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Summary. We examine the topological property of cells (rectangles) in a plane. First,
some Fraenkel expressions of cells are shown. Second, it is proved that cells are closed. The
last theorem asserts that the closure of the interior of a cell is the same as itself.
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The articles[[14],[15],[16],[18],12],T1],[18],[[3],16], 7], [16],[12],14],19],[10], and[11] provide
the notation and terminology for this paper.

We use the following conventiom; j denote natural numbers,s, r2, s, S denote real numbers,
andG; denotes a non empty topological space.

One can prove the following propositions:

(1) For every subsei of G; and for every poinp of G; such thatp € A andA is connected
holdsA C Componen(p).

(2) Forall subsets, B, C of G; such thatC is a component &, andA C C andB is connected
andA meetsB holdsB C C.

In the sequet; is a non empty topological space.
One can prove the following three propositions:

(3) LetA, Bbe subsets 06,. SupposeA is a component 06, andB is a component o6;.
ThenAUB is a union of components @,.

(4) For all subsetB,, By, V of G; holds Dowr{B; UBy,V) = Down(B1,V) UDown(B3,V).
(5) For all subsetB,, By, V of G holds Dowr{B; N By,V) = Down(B1,V) N Down(By,V).

In the sequef is a non constant standard special circular sequenc& &a non empty yielding
matrix overzt2,
The following proposition is true

(6) (L(f))°#0.

Let us considef. Note that(£(f))¢ is non empty.
Next we state a number of propositions:

(7) For everyf holds the carrier o2 = | J{cell(the Go-board of, i, j) : i < lenthe Go-board
of f A j <widththe Go-board of }.
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(8) For all subsetBy, P; of £2 such thaPy, = {[r,5 : s< 51} andP; = {[r2,%] : & > s1} holds
P =P

(9) For all subsetpy, P, of E% such that; = {[r,g :s>s1} andP, = {[r2, %] : 2 < 51} holds
P, = PC.

(10) For all subsetBy, P, of E% such thaP; = {[s;r] : s> 51} andP, = {[sp,r2] : S, < 51} holds
PL=P°C.

(11) For all subsetBy, P, of £2 such thaPy = {[s,r] : s< s} andP, = {[s,12] : S > 5 } holds
PL=PC.

(12) For every subsé of ETZ- and for everys; such thaP = {[r,5] : s< 51} holdsP is closed.
(13) For every subsé of E% and for everys; such thaP = {[r,g : s; < s} holdsP is closed.
(14) For every subsd of £2 and for everys; such thaP = {[s,r] : s< s;} holdsP is closed.
(15) For every subsd of £2 and for everys; such thaP = {[s,r] : s; < s} holdsP is closed.
(16) For every matrixG over £2 holds hstrigG, j) is closed.

(17) For every matrixG over £2 holds vstrigG, ) is closed.

(18) If Gis line X-constant, then vstrij,0) = {[r,5] : r < (Go(1,1))1}.

(19) If Gis line X-constant, then vstrigs, lenG) = {[r,5 : (Go (lenG,1)); <r}.

(20) If Gis line X-constant and X i andi < lenG, then vstrigG,i) = {[r,9 : (Go(i,1))1 <
rAr<(Go(i+1,1))1}.

(21) If Gis columnY-constant, then hstri®,0) = {[r,5] : s< (Go(1,1))2}.
(22) If Gis columnY-constant, then hstri, widthG) = {[r,5] : (Go (1,widthG)), < s}.

(23) If G is columnY-constant and X j and j < widthG, then hstrigG, j) = {[r,9 :
(Go(Lj))2<sAs<(Go(l,j+1))2}.

In the sequet is a non empty yielding linX-constant columrY -constant matrix ove'E%.
The following propositions are true:

(24) cel(G,0,0) ={[r,g :r <(Go(1,1))1 A s<(Go(1,1))2}.
(25) cel(G,0,widthG) ={[r,5 : r < (Go(1,1))1 A (Go(1,widthG)), < s}.

(26) If 1< jandj < widthG, then cellG,0,j) = {[r,g :r < (Go(1,1))1 A (Go(1,]))2<
sAs<(Go(l,j+1))2}.

(27) cel(G,lenG,0) = {[r,g: (Go(lenG,1))1 <r A s< (Go(1,1))2}.
(28) celG,lenG,widthG) = {[r,g : (Go(lenG,1))1 <r A (Go(1,widthG)), < s}.

(29) If 1 < j and j < widthG, then cellG,lenG,j) = {[r,g : (Go(lenG,1)); <r A
(Go(Lj))2=s A s<(Go(l,j+1))2}.

(30) If1<iandi<lenG,then cel(G,i,0) ={[r,9:(Go(i,1))1<r Ar<(Go(i+11)); A
s<(Go(1,1))2}.

(31) If 1<i andi < lenG, then cel(G,i,widthG) = {[r,g : (Go(i,1))1 <r A 1 <
(Go(i+1,1))1 A (Go(1,widthG)), < s}.

(32) Ifl<iandi<lenGand 1< jandj < widthG, then cellG,i, j) = {[r,9 : (Go(i,1))1 <
rar<(Go(i+1,1))1 A (Go(L,j))2<sA s<(Go(1,j+1))2}.

(33) For every matrixG over”ﬁ% holds cel(G,i, j) is closed.



SOME TOPOLOGICAL PROPERTIES OF CELLS IK 3

(34) For every non empty yielding matr& overE% holds 1< lenG and 1< widthG.

(35) For every Go-boards such thati < lenG and j < widthG holds cel(G,i, ) =
Intcell(G,i, ).
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