Some Properties of Cells on Go Board

Czesław Byliński University of Białystok

MML Identifier: GOBRD13.

WWW: http://mizar.org/JFM/Vol11/gobrd13.html

The articles [20], [7], [22], [2], [18], [23], [5], [6], [1], [4], [8], [21], [9], [17], [3], [13], [12], [19], [10], [11], [14], [15], and [16] provide the notation and terminology for this paper.

We adopt the following convention: i, i_1 , i_2 , j, j_1 , j_2 , k, n denote natural numbers, D denotes a non empty set, and f denotes a finite sequence of elements of D.

Let E be a non empty set, let S be a non empty set of finite sequences of the carrier of \mathcal{E}_{T}^{2} , let F be a function from E into S, and let e be an element of E. Then F(e) is a finite sequence of elements of \mathcal{E}_{T}^{2} .

Let F be a function. The functor Values F yields a set and is defined by:

(Def. 1) Values $F = \bigcup (\operatorname{rng}_{\kappa} F(\kappa))$.

One can prove the following proposition

(1) For every finite sequence M of elements of D^* holds M(i) is a finite sequence of elements of D.

Let D be a set. Observe that every finite sequence of elements of D^* is finite sequence yielding. One can check that every function which is finite sequence yielding is also function yielding. One can prove the following proposition

(3)¹ For every finite sequence M of elements of D^* holds Values $M = \bigcup \{ \operatorname{rng} f; f \text{ ranges over elements of } D^* : f \in \operatorname{rng} M \}$.

Let D be a non empty set and let M be a finite sequence of elements of D^* . One can check that Values M is finite.

One can prove the following propositions:

- (4) For every matrix M over D such that $i \in \text{dom } M$ and M(i) = f holds len f = width M.
- (5) For every matrix M over D such that $i \in \text{dom } M$ and M(i) = f and $j \in \text{dom } f$ holds $\langle i, j \rangle \in \text{the indices of } M$.
- (6) For every matrix M over D such that $\langle i, j \rangle \in$ the indices of M and M(i) = f holds len f = width M and $j \in \text{dom } f$.
- (7) For every matrix M over D holds Values $M = \{M \circ (i, j) : \langle i, j \rangle \in \text{the indices of } M\}$.
- (8) For every non empty set D and for every matrix M over D holds card Values $M \le \text{len } M \cdot \text{width } M$.

1

¹ The proposition (2) has been removed.

In the sequel f is a finite sequence of elements of \mathcal{E}_T^2 and G is a Go-board. The following propositions are true:

