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We adopt the following convention; i1, i2, j, j1, j2, K, n denote natural number®, denotes a
non empty set, anfl denotes a finite sequence of element®of

Let E be a non empty set, I&be a non empty set of finite sequences of the carri@?oﬁet F
be a function fronE into S, and letebe an element dE. ThenF(e) is a finite sequence of elements
of £2.

Let F be a function. The functor Valu€syields a set and is defined by:
(Def. 1) Values =J(rng, F(K)).

One can prove the following proposition

(1) For every finite sequendd of elements oD* holdsM(i) is a finite sequence of elements
of D.

Let D be a set. Observe that every finite sequence of elemetsisffinite sequence yielding.
One can check that every function which is finite sequence yielding is also function yielding.
One can prove the following proposition

(3E] For every finite sequendd of elements oD* holds Value = (J{rngf; f ranges over
elements oD*: f € rngM}.

Let D be a non empty set and Ikt be a finite sequence of elementsiif. One can check that
ValueM is finite.

One can prove the following propositions:

(4) For every matriM overD such thai € domM andM (i) = f holds lenf = widthM.

(5) For every matrixM over D such thati € domM andM(i) = f and j € domf holds (i,
j) € the indices oM.

(6) For every matriM overD such that{i, j) € the indices oM andM(i) = f holds lenf =
widthM andj € domf.

(7) For every matriM overD holds Value$! = {Mo (i, j): (i, j) € the indices oM}.

(8) For every non empty s& and for every matrixM over D holds card Valuell < lenM -
widthM.

1 The proposition (2) has been removed.
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In the sequef is a finite sequence of elements®# andG is a Go-board.
The following propositions are true:

(9) For every matrixG over £2 such thatf is a sequence which elements belongstbolds
rngf C ValuesG.

(10) For all Go-board§&;, Gy such that Value&, C ValuesG, and(iy, j1) € the indices ofG;
and 1< jp andj; < widthGy andG; o (il, Jl) =Gyo (17 ]2) holdsi; = 1.

(11) For all Go-board§;, G, such that Value§; C ValuesG, and({is, j1) € the indices 0fG;
and 1< j, andj; < widthG; andGj o (i1, j1) = G20 (lenGy, j2) holdsiy = lenG;.

(12) For all Go-board&;, Gy such that Value&; C ValuesG; and(iy, j1) € the indices oGy
and 1< iy andiz <lenGz andGj o (i, j1) = Gpo (i2,1) holdsj; = 1.

(13) For all Go-board§&;, G, such that Value§; C ValuesG; and({is, j1) € the indices 0fG;
and 1< iy andiz <lenGz andGj o (i1, j1) = Gy o (i2,widthGy) holds j1 = widthG;.

(14) LetG;, G, be Go-boards. Suppose ValigsC ValuesG, and 1< i; andi; < lenG;
and 1< j; andj1 < widthG; and 1< i, andiy < lenGy and 1< j, and j» < widthG; and
Gio (i1, j1) = Goo(i2, j2). Then(Gzo (i2+1,j2))1 < (Gro(i1+1,j1))1.

(15) LetGy, Gy be Go-boards. Suppo& o (i1 —'1, j1) € ValuesG; and 1< i andiy < lenG;
and 1< j; andj; < widthG; and 1< i andiz < lenGp and 1< j, and j» < widthG; and
Gyo(i1, j1) = Gzo iz, j2). Then(Gyro (i1 —"1,j1))1 < (Gzo(i2—'1,j2))1.

(16) LetGs, G, be Go-boards. Suppo§i o (i1, j1 + 1) € ValuesG; and 1< i; andi; < lenG;
and 1< j; and j1 < widthG; and 1< i, andi; < lenG; and 1< j, and j» < widthG, and
Gio (i1, j1) = Gzo(i2, j2). Then(Gzo (iz, j2+1))2 < (Gro (i1, j1+1))2.

(17) LetGy, G, be Go-boards. Suppose ValigsC ValuesG, and 1< i; andi; < lenG;
and 1< j; andj; < widthG; and 1< i, andi; < lenGy and 1< j, and j» < widthG, and
Gio(i1, j1) = Gzo(i2, J2). Then(Gyro (i1, j1—'1))2 < (Gzo(i2, j2—"1))2.

