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Summary. Definitions of graphs are introduced and their basic properties are proved.
The following notions related to graph theory are introduced: subgraph, finite graph, chain and
oriented chain - as a finite sequence of edges, path and oriented path - as a finite sequence of
different edges, cycle and oriented cycle, incidency of graph’s vertices, a sum of two graphs,
a degree of a vertice, a set of all subgraphs of a graph. Many ideas of this article have been
taken from [11].

MML Identifier: GRAPH_1.

WWW: http://mizar.org/JFM/Vol2/graph_1.html

The articles [9], [7], [10], [12], [4], [5], [3], [8], [6], [1], and [2] provide the notation and terminol-
ogy for this paper.

We use the following convention:x, y, v are sets andn, mare natural numbers.
We consider multi graph structures as systems
〈 vertices, edges, a source, a target〉,

where the vertices and the edges constitute sets and the source and the target are functions from the
edges into the vertices.

Let I1 be a multi graph structure. We say thatI1 is graph-like if and only if:

(Def. 1) The vertices ofI1 are a non empty set.

Let us note that there exists a multi graph structure which is strict and graph-like.
A graph is a graph-like multi graph structure.
In the sequelG, G1, G2, G3 denote graphs.
Let us considerG1, G2. Let us assume that the source ofG1 ≈ the source ofG2 and the target

of G1 ≈ the target ofG2. The functorG1∪G2 yielding a strict graph is defined by the conditions
(Def. 2).

(Def. 2)(i) The vertices ofG1∪G2 = (the vertices ofG1)∪ (the vertices ofG2),

(ii) the edges ofG1∪G2 = (the edges ofG1)∪ (the edges ofG2),

(iii) for every v such thatv∈ the edges ofG1 holds (the source ofG1∪G2)(v) = (the source of
G1)(v) and (the target ofG1∪G2)(v) = (the target ofG1)(v), and

(iv) for everyv such thatv∈ the edges ofG2 holds (the source ofG1∪G2)(v) = (the source of
G2)(v) and (the target ofG1∪G2)(v) = (the target ofG2)(v).

Let G, G1, G2 be graphs. We say thatG is a sum ofG1 andG2 if and only if the conditions
(Def. 3) are satisfied.

(Def. 3)(i) The target ofG1 ≈ the target ofG2,

(ii) the source ofG1 ≈ the source ofG2, and

(iii) the multi graph structure ofG = G1∪G2.
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Let I1 be a graph. We say thatI1 is oriented if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let givenx, y. Suppose that

(i) x∈ the edges ofI1,

(ii) y∈ the edges ofI1,

(iii) (the source ofI1)(x) = (the source ofI1)(y), and

(iv) (the target ofI1)(x) = (the target ofI1)(y).

Thenx = y.

We say thatI1 is non-multi if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let givenx, y. Suppose that

(i) x∈ the edges ofI1,

(ii) y∈ the edges ofI1, and

(iii) (the source ofI1)(x) = (the source ofI1)(y) and (the target ofI1)(x) = (the target ofI1)(y)
or (the source ofI1)(x) = (the target ofI1)(y) and (the source ofI1)(y) = (the target ofI1)(x).

Thenx = y.

We say thatI1 is simple if and only if:

(Def. 6) It is not true that there existsx such thatx∈ the edges ofI1 and (the source ofI1)(x) = (the
target ofI1)(x).

We say thatI1 is connected if and only if:

(Def. 7) It is not true that there exist graphsG1, G2 such that the vertices ofG1 misses the vertices
of G2 andI1 is a sum ofG1 andG2.

Let I1 be a multi graph structure. We say thatI1 is finite if and only if:

(Def. 8) The vertices ofI1 are finite and the edges ofI1 are finite.

One can verify that there exists a multi graph structure which is finite and there exists a graph
which is finite, non-multi, oriented, simple, and connected.

In the sequelx, y denote elements of the vertices ofG.
Let us considerG, let us considerx, y, and let us considerv. We say thatv joins x with y if and

only if:

(Def. 9) (The source ofG)(v) = x and (the target ofG)(v) = y or (the source ofG)(v) = y and (the
target ofG)(v) = x.

Let us considerG and letx, y be elements of the vertices ofG. We say thatx andy are incident
if and only if:

(Def. 10) There exists a setv such thatv∈ the edges ofG andv joinsx with y.

Let G be a graph. A finite sequence is called a chain ofG if it satisfies the conditions (Def. 11).

