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Summary. We examine the topological property of cells (rectangles) in a plane. First,
some Fraenkel expressions of cells are shown. Second, it is proved that cells are closed. The
last theorem asserts that the closure of the interior of a cell is the same as itself.
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The articles [14], [15], [5], [8], [2], [1], [13], [3], [6], [7], [16], [12], [4], [9], [10], and [11] provide
the notation and terminology for this paper.

We use the following convention:i, j denote natural numbers,r, s, r2, s1, s2 denote real numbers,
andG1 denotes a non empty topological space.

One can prove the following propositions:

(1) For every subsetA of G1 and for every pointp of G1 such thatp∈ A andA is connected
holdsA⊆ Component(p).

(2) For all subsetsA, B,C of G1 such thatC is a component ofG1 andA⊆C andB is connected
andA meetsB holdsB⊆C.

In the sequelG2 is a non empty topological space.
One can prove the following three propositions:

(3) Let A, B be subsets ofG2. SupposeA is a component ofG2 andB is a component ofG2.
ThenA∪B is a union of components ofG2.

(4) For all subsetsB1, B2, V of G1 holds Down(B1∪B2,V) = Down(B1,V)∪Down(B2,V).

(5) For all subsetsB1, B2, V of G1 holds Down(B1∩B2,V) = Down(B1,V)∩Down(B2,V).

In the sequelf is a non constant standard special circular sequence andG is a non empty yielding
matrix overE2

T.
The following proposition is true

(6) (L̃( f ))c 6= /0.

Let us considerf . Note that(L̃( f ))c is non empty.
Next we state a number of propositions:

(7) For everyf holds the carrier ofE2
T =

⋃
{cell(the Go-board off , i, j) : i ≤ lenthe Go-board

of f ∧ j ≤ widththe Go-board off}.
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(8) For all subsetsP1, P2 of E2
T such thatP1 = {[r,s] : s≤ s1} andP2 = {[r2,s2] : s2 > s1} holds

P1 = P2
c.

(9) For all subsetsP1, P2 of E2
T such thatP1 = {[r,s] : s≥ s1} andP2 = {[r2,s2] : s2 < s1} holds

P1 = P2
c.

(10) For all subsetsP1, P2 of E2
T such thatP1 = {[s, r] : s≥ s1} andP2 = {[s2, r2] : s2 < s1} holds

P1 = P2
c.

(11) For all subsetsP1, P2 of E2
T such thatP1 = {[s, r] : s≤ s1} andP2 = {[s2, r2] : s2 > s1} holds

P1 = P2
c.

(12) For every subsetP of E2
T and for everys1 such thatP = {[r,s] : s≤ s1} holdsP is closed.

(13) For every subsetP of E2
T and for everys1 such thatP = {[r,s] : s1 ≤ s} holdsP is closed.

(14) For every subsetP of E2
T and for everys1 such thatP = {[s, r] : s≤ s1} holdsP is closed.

(15) For every subsetP of E2
T and for everys1 such thatP = {[s, r] : s1 ≤ s} holdsP is closed.

(16) For every matrixG overE2
T holds hstrip(G, j) is closed.

(17) For every matrixG overE2
T holds vstrip(G, j) is closed.

(18) If G is lineX-constant, then vstrip(G,0) = {[r,s] : r ≤ (G◦ (1,1))1}.

(19) If G is lineX-constant, then vstrip(G, lenG) = {[r,s] : (G◦ (lenG,1))1 ≤ r}.

(20) If G is line X-constant and 1≤ i and i < lenG, then vstrip(G, i) = {[r,s] : (G◦ (i,1))1 ≤
r ∧ r ≤ (G◦ (i +1,1))1}.

(21) If G is columnY-constant, then hstrip(G,0) = {[r,s] : s≤ (G◦ (1,1))2}.

(22) If G is columnY-constant, then hstrip(G,widthG) = {[r,s] : (G◦ (1,widthG))2 ≤ s}.

(23) If G is column Y-constant and 1≤ j and j < widthG, then hstrip(G, j) = {[r,s] :
(G◦ (1, j))2 ≤ s ∧ s≤ (G◦ (1, j +1))2}.

In the sequelG is a non empty yielding lineX-constant columnY-constant matrix overE2
T.

The following propositions are true:

(24) cell(G,0,0) = {[r,s] : r ≤ (G◦ (1,1))1 ∧ s≤ (G◦ (1,1))2}.

(25) cell(G,0,widthG) = {[r,s] : r ≤ (G◦ (1,1))1 ∧ (G◦ (1,widthG))2 ≤ s}.

(26) If 1≤ j and j < widthG, then cell(G,0, j) = {[r,s] : r ≤ (G◦ (1,1))1 ∧ (G◦ (1, j))2 ≤
s ∧ s≤ (G◦ (1, j +1))2}.

(27) cell(G, lenG,0) = {[r,s] : (G◦ (lenG,1))1 ≤ r ∧ s≤ (G◦ (1,1))2}.

(28) cell(G, lenG,widthG) = {[r,s] : (G◦ (lenG,1))1 ≤ r ∧ (G◦ (1,widthG))2 ≤ s}.

(29) If 1 ≤ j and j < widthG, then cell(G, lenG, j) = {[r,s] : (G◦ (lenG,1))1 ≤ r ∧
(G◦ (1, j))2 ≤ s ∧ s≤ (G◦ (1, j +1))2}.

(30) If 1≤ i andi < lenG, then cell(G, i,0) = {[r,s] : (G◦ (i,1))1 ≤ r ∧ r ≤ (G◦ (i +1,1))1 ∧
s≤ (G◦ (1,1))2}.

(31) If 1 ≤ i and i < lenG, then cell(G, i,widthG) = {[r,s] : (G◦ (i,1))1 ≤ r ∧ r ≤
(G◦ (i +1,1))1 ∧ (G◦ (1,widthG))2 ≤ s}.

(32) If 1≤ i andi < lenG and 1≤ j and j < widthG, then cell(G, i, j) = {[r,s] : (G◦ (i,1))1 ≤
r ∧ r ≤ (G◦ (i +1,1))1 ∧ (G◦ (1, j))2 ≤ s ∧ s≤ (G◦ (1, j +1))2}.

(33) For every matrixG overE2
T holds cell(G, i, j) is closed.
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(34) For every non empty yielding matrixG overE2
T holds 1≤ lenG and 1≤ widthG.

(35) For every Go-boardG such that i ≤ lenG and j ≤ widthG holds cell(G, i, j) =
Intcell(G, i, j).
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