(18) LetGs, G, be Go-boards. Suppose Val@sC ValuesG, and (i1, j1) € the indices of
G and(iz, j2) € the indices ofG,; and Gy o (i1, j1) = Gz o (iz, j2). Then cel[Gy, iz, j2) C
CE”(GLil, j]_)

(19) LetGy, G, be Go-boards. Suppose Val@sC ValuesG; and(iy, j1) € the indices ofGy

and (i, j2) € the indices ofG, andG; o (i1, j1) = Gz o (i2, j2). Then cel(Gy,iz —'1,j2) C
CelI(G17 il ~! 1a Jl)

(20) LetGy, Gz be Go-boards. Suppose Val@&sC ValuesG, and(i1, j1) € the indices 0f5;
and (iz, jz) ¢ the indices ofG, andG; o (il, Jl) =Gyo (iz, jz) Then CE|(G2,i2, j2 —! l) -
ceII(Gl, il, j1 —! 1).

(21) Letf be a standard special circular sequence. Suppdsea sequence which elements
belong toG. Then Valuesthe Go-board éfC ValuesG.

Let us considerf, G, k. Let us assume thatd k andk+ 1 < lenf and f is a sequence which
elements belong t&. The functor righicell(f,k,G) yields a subset oE% and is defined by the
condition (Def. 2).

(Def. 2) Letiy, ji, i2, j2 be natural numbers. Suppofeg, j1) € the indices ofG and({iy, j2) € the
indices ofG and fy = Go (i1, j1) andfiy 1 = Go (2, j2). Then
(i) ip=iz2andj;+1=j,and rightcell(f,k,G) = cell(G,iy, j1), or
(i) i1+1=ipandj; = j, andrightcell(f,k,G) =cell(G,iy, j1 —'1), or
(i) i1=Ii2+1andj; = jo andrightcell(f,k, G) = cell(G, iz, j2), or
(iv) ip=izandj; = jp+ 1 and rightcell(f,k,G) = cell(G,i1 —'1, j2).
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The functor leftcell( f,k,G) yielding a subset of2 is defined by the condition (Def. 3).

(Def. 3) Letiy, j1, i2, j2 be natural numbers. Suppofe, j1) € the indices ofG and({iy, j») € the
indices ofG and fy = Go (i1, j1) andfx 1 = Go(i2, j2). Then

(i) ip=ixandji1+1= j,and leftcell(f,k,G) =cell(G,i;1 —'1, j1), or
(i) i1+1l=iyandj; = jo and leftcell(f,k,G) = cell(G,iy, j1), or
(i) ip=i2+1andj; = joand leftcell(f,k,G) = cell(G,iz, jo—'1), or
(iv) i1=i2andji = j2+ 1 and leftcell(f,k,G) = cell(G,i1, j2).

One can prove the following propositions:

(22) Suppose that £ k andk+ 1 <lenf and f is a sequence which elements belong3o
and({i, j) € the indices ofG and (i, j + 1) < the indices ofG and fx = Go (i, j) and fx1 =
Go(i,j+1). Then leftcell(f,k,G) = cell(G,i —'1,j).

(23) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and({i, j) € the indices ofG and{i, j + 1) € the indices ofG and fx = Go (i, j) and fx;1 =
Go(i, j+1). Thenrightcell(f,k, G) = cell(G,i, j).

(24) Suppose that £ k andk+ 1 < lenf and f is a sequence which elements belong3o
and({i, j) € the indices ofG and(i + 1, j) € the indices ofG and fy = Go (i, j) and fi1 =
Go(i+1,j). Then leftcell(f,k, G) = cell(G,i, j).

(25) Suppose that £ k andk+ 1 <lenf and f is a sequence which elements belong3o
and({i, j) € the indices ofG and (i + 1, j) < the indices ofG and fy = Go (i, j) and fiy11 =
Go(i+1,j). Then rightcell(f.k,G) = cell(G,i, j —'1).

(26) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and (i, j) € the indices ofG and (i + 1, j) € the indices ofG and fx = Go (i+1,j) and
fur1 = Go (i, ). Then leftcell(f,k,G) = cell(G,i,j —'1).

(27) Suppose that £ k andk+ 1 < lenf and f is a sequence which elements belong3o
and (i, j) € the indices ofG and (i + 1, j) € the indices ofG and fx = Go (i+1,]) and
fur1 = Go (i, j). Thenrightcell(f,k,G) = cell(G,i, j).

(28) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and (i, j + 1) € the indices ofG and (i, j) € the indices ofG and fx = Go (i,j+ 1) and
fur1 = Go (i, j). Then leftcell(f,k,G) = cell(G,i, j).

(29) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and (i, j + 1) € the indices ofG and i, j) € the indices ofG and fx = Go (i,j+ 1) and
fir1 = Go (i, ). Then rightcell(f,k,G) = cell(G,i —'1, j).

(30) If 1<kandk+1<lenf and f is a sequence which elements belongGp then
left_cell(f,k,G) Nright_cell(f,k,G) = L(f,k).

