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Summary. Some properties of finite groups are proved. The notion of cyclic group
is defined next, some cyclic groups are given, for example the group of integers with addition
operations. Chosen properties of cyclic groups are proved next.
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The articles[[16],19],[124],141,[13],[12171,[125],[17],[[11],[18],[115],[[1],[[10],[[6],[118], [13],[12], 1101,
[23], [12], [21], [22], [14], [20], and[[5] provide the notation and terminology for this paper.

For simplicity, we use the following conventioiy; is an element of, ji, j» are integersp, s,
0, k, n, mare natural numbers; is a group,a, b are elements o6, andl is a finite sequence of
elements of.

Next we state several propositions:

@)
)
®3)
(4)
®)
(6)

mmodn = (n- k- m) modn.

(p+s) modn = ((pmodn) +s) modn.
(p+s)modn = (p+ (smodn)) modn.
If k < n, thenkmodn = k.

nmodn = 0.

0= 0modn.

Letn be a natural number. Let us assume that0. The functorZ, yielding a non empty subset
of N is defined by:

(Def.1) Zn={p:p<n}.

Next we state three propositions:

(1OE] For all natural numbens, s such than > 0 holdss e Z, iff s< n.

(12E] For every natural numbersuch than > 0 holds Oc Z,.

(13) Z,={0}.

The binary operatior-z onZ is defined as follows:

1 The propositions (7)—-(9) have been removed.
2 The proposition (11) has been removed.
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(Def. 2) For all elements, i» of Z holds(+7)(i1, i2) = +r(i1, i2)-
The following propositions are true:
(14) Foralljs, j2 holds(+z)(j1, j2) = ja+ j2.
(15) For evenyi; such thai; = 0 holdsiq is a unity w.r.t.+.
(16) 1., =0.
(17) +z has a unity.
(18) +z is commutative.

(19) +z is associative.

Let F be a finite sequence of elementsZfThe functory F yielding an integer is defined by:
(Def.3) SF=+z®F.
Next we state a number of propositions:
(20) 3(1~ (i) = 31+ @iy
(1) 3(in) =iz
(22) 3(ez)=0.
(24f| For every finite sequendeof elements of holds[]((lenl — a)') = aZ'.
(25) b e gr({a}) iff there existsj; such thab = al1.
(26) If Gis finite, thenais not of order 0.
(27) If Gis finite, then orda) = ord(gr({a})).
(28) If Gis finite, then orda) | ord(G).
(29) If Gis finite, thena®©®) = 15,
(30) If Gis finite, then(a") 1 = g°"d(C)—(nmod ordG))

(31) For every strict grougs such that or@G) > 1 there exists an elementof G such that
a#lg.

(32) LetG be a strict group. Suppoggis finite and ordG) = p and p is prime. LetH be a
strict subgroup of5. ThenH = {1}g orH =G.

(33) (Z,+3z) is associative and group-like.
The strict grout is defined by:
(Def. 4) Zt =(Z,+3z).

Let us considen. Let us assume that> 0. The functor+,, yields a binary operation df, and
is defined as follows:

(Def. 5) For all elementk, | of Z, holds+n(k, I) = (k-+1) modn.

One can prove the following proposition

(34) For everyn such than > 0 holds(Zn, +n) is associative and group-like.

3 The proposition (23) has been removed.
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Let us considen. Let us assume that> 0. The functorZ; yields a strict group and is defined
as follows:

(Def. 6) Zj = (Zn,+n)-
Next we state two propositions:
(35) 1+ =0.
(36) For everyn such than > 0 holds 1+ = 0.
Leth be an element d&*. The functor®h yielding an integer is defined as follows:
(Def. 7) @h=h.
Leth be an integer. The functé?h yielding an element o * is defined as follows:
(Def. 8) @h=h.
One can prove the following proposition
(37) For every elemeritof Z* holdsh™! = —@h,

In the sequeh denotes an element &@f".
Next we state two propositions:

(38) For evenh such thah = 1 and for evenk holdsh = k.
(39) Forallh, j; such thah = 1 holdsj; = hit.
Letl; be a group. We say thét is cyclic if and only if:
(Def. 9) There exists an elemeadf |1 such that the groupoid ¢f = gr({a}).

One can check that there exists a group which is strict and cyclic.
We now state several propositions:

(40) {1}giscyclic.

(41) Gisacyclic group if and only if there exists an elemartf G such that for every element
b of G there exist§; such thab = alt.

(42) Supposé&s is finite. ThenG is a cyclic group if and only if there exists an elemardf G
such that for every elemebtof G there exists1 such thab = a".

(43) LetG be a strict group. Supposegis finite. ThenG is a cyclic group if and only if there
exists an elemerst of G such that or¢h) = ord(G).

(44) For every strict subgroup of G such thatG is finite and a cyclic group holdd is a cyclic
group.

(45) For every strict grou such thaG is finite and ordG) = p andp is prime holdsG is a
cyclic group.

(46) For everyn such than > 0 there exists an elemegtof Z; such that for every elemebt
of Z there existg; such thab = g't.

One can verify that every group which is cyclic is also commutative.
The following propositions are true:

(48@ Z* is cyclic.
(49) For everyn such than > 0 holdsZ,! is a cyclic group.
(50) Z* is a commutative group.

(51) For everyn such thanh > 0 holdsZ;; is a commutative group.

4 The proposition (47) has been removed.
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