; be a multi graph structure. We say thats graph-like if and only if:

(Def. 1) The vertices of; are a non empty set.

Let us note that there exists a multi graph structure which is strict and graph-like.

A graph is a graph-like multi graph structure.

In the sequeB, G, Gy, G3 denote graphs.

Let us consideG1, Gy. Let us assume that the source@f = the source of5, and the target
of G1 ~ the target 0fG,. The functorG; U G; yielding a strict graph is defined by the conditions
(Def. 2).

(Def. 2)(i) The vertices 0651 UG, = (the vertices of51) U (the vertices of3y),

(i) the edges of5; UG, = (the edges 061) U (the edges 06y),

(iiiy  for every vsuch thaw € the edges 06 holds (the source db; UG;y)(v) = (the source of
G1)(v) and (the target o1 U G,)(v) = (the target 0fG;)(v), and

(iv) for everyvsuch thaw € the edges 06, holds (the source db; U Gy)(v) = (the source of
Gy)(v) and (the target oB1 U Gy)(v) = (the target 0ofGy)(v).

Let G, G, G, be graphs. We say th& is a sum ofG; andG; if and only if the conditions
(Def. 3) are satisfied.

(Def. 3)()) The target 0f5; ~ the target ofG,,
(i) the source ofG; ~ the source 05, and
(iif)  the multi graph structure o6 = G; UG;.
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Letl; be a graph. We say thhtis oriented if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let givenx, y. Suppose that
(i) xethe edges ofy,
(i) yethe edges ofy,
(iii)  (the source ofi1)(x) = (the source of1)(y), and
(iv) (the target ofi1)(x) = (the target ol1)(y).
Thenx=y.

We say that; is non-multi if and only if the condition (Def. 5) is satisfied.

(Def.5) Let givenx, y. Suppose that
(i) xethe edges ofy,
(i) yetheedgesof;, and

(iii)  (the source ofl;)(x) = (the source of;)(y) and (the target df ) (x) = (the target of1)(y)
or (the source off;)(x) = (the target of1)(y) and (the source df)(y) = (the target of1)(x).

Thenx=y.

We say that; is simple if and only if:

(Def. 6) ltis not true that there existsuch thak € the edges of; and (the source df)(x) = (the
target ofly)(x).

We say that; is connected if and only if:

(Def. 7) Itis not true that there exist grapBs, G, such that the vertices @; misses the vertices
of Gy andlq is a sum ofG; andGo,.

Let I; be a multi graph structure. We say thats finite if and only if:
(Def. 8) The vertices oy are finite and the edges bfare finite.

One can verify that there exists a multi graph structure which is finite and there exists a graph
which is finite, non-multi, oriented, simple, and connected.

In the sequek, y denote elements of the vertices@f

Let us conside®, let us considex, y, and let us consider. We say that joins x with y if and
only if:

(Def. 9) (The source oB)(v) = x and (the target o6)(v) =y or (the source 06)(v) =y and (the
target ofG)(v) = x.

Let us consides and letx, y be elements of the vertices Gf We say thak andy are incident
if and only if:

(Def. 10) There exists a setsuch thav € the edges o6 andv joins x with y.
Let G be a graph. A finite sequence is called a chaidfit satisfies the conditions (Def. 11).

(Def. 11)(i) For evenyn such that < nandn < lenit holds i{n) € the edges o6, and

(i) there exists a finite sequengesuch that lep = lenit+ 1 and for everyn such that 1< n
andn < lenp holds p(n) € the vertices ofG and for everyn such that 1< n andn < lenit
there exist elements, y of the vertices ofs such tha’ = p(n) andy = p(n+ 1) and itn)
joinsx with y'.

Let G be a graph. We see that the chairis a finite sequence of elements of the edgeS.of
Let G be a graph and ld{ be a chain of5. We say that; is oriented if and only if:

(Def. 12) For evenn such that 1< n andn < lenl; holds (the source dB)(l1(n+ 1)) = (the target
of G)(l1(n)).
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Let G be a graph. Note that there exists a chaiGathich is oriented.
Let G be a graph and ld{ be a chain of>. Let us observe thdj is one-to-one if and only if:

(Def. 13) For alln, msuch that < nandn < mandm < lenl; holdsly(n) # I1(m).

Let G be a graph. One can check that there exists a cha@wdtfich is one-to-one.

Let G be a graph. A path d& is an one-to-one chain @.

Let G be a graph. Note that there exists a chaiGafhich is one-to-one and oriented.

Let G be a graph. An oriented path @fis an one-to-one oriented chain @f

Let G be a graph and ldt be a path of. We say that; is cyclic if and only if the condition
(Def. 15) is satisfied.

(Def. 15E| There exists a finite sequenpesuch that
(i) lenp=lenly+1,
(i) for everynsuch that I< nandn < lenp holdsp(n) € the vertices of5,

(iii)  for every n such that 1< n andn < lenl; there exist elements, y of the vertices ofG
such that’ = p(n) andy = p(n+ 1) andl1(n) joinsx with y, and

(iv)  p(1) = p(lenp).
Let G be a graph. One can verify that there exists a pat@ which is cyclic.
Let G be a graph. A cycle o6 is a cyclic path ofG.
Let G be a graph. Observe that there exists an oriented padhwdfich is cyclic.
Let G be a graph. An oriented cycle Gfis a cyclic oriented path d&.
Let G be a graph. A graph is called a subgrapttdf it satisfies the conditions (Def. 17).
(Def. 17Eki) The vertices of itC the vertices of5,
(i) the edges of itC the edges o6, and

(iii)  for every v such thatv € the edges of it holds (the source of(it) = (the source o6)(v)
and (the target of ify) = (the target ofG)(v) and (the source d&)(v) € the vertices of it and
(the target ofG) (v) € the vertices of it.