- (9) For every matrix G over $\mathcal{E}_{\mathbf{T}}^2$ such that f is a sequence which elements belong to G holds rng $f \subseteq \text{Values } G$.
- (10) For all Go-boards G_1 , G_2 such that Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $1 \le j_2$ and $j_2 \le \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (1, j_2)$ holds $i_1 = 1$.
- (11) For all Go-boards G_1 , G_2 such that Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $1 \le j_2$ and $j_2 \le \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (\text{len } G_2, j_2)$ holds $i_1 = \text{len } G_1$.
- (12) For all Go-boards G_1 , G_2 such that Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $1 \le i_2$ and $i_2 \le \text{len } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, 1)$ holds $j_1 = 1$.
- (13) For all Go-boards G_1 , G_2 such that Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $1 \le i_2$ and $i_2 \le \text{len } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, \text{width } G_2)$ holds $j_1 = \text{width } G_1$.
- (14) Let G_1 , G_2 be Go-boards. Suppose Values $G_1 \subseteq \text{Values } G_2$ and $1 \le i_1$ and $i_1 < \text{len } G_1$ and $1 \le j_1$ and $j_1 \le \text{width } G_1$ and $1 \le i_2$ and $i_2 < \text{len } G_2$ and $1 \le j_2$ and $j_2 \le \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $(G_2 \circ (i_2 + 1, j_2))_1 \le (G_1 \circ (i_1 + 1, j_1))_1$.
- (15) Let G_1 , G_2 be Go-boards. Suppose $G_1 \circ (i_1 1, j_1) \in \text{Values } G_2$ and $1 < i_1$ and $i_1 \le \text{len } G_1$ and $1 \le j_1$ and $j_1 \le \text{width } G_1$ and $1 < i_2$ and $i_2 \le \text{len } G_2$ and $1 \le j_2$ and $j_2 \le \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $(G_1 \circ (i_1 1, j_1))_1 \le (G_2 \circ (i_2 1, j_2))_1$.
- (16) Let G_1 , G_2 be Go-boards. Suppose $G_1 \circ (i_1, j_1 + 1) \in \text{Values } G_2$ and $1 \le i_1$ and $i_1 \le \text{len } G_1$ and $1 \le j_1$ and $j_1 < \text{width } G_1$ and $1 \le i_2$ and $i_2 \le \text{len } G_2$ and $1 \le j_2$ and $j_2 < \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $G_2 \circ (i_2, j_2 + 1) \ge (G_1 \circ (i_1, j_1 + 1))_2$.
- (17) Let G_1 , G_2 be Go-boards. Suppose Values $G_1 \subseteq \text{Values } G_2$ and $1 \le i_1$ and $i_1 \le \text{len } G_1$ and $1 < j_1$ and $j_1 \le \text{width } G_1$ and $1 \le i_2$ and $i_2 \le \text{len } G_2$ and $1 < j_2$ and $j_2 \le \text{width } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $(G_1 \circ (i_1, j_1 i_1))_2 \le (G_2 \circ (i_2, j_2 i_1))_2$.
- (18) Let G_1 , G_2 be Go-boards. Suppose Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $\langle i_2, j_2 \rangle \in \text{the indices of } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $\text{cell}(G_2, i_2, j_2) \subseteq \text{cell}(G_1, i_1, j_1)$.
- (19) Let G_1 , G_2 be Go-boards. Suppose Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $\langle i_2, j_2 \rangle \in \text{the indices of } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $\text{cell}(G_2, i_2 1, j_2) \subseteq \text{cell}(G_1, i_1 1, j_1)$.
- (20) Let G_1 , G_2 be Go-boards. Suppose Values $G_1 \subseteq \text{Values } G_2$ and $\langle i_1, j_1 \rangle \in \text{the indices of } G_1$ and $\langle i_2, j_2 \rangle \in \text{the indices of } G_2$ and $G_1 \circ (i_1, j_1) = G_2 \circ (i_2, j_2)$. Then $\text{cell}(G_2, i_2, j_2 1) \subseteq \text{cell}(G_1, i_1, j_1 1)$.
- (21) Let f be a standard special circular sequence. Suppose f is a sequence which elements belong to G. Then Values the Go-board of $f \subseteq \text{Values } G$.

Let us consider f, G, k. Let us assume that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G. The functor right_cell(f,k,G) yields a subset of \mathcal{E}^2_T and is defined by the condition (Def. 2).

- (Def. 2) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and right_cell $(f, k, G) = \text{cell}(G, i_1, j_1)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and right_cell $(f, k, G) = \text{cell}(G, i_1, j_1 i_1)$, or
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and right_cell $(f, k, G) = \text{cell}(G, i_2, j_2)$, or
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and right_cell $(f, k, G) = \text{cell}(G, i_1 1, j_2)$.

The functor left_cell(f,k,G) yielding a subset of \mathcal{E}^2_T is defined by the condition (Def. 3).

- (Def. 3) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and left_cell $(f, k, G) = \text{cell}(G, i_1 1, j_1)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and left_cell $(f, k, G) = \text{cell}(G, i_1, j_1)$, or
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and left_cell $(f, k, G) = \text{cell}(G, i_2, j_2 1)$, or
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and $left_cell(f, k, G) = cell(G, i_1, j_2)$.

