Adjacency Concept for Pairs of Natural Numbers

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. First, we introduce the concept of adjacency for a pair of natural numbers. Second, we extend the concept for two pairs of natural numbers. The pairs represent points of a lattice in a plane. We show that if some property is infectious among adjacent points, and some points have the property, then all points have the property.

MML Identifier: GOBRD10.

WWW: http://mizar.org/JFM/Vol8/gobrd10.html

The articles [9], [4], [12], [10], [1], [7], [13], [3], [2], [5], [11], [6], and [8] provide the notation and terminology for this paper.

In this paper i, j, k, k_1 , k_2 , n, m, i_1 , i_2 , j_1 , j_2 denote natural numbers. Let us consider i_1 , i_2 . We say that i_1 and i_2 are adjacent if and only if:

(Def. 1) $i_2 = i_1 + 1$ or $i_1 = i_2 + 1$.

Let us notice that the predicate i_1 and i_2 are adjacent is irreflexive and symmetric. We now state two propositions:

- (1) For all i_1 , i_2 such that i_1 and i_2 are adjacent holds $i_1 + 1$ and $i_2 + 1$ are adjacent.
- (2) For all i_1 , i_2 such that i_1 and i_2 are adjacent and $1 \le i_1$ and $1 \le i_2$ holds $i_1 1$ and $i_2 1$ are adjacent.

Let us consider i_1 , j_1 , i_2 , j_2 . We say that i_1 , i_1 , i_2 , and i_2 are adjacent if and only if:

(Def. 2) i_1 and i_2 are adjacent and $j_1 = j_2$ or $i_1 = i_2$ and j_1 and j_2 are adjacent.

One can prove the following two propositions:

- (3) For all i_1 , i_2 , j_1 , j_2 such that i_1 , j_1 , i_2 , and j_2 are adjacent holds $i_1 + 1$, $j_1 + 1$, $i_2 + 1$, and $j_2 + 1$ are adjacent.
- (4) Let given i_1 , i_2 , j_1 , j_2 . Suppose i_1 , j_1 , i_2 , and j_2 are adjacent and $1 \le i_1$ and $1 \le i_2$ and $1 \le j_1$ and $1 \le j_2$. Then $i_1 1$, $i_1 1$, $i_2 1$, and $i_2 1$ are adjacent.

Let us consider n, i. Then $n \mapsto i$ is a finite sequence of elements of \mathbb{N} and it can be characterized by the condition:

(Def. 3) $len(n \mapsto i) = n$ and for every j such that $1 \le j$ and $j \le n$ holds $(n \mapsto i)(j) = i$.

The following propositions are true:

- (6)¹ Let given n, i, j. Suppose $i \le n$ and $j \le n$. Then there exists a finite sequence f_1 of elements of \mathbb{N} such that
- (i) $f_1(1) = i$,
- (ii) $f_1(\operatorname{len} f_1) = j$,
- (iii) $\operatorname{len} f_1 = (i 'j) + (j 'i) + 1,$
- (iv) for all k, k_1 such that $1 \le k$ and $k \le \text{len } f_1$ and $k_1 = f_1(k)$ holds $k_1 \le n$, and
- (v) for every i_1 such that $1 \le i_1$ and $i_1 < \text{len } f_1$ holds $f_1(i_1 + 1) = (f_1)_{i_1} + 1$ or $f_1(i_1) = (f_1)_{i_1+1} + 1$.
- (7) Let given n, i, j. Suppose $i \le n$ and $j \le n$. Then there exists a finite sequence f_1 of elements of \mathbb{N} such that
- (i) $f_1(1) = i$,
- (ii) $f_1(\text{len } f_1) = j$,
- (iii) $\operatorname{len} f_1 = (i 'j) + (j 'i) + 1,$
- (iv) for all k, k_1 such that $1 \le k$ and $k \le \text{len } f_1$ and $k_1 = f_1(k)$ holds $k_1 \le n$, and
- (v) for every i_1 such that $1 \le i_1$ and $i_1 < \operatorname{len} f_1$ holds $(f_1)_{i_1}$ and $(f_1)_{i_1+1}$ are adjacent.
- (8) Let given n, m, i_1 , j_1 , i_2 , j_2 . Suppose $i_1 \le n$ and $j_1 \le m$ and $i_2 \le n$ and $j_2 \le m$. Then there exist finite sequences f_1 , f_2 of elements of $\mathbb N$ such that

for all i, k_1 , k_2 such that $i \in \text{dom } f_1$ and $k_1 = f_1(i)$ and $k_2 = f_2(i)$ holds $k_1 \le n$ and $k_2 \le m$ and $f_1(1) = i_1$ and $f_1(\text{len } f_1) = i_2$ and $f_2(1) = j_1$ and $f_2(\text{len } f_2) = j_2$ and $\text{len } f_1 = \text{len } f_2$ and $\text{len } f_1 = (i_1 - i_2) + (i_2 - i_1) + (j_1 - i_2) + (j_2 - i_1) + 1$ and for every i such that $1 \le i$ and $i < \text{len } f_1$ holds $(f_1)_i$, $(f_2)_i$, $(f_1)_{i+1}$, and $(f_2)_{i+1}$ are adjacent.

In the sequel S denotes a set.

The following proposition is true

- (9) Let Y be a subset of S and F be a matrix over 2^S of dimension $n \times m$. Suppose that
- (i) there exist i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} m$ and $F \circ (i, j) \subseteq Y$, and
- (ii) for all i_1, j_1, i_2, j_2 such that $i_1 \in \operatorname{Seg} n$ and $i_2 \in \operatorname{Seg} n$ and $j_1 \in \operatorname{Seg} m$ and $j_2 \in \operatorname{Seg} m$ and $i_1, j_1, i_2,$ and j_2 are adjacent holds $F \circ (i_1, j_1) \subseteq Y$ iff $F \circ (i_2, j_2) \subseteq Y$.

Let given i, j. If $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} m$, then $F \circ (i, j) \subseteq Y$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
- [7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [8] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funcop 1.html.

¹ The proposition (5) has been removed.

- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 10, 1996

Published January 2, 2004