Let G be a graph. Observe that there exists a subgra@waliich is strict.
Let G be a finite graph. The number of vertices@fyielding a natural number is defined as
follows:

(Def. 18) There exists a finite s8tsuch thatB = the vertices ofG and the number of vertices of
G = cardB.

The number of edges @ yielding a natural number is defined by:

(Def. 19) There exists a finite sBtsuch thatB = the edges o6 and the number of edges 6f=
cardB.

Let G be a finite graph and let be an element of the vertices & The functor Edgl(x)
yielding a natural number is defined by the condition (Def. 20).

(Def. 20) There exists a finite s¥tsuch that for every setholdsz € X iff z € the edges o6 and
(the target ofG) (z) = x and Edglrix) = cardX.

The functor EdgOyk) yielding a natural number is defined by the condition (Def. 21).

(Def. 21) There exists a finite s¥tsuch that for every setholdsz € X iff z € the edges o6 and
(the source 065)(z) = x and EdgOuix) = cardX.

Let G be a finite graph and let be an element of the vertices Gf The degree ok yields a
natural number and is defined as follows:

1 The definition (Def. 14) has been removed.
2 The definition (Def. 16) has been removed.
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(Def. 22) The degree of= Edgln(x) + EdgOutXx).
Let G1, G2 be graphs. The predica@® C G; is defined as follows:
(Def. 23) G is a subgraph of5;.

Let us note that the predica® C G; is reflexive.
Let G be a graph. The functof®ields a set and is defined by:

(Def. 24) For every set holdsx € 2€ iff x is a strict subgraph d®.

The schemé&raphSeparatiomeals with a grapti and a unary predicatg, and states that:
There exists a se such that for every setholdsx € X iff x is a strict subgraph of
4 and?P[x]
for all values of the parameters.
One can prove the following propositions:
(1) LetGbe agraph. Then
(i) dom(the source 0B) = the edges o6,
(i) dom(the target of5) = the edges 06,
(iii)  rng(the source of5) C the vertices oG, and
(iv) rng(the target of5) C the vertices ofs.

(2) For every elementof the vertices ofs holdsx € the vertices ofa.

(3) Letvbe aset. Supposec the edges o6. Then (the source dB)(v) € the vertices ofc
and (the target oB)(v) € the vertices of.

(4) For every chairp of G holdsp| Segn is a chain ofG.
(5) If G1 C G, then the source dB; C the source o and the target o6; C the target ofG.

(6) Suppose the source Gf ~ the source 065, and the target oB; =~ the target ofG,. Then
(i) the source of5; UGy = (the source of31) U (the source 0f5;), and
(i) the target ofG; U Gy = (the target 0fG;) U (the target ofGy).

(7) For every strict grap® holdsG = GUG.

(8) If the source of5; = the source of5; and the target o651 = the target ofG,, thenGy U
Gy =GoUG;.
(9) Suppose that
(i) the source of5; ~ the source 06y,
(i) the target ofG; ~ the target oGy,
(iii)  the source 0fG; ~ the source 03,
(iv) the target ofG; ~ the target ofGg,
(v) the source of5; = the source o33, and
(vi) the target ofG; ~ the target ofGs.
Then(GL1UG,) UG3 = G1U (G2 UGg).

(10) If Gis asum ofG; andG,, thenG is a sum ofG; andG;.
(11) Every strict grapl® is a sum ofG andG.
(12) If there exist$s such thaG; C G andG; C G, thenG, UGy = G UGy,

(13) If there exist$5 such thaiG; C G andG; C G andG3 C G, then(G1UGy) UG3 = G U
(GzUGg).



GRAPHS 5

(14) 0is acyclic oriented path d&.

(15) LetHs, Hy be strict subgraphs @b. Suppose the vertices &f; = the vertices oH; and
the edges oH; = the edges oH,. ThenH; = H,.

(16) For all strict graph&;, G, such thalG; C Gy andGy C G1 holdsG; = Gy.
(17) IfG1 C Gy andG; C Gz, thenGy C G3.
(18) If Gis asum ofG; andGy, thenG; C GandG; C G.

(19) If the source of5; = the source o5, and the target o061 = the target ofG,, thenG; C
G1UG; andG; C G1UGs.

(20) If there exist$s such thaG; C G andG; C G, thenG; C G1 UG, andGy; € GLUGy.
(21) If G1 C Gz andG; C Gz andGis a sum 0fG; andGy, thenG C Gg.

(22) If G1 C GandG; C G, thenG1UG; C G.

(23) For all strict graph&;, Gz such thaG; C G, holdsG1 UGy = Gz andG, UGy = Go.

(24) Suppose the source Gf ~ the source of5, but the target of5; ~ the target ofG, but
G1UGy =Gy or GoUG) = Gy. ThenG; C Go.

(27 For every oriented grapB such thats; C G holdsG; is oriented.
(28) For every non-multi grap@ such thaiG; C G holdsG; is hon-multi.
(29) For every simple grap such thats; C G holdsG; is simple.

(30) For every strict grap; holdsG; € 2° iff G; C G.

(31) For every strict grapB holdsG € 2.

(32) For every strict grapB; holdsG; C G, iff 261 C 2C2.

(34@ For every strict grapi® holds{G} C 2°.

(35) LetGq, Gy be strict graphs. Suppose the sourc&pt= the source of5; and the target of
G ~ the target ofG; and £1Y¢2 C 261U 2%2. ThenG; C G; or G, C Gy.

(36) If the source of3; ~ the source o5, and the target 06, ~ the target ofG,, then 21U
262 g 2G1UG2'

(37) 1f Gy € 2% andG; € 2°, thenG; UG, € 2C.
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