(Def. 11)(i) For everyn such that 1≤ n andn≤ len it holds it(n) ∈ the edges ofG, and

(ii) there exists a finite sequencep such that lenp = len it+1 and for everyn such that 1≤ n
andn≤ lenp holds p(n) ∈ the vertices ofG and for everyn such that 1≤ n andn≤ len it
there exist elementsx′, y′ of the vertices ofG such thatx′ = p(n) andy′ = p(n+1) and it(n)
joinsx′ with y′.

Let G be a graph. We see that the chain ofG is a finite sequence of elements of the edges ofG.
Let G be a graph and letI1 be a chain ofG. We say thatI1 is oriented if and only if:

(Def. 12) For everyn such that 1≤ n andn < lenI1 holds (the source ofG)(I1(n+1)) = (the target
of G)(I1(n)).
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Let G be a graph. Note that there exists a chain ofG which is oriented.
Let G be a graph and letI1 be a chain ofG. Let us observe thatI1 is one-to-one if and only if:

(Def. 13) For alln, msuch that 1≤ n andn < m andm≤ lenI1 holdsI1(n) 6= I1(m).

Let G be a graph. One can check that there exists a chain ofG which is one-to-one.
Let G be a graph. A path ofG is an one-to-one chain ofG.
Let G be a graph. Note that there exists a chain ofG which is one-to-one and oriented.
Let G be a graph. An oriented path ofG is an one-to-one oriented chain ofG.
Let G be a graph and letI1 be a path ofG. We say thatI1 is cyclic if and only if the condition

(Def. 15) is satisfied.

(Def. 15)1 There exists a finite sequencep such that

(i) lenp = lenI1 +1,

(ii) for everyn such that 1≤ n andn≤ lenp holdsp(n) ∈ the vertices ofG,

(iii) for every n such that 1≤ n andn≤ lenI1 there exist elementsx′, y′ of the vertices ofG
such thatx′ = p(n) andy′ = p(n+1) andI1(n) joinsx′ with y′, and

(iv) p(1) = p(lenp).

Let G be a graph. One can verify that there exists a path ofG which is cyclic.
Let G be a graph. A cycle ofG is a cyclic path ofG.
Let G be a graph. Observe that there exists an oriented path ofG which is cyclic.
Let G be a graph. An oriented cycle ofG is a cyclic oriented path ofG.
Let G be a graph. A graph is called a subgraph ofG if it satisfies the conditions (Def. 17).

(Def. 17)2(i) The vertices of it⊆ the vertices ofG,

(ii) the edges of it⊆ the edges ofG, and

(iii) for every v such thatv∈ the edges of it holds (the source of it)(v) = (the source ofG)(v)
and (the target of it)(v) = (the target ofG)(v) and (the source ofG)(v) ∈ the vertices of it and
(the target ofG)(v) ∈ the vertices of it.

Let G be a graph. Observe that there exists a subgraph ofG which is strict.
Let G be a finite graph. The number of vertices ofG yielding a natural number is defined as

follows:

(Def. 18) There exists a finite setB such thatB = the vertices ofG and the number of vertices of
G = cardB.

The number of edges ofG yielding a natural number is defined by:

(Def. 19) There exists a finite setB such thatB = the edges ofG and the number of edges ofG =
cardB.

Let G be a finite graph and letx be an element of the vertices ofG. The functor EdgIn(x)
yielding a natural number is defined by the condition (Def. 20).

(Def. 20) There exists a finite setX such that for every setz holdsz∈ X iff z∈ the edges ofG and
(the target ofG)(z) = x and EdgIn(x) = cardX.

The functor EdgOut(x) yielding a natural number is defined by the condition (Def. 21).

(Def. 21) There exists a finite setX such that for every setz holdsz∈ X iff z∈ the edges ofG and
(the source ofG)(z) = x and EdgOut(x) = cardX.

Let G be a finite graph and letx be an element of the vertices ofG. The degree ofx yields a
natural number and is defined as follows:

1 The definition (Def. 14) has been removed.
2 The definition (Def. 16) has been removed.
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(Def. 22) The degree ofx = EdgIn(x)+EdgOut(x).

Let G1, G2 be graphs. The predicateG1 ⊆G2 is defined as follows:

(Def. 23) G1 is a subgraph ofG2.

Let us note that the predicateG1 ⊆G2 is reflexive.
Let G be a graph. The functor 2G yields a set and is defined by:

(Def. 24) For every setx holdsx∈ 2G iff x is a strict subgraph ofG.

The schemeGraphSeparationdeals with a graphA and a unary predicateP , and states that:
There exists a setX such that for every setx holdsx∈ X iff x is a strict subgraph of
A andP [x]

for all values of the parameters.
One can prove the following propositions:

(1) LetG be a graph. Then

(i) dom(the source ofG) = the edges ofG,

(ii) dom(the target ofG) = the edges ofG,

(iii) rng(the source ofG)⊆ the vertices ofG, and

(iv) rng(the target ofG)⊆ the vertices ofG.