One can prove the following propositions:

- (22) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \text{the indices of } G$ and $\langle i, j+1 \rangle \in \text{the indices of } G$ and $f_k = G \circ (i,j)$ and $f_{k+1} = G \circ (i,j+1)$. Then $\text{left_cell}(f,k,G) = \text{cell}(G,i-'1,j)$.
- (23) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $(i, j) \in \text{the indices of } G$ and $(i, j+1) \in \text{the indices of } G$ and $f_k = G \circ (i, j)$ and $f_{k+1} = G \circ (i, j+1)$. Then right_cell(f, k, G) = cell(G, i, j).
- (24) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \operatorname{the indices of } G$ and $\langle i+1, j \rangle \in \operatorname{the indices of } G$ and $f_k = G \circ (i,j)$ and $f_{k+1} = G \circ (i+1,j)$. Then $\operatorname{left_cell}(f,k,G) = \operatorname{cell}(G,i,j)$.
- (25) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \text{the indices of } G$ and $\langle i+1, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i,j)$ and $f_{k+1} = G \circ (i+1,j)$. Then right_cell(f,k,G) = cell(G,i,j-1).
- (26) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \text{the indices of } G$ and $\langle i+1, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i+1,j)$ and $f_{k+1} = G \circ (i,j)$. Then $\text{left_cell}(f,k,G) = \text{cell}(G,i,j-1)$.
- (27) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \operatorname{the}$ indices of G and $\langle i+1, j \rangle \in \operatorname{the}$ indices of G and $f_k = G \circ (i+1,j)$ and $f_{k+1} = G \circ (i,j)$. Then $\operatorname{right_cell}(f,k,G) = \operatorname{cell}(G,i,j)$.
- (28) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j+1 \rangle \in \text{the indices of } G$ and $\langle i, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i, j+1)$ and $f_{k+1} = G \circ (i, j)$. Then $\text{left_cell}(f, k, G) = \text{cell}(G, i, j)$.
- (29) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j+1 \rangle \in \text{the indices of } G$ and $\langle i, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i, j+1)$ and $f_{k+1} = G \circ (i, j)$. Then right_cell(f, k, G) = cell(G, i-1).
- (30) If $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G, then $\operatorname{left_cell}(f,k,G) \cap \operatorname{right_cell}(f,k,G) = \mathcal{L}(f,k)$.
- (31) If $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G, then right_cell(f,k,G) is closed.
- (32) Suppose $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $k+1 \le n$. Then $\text{left_cell}(f,k,G) = \text{left_cell}(f \upharpoonright n,k,G)$ and $\text{right_cell}(f,k,G) = \text{right_cell}(f \upharpoonright n,k,G)$.
- (33) Suppose $1 \le k$ and $k+1 \le \text{len}(f_{|n})$ and $n \le \text{len } f$ and f is a sequence which elements belong to G. Then $\text{left_cell}(f, k+n, G) = \text{left_cell}(f_{|n}, k, G)$ and $\text{right_cell}(f, k+n, G) = \text{right_cell}(f_{|n}, k, G)$.
- (34) Let G be a Go-board and f be a standard special circular sequence. Suppose $1 \le n$ and $n+1 \le \text{len } f$ and f is a sequence which elements belong to G. Then $\text{left_cell}(f,n,G) \subseteq \text{leftcell}(f,n)$ and $\text{right_cell}(f,n,G) \subseteq \text{rightcell}(f,n)$.

Let us consider f, G, k. Let us assume that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G. The functor front_right_cell(f,k,G) yields a subset of \mathcal{E}^2_T and is defined by the condition (Def. 4).

- (Def. 4) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and front_right_cell $(f, k, G) = \text{cell}(G, i_2, j_2)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and front_right_cell $(f, k, G) = \text{cell}(G, i_2, j_2 i')$, or
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and front_right_cell $(f, k, G) = \text{cell}(G, i_2 1, j_2)$, or
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and front_right_cell $(f, k, G) = \text{cell}(G, i_2 1, j_2 1)$.

The functor front_left_cell(f, k, G) yielding a subset of \mathcal{E}_T^2 is defined by the condition (Def. 5).