(31) If1<kandk+1<lenf and f is a sequence which elements belongGp then
rightcell(f,k,G) is closed.

(32) Suppose ¥ kandk+1<lenf andf is a sequence which elements belonGtandk+ 1 <
n. Then leftcell(f,k,G) = left_cell( f [n,k,G) and rightcell(f,k,G) = right_cell(f [n,k,G).

(33) Suppose X k andk+1 < len(f) andn <lenf and f is a sequence which elements
belong toG. Then leftcell(f,k+ n,G) = left_cell(f|n,k,G) and rightcell(f.k+n,G) =
right_cell(fjn, k,G).

(34) LetG be a Go-board andl be a standard special circular sequence. Suppas@ and
n+1<lenf and f is a sequence which elements belongxo Then leftcell(f,n,G) C
leftcell( f,n) and rightcell(f,n,G) C rightcell( f,n).
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Let us considerf, G, k. Let us assume thatd k andk+ 1 < lenf and f is a sequence which
elements belong t&. The functor frontright cell( f,k,G) yields a subset orE% and is defined by
the condition (Def. 4).

(Def. 4) Letiy, ji, i2, j2 be natural numbers. Suppofeg, j1) € the indices ofG and({iy, j2) € the
indices ofG and fy = Go (i1, j1) andfiy1 = Go (2, j2). Then
(i) ip=izxandj;+ 1= j,and frontright_cell(f,k, G) = cell(G,i>, j2), 0
(i) i1+1=izxandji = j and frontright_cell(f,k,G) = cell(G,iz, jo— 1)
(i) ip=i2+1andj; = j, and frontright_cell( f ,k,G) = cell(G,i>—'1, j2), 0
(iv) ip=izandj; = jo+ 1 and frontright_cell(f k. G) = cell(G,i, —'1, j, 1)
The functor frontleft_cell(f,k, G) yielding a subset of?Z is defined by the condition (Def. 5).
(Def. 5) Letiy, j1,i2, j2 be natural numbers. Suppo§e, j1) € the indices ofG and(iz, j2) € the
indices ofG and fy = Go (i1, j1) andfx 1 = Go (i2, j2). Then
(i) ip=iz2andj;+ 1= j, and frontleft_cell(f,k,G) = cell(G,i, —'1, j2), or
(f,k,G) =cell(G,iy, j2), or
(f,k,G) =cell(G,iz—'1,j,—'1), or
(iv) ip=izandj; = j»+ 1 and frontleft_cell(f,k,G) = cell(G,iy, j»—'1).

(i) i1+1l=ixandj; = j, and frontleft_cell
(i) iy =i2+1andji = jo and frontleft_cell

The following propositions are true:

(35) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and(i, j) € the indices ofG and(i, j + 1) € the indices ofG and fy = Go (i, j) and fy, 1 =
Go(i,j+1). Then frontleft_cell(f, k,G) = cell(G,i —' 1, j + 1).

(86) Suppose that £ k andk+ 1 < lenf and f is a sequence which elements belongxo
and(i, j) € the indices ofG and (i, j + 1) € the indices ofG and fy = Go (i, j) and fxy1 =
Go (i, j+1). Then frontright_cell( f ,k, G) = cell(G,i, j + 1).

(37) Suppose that £ k andk+ 1 < lenf and f is a sequence which elements belong3o
and({i, j) € the indices ofG and(i + 1, j) € the indices ofG and fx = Go (i, j) and fx1 =
Go(i+1,j). Then frontleft_cell(f,k,G) = cell(G,i + 1, j).

(38) Suppose that £ k andk+ 1 <lenf and f is a sequence which elements belong3o
and({i, j) € the indices ofG and (i + 1, j) < the indices ofG and fx = Go (i, j) and fx1 =
Go(i+1,j). Then frontright cell( f |k, G) = cell(G,i+1,j —'1).

(39) Suppose that £ k andk+ 1 < lenf and f is a sequence which elements belongxo
and (i, j) € the indices ofG and (i + 1, j) € the indices ofG and fx = Go (i+ 1, ) and
fur1 = Go (i, j). Then frontleft_cell(f,k,G) = cell(G,i —'1,j —'1).

(40) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and (i, j) € the indices ofG and (i + 1, j} € the indices ofG and fy = Go (i+ 1, j) and
fir1 = Go (i, ). Then frontright cell(f,k, G) = cell(G,i —' 1, j).

(41) Suppose that £ k andk+ 1 <lenf and f is a sequence which elements belong3o
and (i, j + 1) € the indices ofG and (i, j) € the indices ofG and fx = Go (i, j+ 1) and
fur1 = Go (i, j). Then frontleft_cell( f,k,G) = cell(G,i, ] —' 1).