(2) For every elementx of the vertices ofG holdsx∈ the vertices ofG.

(3) Let v be a set. Supposev∈ the edges ofG. Then (the source ofG)(v) ∈ the vertices ofG
and (the target ofG)(v) ∈ the vertices ofG.

(4) For every chainp of G holdsp�Segn is a chain ofG.

(5) If G1 ⊆G, then the source ofG1 ⊆ the source ofG and the target ofG1 ⊆ the target ofG.

(6) Suppose the source ofG1 ≈ the source ofG2 and the target ofG1 ≈ the target ofG2. Then

(i) the source ofG1∪G2 = (the source ofG1)∪ (the source ofG2), and

(ii) the target ofG1∪G2 = (the target ofG1)∪ (the target ofG2).

(7) For every strict graphG holdsG = G∪G.

(8) If the source ofG1 ≈ the source ofG2 and the target ofG1 ≈ the target ofG2, thenG1∪
G2 = G2∪G1.

(9) Suppose that

(i) the source ofG1 ≈ the source ofG2,

(ii) the target ofG1 ≈ the target ofG2,

(iii) the source ofG1 ≈ the source ofG3,

(iv) the target ofG1 ≈ the target ofG3,

(v) the source ofG2 ≈ the source ofG3, and

(vi) the target ofG2 ≈ the target ofG3.

Then(G1∪G2)∪G3 = G1∪ (G2∪G3).

(10) If G is a sum ofG1 andG2, thenG is a sum ofG2 andG1.

(11) Every strict graphG is a sum ofG andG.

(12) If there existsG such thatG1 ⊆G andG2 ⊆G, thenG1∪G2 = G2∪G1.

(13) If there existsG such thatG1 ⊆ G andG2 ⊆ G andG3 ⊆ G, then(G1∪G2)∪G3 = G1∪
(G2∪G3).
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(14) /0 is a cyclic oriented path ofG.

(15) LetH1, H2 be strict subgraphs ofG. Suppose the vertices ofH1 = the vertices ofH2 and
the edges ofH1 = the edges ofH2. ThenH1 = H2.

(16) For all strict graphsG1, G2 such thatG1 ⊆G2 andG2 ⊆G1 holdsG1 = G2.

(17) If G1 ⊆G2 andG2 ⊆G3, thenG1 ⊆G3.

(18) If G is a sum ofG1 andG2, thenG1 ⊆G andG2 ⊆G.

(19) If the source ofG1 ≈ the source ofG2 and the target ofG1 ≈ the target ofG2, thenG1 ⊆
G1∪G2 andG2 ⊆G1∪G2.

(20) If there existsG such thatG1 ⊆G andG2 ⊆G, thenG1 ⊆G1∪G2 andG2 ⊆G1∪G2.

(21) If G1 ⊆G3 andG2 ⊆G3 andG is a sum ofG1 andG2, thenG⊆G3.

(22) If G1 ⊆G andG2 ⊆G, thenG1∪G2 ⊆G.

(23) For all strict graphsG1, G2 such thatG1 ⊆G2 holdsG1∪G2 = G2 andG2∪G1 = G2.

(24) Suppose the source ofG1 ≈ the source ofG2 but the target ofG1 ≈ the target ofG2 but
G1∪G2 = G2 or G2∪G1 = G2. ThenG1 ⊆G2.

(27)3 For every oriented graphG such thatG1 ⊆G holdsG1 is oriented.

(28) For every non-multi graphG such thatG1 ⊆G holdsG1 is non-multi.

(29) For every simple graphG such thatG1 ⊆G holdsG1 is simple.

(30) For every strict graphG1 holdsG1 ∈ 2G iff G1 ⊆G.

(31) For every strict graphG holdsG∈ 2G.

(32) For every strict graphG1 holdsG1 ⊆G2 iff 2G1 ⊆ 2G2.

(34)4 For every strict graphG holds{G} ⊆ 2G.

(35) LetG1, G2 be strict graphs. Suppose the source ofG1 ≈ the source ofG2 and the target of
G1 ≈ the target ofG2 and 2G1∪G2 ⊆ 2G1 ∪2G2. ThenG1 ⊆G2 or G2 ⊆G1.

(36) If the source ofG1 ≈ the source ofG2 and the target ofG1 ≈ the target ofG2, then 2G1 ∪
2G2 ⊆ 2G1∪G2.

(37) If G1 ∈ 2G andG2 ∈ 2G, thenG1∪G2 ∈ 2G.
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