- (Def. 5) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and front_left_cell $(f, k, G) = \text{cell}(G, i_2 1, j_2)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and front_left_cell $(f, k, G) = \text{cell}(G, i_2, j_2)$, or
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and front_left_cell $(f, k, G) = \text{cell}(G, i_2 1, j_2 1)$, or
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and front_left_cell $(f, k, G) = \text{cell}(G, i_2, j_2 1)$.

The following propositions are true:

- (35) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \operatorname{the indices of } G$ and $\langle i, j+1 \rangle \in \operatorname{the indices of } G$ and $f_k = G \circ (i,j)$ and $f_{k+1} = G \circ (i,j+1)$. Then front_left_cell $(f,k,G) = \operatorname{cell}(G,i-'1,j+1)$.
- (36) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \operatorname{the indices of } G$ and $\langle i, j + 1 \rangle \in \operatorname{the indices of } G$ and $f_k = G \circ (i, j)$ and $f_{k+1} = G \circ (i, j+1)$. Then front_right_cell $(f, k, G) = \operatorname{cell}(G, i, j+1)$.
- (37) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $(i, j) \in \operatorname{the indices}$ of G and $(i+1, j) \in \operatorname{the indices}$ of G and $f_k = G \circ (i, j)$ and $f_{k+1} = G \circ (i+1, j)$. Then front_left_cell $(f, k, G) = \operatorname{cell}(G, i+1, j)$.
- (38) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j \rangle \in \text{the indices of } G$ and $\langle i+1, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i,j)$ and $f_{k+1} = G \circ (i+1,j)$. Then front_right_cell(f,k,G) = cell(G,i+1,j-1).
- (39) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i,j \rangle \in \operatorname{the}$ indices of G and $\langle i+1,j \rangle \in \operatorname{the}$ indices of G and $f_k = G \circ (i+1,j)$ and $f_{k+1} = G \circ (i,j)$. Then front_left_cell $(f,k,G) = \operatorname{cell}(G,i-'1,j-'1)$.
- (40) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i,j \rangle \in \text{the indices of } G$ and $\langle i+1,j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i+1,j)$ and $f_{k+1} = G \circ (i,j)$. Then front_right_cell(f,k,G) = cell(G,i-'1,j).
- (41) Suppose that $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $\langle i, j+1 \rangle \in \text{the indices of } G$ and $\langle i, j \rangle \in \text{the indices of } G$ and $f_k = G \circ (i, j+1)$ and $f_{k+1} = G \circ (i, j)$. Then front_left_cell(f, k, G) = cell(G, i, j-1).
- (42) Suppose that $1 \le k$ and $k+1 \le \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j+1 \rangle \in \operatorname{the}$ indices of G and $\langle i, j \rangle \in \operatorname{the}$ indices of G and $f_k = G \circ (i, j+1)$ and $f_{k+1} = G \circ (i, j)$. Then front_right_cell $(f, k, G) = \operatorname{cell}(G, i-'1, j-'1)$.
- (43) Suppose $1 \le k$ and $k+1 \le \text{len } f$ and f is a sequence which elements belong to G and $k+1 \le n$. Then front_left_cell(f,k,G) = front_left_cell $(f \upharpoonright n,k,G)$ and front_right_cell(f,k,G) = front_right_cell $(f \upharpoonright n,k,G)$.

Let D be a set, let f be a finite sequence of elements of D, let G be a matrix over D, and let us consider k. We say that f turns right k, G if and only if the condition (Def. 6) is satisfied.

- (Def. 6) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and $(i_2 + 1, j_2) \in$ the indices of G and $f_{k+2} = G \circ (i_2 + 1, j_2)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and $(i_2, j_2 i_1) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2, j_2 i_1), \text{ or } G = G \circ (i_2, i_2 i_1)$
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and $(i_2, j_2 + 1) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2, j_2 + 1), \text{ or } G = G \circ (i_2, i_2 + 1), \text{ or$
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and $(i_2 i_1, j_2) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2 i_1, j_2)$.

We say that f turns left k, G if and only if the condition (Def. 7) is satisfied.