(42) Suppose that £ k andk+1 < lenf and f is a sequence which elements belongxo
and (i, j + 1) € the indices ofG and i, j) € the indices ofG and fx = Go (i,j+ 1) and
fur1 = Go (i, ). Then frontright cell(f,k,G) = cell(G,i —'1,j —'1).

(43) Suppose X kandk+1<lenf andf is a sequence which elements belongtandk +
1 < n. Then frontleft_cell( f, k,G) = front_left_cell(f [n,k,G) and frontright cell(f ,k,G) =
front.right cell(f [n,k, G).
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Let D be a set, lef be a finite sequence of elementsyflet G be a matrix oveD, and let us
considerk. We say thaff turns rightk, G if and only if the condition (Def. 6) is satisfied.

(Def. 6) Letiy, ji1, i2, j2 be natural numbers. Suppofe, j1) € the indices ofG and({iy, j2) € the
indices ofG and fy = Go (i1, j1) andfi 1 = Go(i2, j2). Then
(i) i1=iz2andji+1=jpand{i,+1, j») € the indices oG andfy. 2 =Go(i2+1,j2), or
(i) i1+1l=izandj; = jpand{iy, jo—'1) € the indices ol and fy » = Go (iz, j2—'1), or
(i) i1=ipx+1andjs = joand{iz, j2+1) € the indices oG andfy,» = Go(i2, j2+ 1), Or
(iv) i1=izandji=j>+1and(i;—'1, j2) € the indices ofc and fy.» = Go (i2—'1, j2).
We say thaff turns leftk, G if and only if the condition (Def. 7) is satisfied.
(Def. 7) Letiy, j1,i2, j2 be natural numbers. Suppoeg, j1) € the indices ofG and(i», j2) € the
indices ofG and fy = Go (i1, j1) and f 1 = Go(i2, j2). Then
(i) ip=izandj;+1= jyand{i>—'1, j,) € the indices ofG and fy, o = Go (i, —'1, j), or
(i) i1+1l=irandji = joand{iz, j»+ 1) € the indices oG andfi > = Go (2, j2+ 1), or
(i) i1=i2+1andj; = jpand(iz, jo—'1) € the indices ofc and fy,» = Go (iz, j»—'1), or
(iv) i1=izandji; = jo+1and{iz+1, j2) € the indices ofc andfy 2 = Go (i2+1, j2).
We say thatf goes straighk, G if and only if the condition (Def. 8) is satisfied.
(Def. 8) Letiy, ji, i2, j2 be natural numbers. Suppofe, j1) € the indices ofG and({iy, j») € the
indices ofG and fy = Go (i1, j1) andfx 1 = Go(i2, j2). Then
() i1=iz2andji1+1= jpand(iz j2+1) €the indices ofc andfy;2 = Go(iz, jo+1), or
(i) i1+1l=irandji = jrand{i2+1, j2) € the indices oG andfy > = Go(i2+1, j2), Or
(i) ip=ix+1landj; = jrand(i»—'1, j,) €theindices ofc andfy,o =Go (i, —'1,j>), or
(iv) i1=izandji=j>+1and(iy, jo—'1) € the indices ofc and fy.» = Go (iz, j»—'1).
We adopt the following conventiom denotes a sef,, f1, f> denote finite sequences of elements

of D, andG denotes a matrix oveD.
The following propositions are true:

(44) If1<kandk+2<lenf andk+2 < nandf[nturns rightk, G, thenf turns rightk, G.
(45) If1<kandk+2<lenf andk+2 <nandf[nturns leftk, G, thenf turns leftk, G.

(46) If1<kandk+2<lenf andk+2 < nandf|ngoes straighk, G, thenf goes straighk,
G.

(47) Suppose that& kandk+1 <lenf; andk+1 <lenf; andf; is a sequence which elements
belong toG and f; [k = f,[k and f; turns rightk —' 1, G and f; turns rightk —' 1, G. Then
f1 [(k+ 1) = fzf(k+ 1).

(48) Supposethatd kandk+1<lenf; andk+1 <lenf, andf; is a sequence which elements
belong toG and f; [k = o[k and f; turns leftk —' 1, G and f;, turns leftk—" 1, G. Then
fil(k+1) = fa[(k+1).

(49) Suppose that& kandk+1<lenf; andk+1<lenf, andf; is a sequence which elements
belong toG andf; [k = f,[k and f; goes straighk—' 1, G and f, goes straighk—'1, G. Then
fil(k+1) = fal(k+1).

(50) For every non empty sBtand for every matridM overD such that X< i andi < lenM and
1< jandj < widthM holdsMo (i, j) € ValuesM.
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