- (Def. 7) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and $(i_2 i_1, j_2) \in \text{the indices of } G$ and $f_{k+2} = G \circ (i_2 i_1, j_2)$, or
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and $(i_2, j_2 + 1) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2, j_2 + 1), \text{ or } f_{k+2} = G \circ (i_2, i_2 + 1), \text{ or } f_{k+2} = G \circ (i_2$
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and $(i_2, j_2 1) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2, j_2 1), \text{ or } G = G \circ (i_2, i_2 1), \text{ or$
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and $(i_2 + 1, j_2) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2 + 1, j_2)$.

We say that f goes straight k, G if and only if the condition (Def. 8) is satisfied.

- (Def. 8) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $f_k = G \circ (i_1, j_1)$ and $f_{k+1} = G \circ (i_2, j_2)$. Then
 - (i) $i_1 = i_2$ and $j_1 + 1 = j_2$ and $(i_2, j_2 + 1) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2, j_2 + 1), \text{ or } G = G \circ (i_2, i_2 + 1)$
 - (ii) $i_1 + 1 = i_2$ and $j_1 = j_2$ and $(i_2 + 1, j_2) \in$ the indices of G and $f_{k+2} = G \circ (i_2 + 1, j_2)$, or
 - (iii) $i_1 = i_2 + 1$ and $j_1 = j_2$ and $(i_2 1, j_2) \in \text{the indices of } G \text{ and } f_{k+2} = G \circ (i_2 1, j_2), \text{ or } G = G \circ (i_2 1, i_2)$
 - (iv) $i_1 = i_2$ and $j_1 = j_2 + 1$ and $(i_2, j_2 i_1) \in \text{the indices of } G$ and $f_{k+2} = G \circ (i_2, j_2 i_1)$.

We adopt the following convention: D denotes a set, f, f_1 , f_2 denote finite sequences of elements of D, and G denotes a matrix over D.

The following propositions are true:

- (44) If $1 \le k$ and $k+2 \le \text{len } f$ and $k+2 \le n$ and $f \mid n$ turns right k, G, then f turns right k, G.
- (45) If $1 \le k$ and $k+2 \le \text{len } f$ and $k+2 \le n$ and $f \upharpoonright n$ turns left k, G, then f turns left k, G.
- (46) If $1 \le k$ and $k+2 \le \text{len } f$ and $k+2 \le n$ and $f \upharpoonright n$ goes straight k, G, then f goes straight k, G.
- (47) Suppose that 1 < k and $k+1 \le \text{len } f_1$ and $k+1 \le \text{len } f_2$ and f_1 is a sequence which elements belong to G and $f_1 \upharpoonright k = f_2 \upharpoonright k$ and f_1 turns right k-'1, G and f_2 turns right k-'1, G. Then $f_1 \upharpoonright (k+1) = f_2 \upharpoonright (k+1)$.
- (48) Suppose that 1 < k and $k+1 \le \text{len } f_1$ and $k+1 \le \text{len } f_2$ and f_1 is a sequence which elements belong to G and $f_1 \upharpoonright k = f_2 \upharpoonright k$ and f_1 turns left k-1, G and G turns left G and G and G turns left G and G are G and G and G are G and G and G are G are G and G are G and
- (49) Suppose that 1 < k and $k+1 \le \text{len } f_1$ and $k+1 \le \text{len } f_2$ and f_1 is a sequence which elements belong to G and $f_1 \upharpoonright k = f_2 \upharpoonright k$ and f_1 goes straight k-'1, G and f_2 goes straight k-'1, G. Then $f_1 \upharpoonright (k+1) = f_2 \upharpoonright (k+1)$.
- (50) For every non empty set D and for every matrix M over D such that $1 \le i$ and $i \le \text{len } M$ and $1 \le j$ and $j \le \text{width } M$ holds $M \circ (i, j) \in \text{Values } M$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct_6.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbb{T}}^2$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix 1.html.
- [13] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part II. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard2.html.
- [16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [17] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
- [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received April 23, 1999

Published January 2, 2004