More on Segments on a Go-Board

Andrzej Trybulec
Warsaw University
Białystok

Summary. We continue the preparatory work for the Jordan Curve Theorem.

MML Identifier: GOBOARD8.
WWW: http://mizar.org/JFM/Vol7/goboard8.html

The articles [12], [5], [1], [10], [2], [13], [6], [11], [14], [3], [4], [7], [8], and [9] provide the notation and terminology for this paper.

We adopt the following rules: i, j, k are natural numbers, p is a point of $\mathcal{E}_{\mathrm{T}}^{2}$, and f is a non constant standard special circular sequence.

We now state a number of propositions:
(1) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $\quad f_{k}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1, j+2)$ or $f_{k+2}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k}=$ the Go-board of $f \circ(i+1, j+2)$

Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+1, j+1))), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(2) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $\quad f_{k}=$ the Go-board of $f \circ(i+2, j+1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1, j+2)$ or $f_{k+2}=$ the Go-board of $f \circ(i+2, j+1)$ and $f_{k}=$ the Go-board of $f \circ(i+1, j+2)$.

Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+1, j+1))), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(3) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i+2, j+1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1, j)$ or $f_{k+2}=$ the Go-board of $f \circ(i+2, j+1)$ and $f_{k}=$ the Go-board of $f \circ(i+1, j)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\right.\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+\underset{\sim}{1, j+1)})), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(4) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $f_{k+1}=$ the Go-board of $f \circ(i, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i, j)$ and $f_{k+2}=$ the Go-board of $f \circ(i, j+2)$ or $f_{k+2}=$ the Go-board of $f \circ(i, j)$ and $f_{k}=$ the Go-board of $f \circ(i, j+2)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\right.\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+\underset{\sim}{1, j+1)})), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(5) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1, j+2)$ or $f_{k+2}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k}=$ the Go-board of $f \circ(i+1, j+2)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1))), \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1, j+1))+($ the Go-board of $f \circ(i+2, j+2))))$ misses $\tilde{\mathcal{L}}(f)$.
(6) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1, j)$ or $f_{k+2}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k}=$ the Go-board of $f \circ(i+1, j)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1))), \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1, j+1))+($ the Go-board of $f \circ(i+2, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(7) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1,1)$, and
(iv) $\quad f_{k}=$ the Go-board of $f \circ(i+2,1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1,2)$ or $f_{k+2}=$ the Go-board of $f \circ(i+2,1)$ and $f_{k}=$ the Go-board of $f \circ(i+1,2)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, 1))+($ the Go-board of $f \circ(i+1,1)))-[0,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(i, 1))+($ the Go-board of $f \circ(i+1,2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(8) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1,1)$, and
(iv) $f_{k}=$ the Go-board of $f \circ(i, 1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+1,2)$ or $f_{k+2}=$ the Go-board of $f \circ(i, 1)$ and $f_{k}=$ the Go-board of $f \circ(i+1,2)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i+1,1))+($ the Go-board of $f \circ(i+2,1)))-[0,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1,1))+($ the Go-board of $f \circ(i+2,2)))$) misses $\widetilde{\mathcal{L}}(f)$.
(9) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1$, width the Go-board of $f)$, and
(iv) $\quad f_{k}=$ the Go-board of $f \circ(i+2$, width the Go-board of $f)$ and $f_{k+2}=$ the Go-board of $f \circ\left(i+1\right.$, width the Go-board of $\left.f-^{\prime} 1\right)$ or $f_{k+2}=$ the Go-board of $f \circ(i+2$, width the Goboard of f) and $f_{k}=$ the Go-board of $f \circ\left(i+1\right.$, width the Go-board of $\left.f-^{\prime} 1\right)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ\left(i\right.$, width the Go-board of $\left.\left.f-^{\prime} 1\right)\right)+($ the Go-board of $f \circ(i+$ 1 , width the Go-board of $f))$), $\frac{1}{2} \cdot(($ the Go-board of $f \circ(i$, width the Go-board of $f))+($ the Go-board of $f \circ(i+1$, width the Go-board of $f)))+[0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(10) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1$, width the Go-board of $f)$, and
(iv) $\quad f_{k}=$ the Go-board of $f \circ(i$, width the Go-board of $f)$ and $f_{k+2}=$ the Go-board of $f \circ(i+$ 1 , width the Go-board of $\left.f-^{\prime} 1\right)$ or $f_{k+2}=$ the Go-board of $f \circ(i$, width the Go-board of f) and $f_{k}=$ the Go-board of $f \circ\left(i+1\right.$, width the Go-board of $\left.f-^{\prime} 1\right)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ\left(i+1\right.$, width the Go-board of $\left.\left.f-^{\prime} 1\right)\right)+($ the Go-board of $f \circ(i+2$, width the Go-board of $f))$), $\frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1$, width the Go-board of $f))+($ the Go-board of $f \circ(i+2$, width the Go-board of $f)))+[0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(11) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given i, j. Suppose that
(i) $1 \leq j$,
(ii) $j+1 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k+2}=$ the Go-board of $f \circ(i+2, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(i, j+1)$ and $f_{k}=$ the Go-board of $f \circ(i+2, j+1)$.

Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\right.\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+\underset{\sim}{1, j+1)})), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1)))$) misses $\widetilde{\mathcal{L}}(f)$.
(12) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $\quad f_{k}=$ the Go-board of $f \circ(i+1, j+2)$ and $f_{k+2}=$ the Go-board of $f \circ(i+2, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(i+1, j+2)$ and $f_{k}=$ the Go-board of $f \circ(i+2, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+\underset{\sim}{1}, j+1))), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1)))$) misses $\widetilde{\mathcal{L}}(f)$.
(13) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i+1, j+2)$ and $f_{k+2}=$ the Go-board of $f \circ(i, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(i+1, j+2)$ and $f_{k}=$ the Go-board of $f \circ(i, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+\underset{\sim}{1}, j+1))), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1))))$ misses $\widetilde{\mathcal{L}}(f)$.
(14) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+1 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $f_{k+1}=$ the Go-board of $f \circ(i+1, j)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i, j)$ and $f_{k+2}=$ the Go-board of $f \circ(i+2, j)$ or $f_{k+2}=$ the Go-board of $f \circ(i, j)$ and $f_{k}=$ the Go-board of $f \circ(i+2, j)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j))+($ the Go-board of $f \circ(i+1, j+1))), \frac{1}{2} \cdot(($ the Goboard of $f \circ(i+1, j))+($ the Go-board of $f \circ(i+2, j+1))))$ misses $\widetilde{\mathcal{L}}(f)$.
(15) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k+2}=$ the Go-board of $f \circ(i+2, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k}=$ the Go-board of $f \circ(i+2, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))), \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1, j+1))+($ the Go-board of $f \circ(i+2, j+2)))$) misses $\widetilde{\mathcal{L}}(f)$.
(16) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\quad f_{k+1}=$ the Go-board of $f \circ(i+1, j+1)$, and
(vi) $f_{k}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k+2}=$ the Go-board of $f \circ(i, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(i+1, j)$ and $f_{k}=$ the Go-board of $f \circ(i, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, j+1))+($ the Go-board of $f \circ(i+1, j+2))), \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1, j+1))+($ the Go-board of $f \circ(i+2, j+2))))$ misses $\widetilde{\mathcal{L}}(f)$.
(17) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $f_{k+1}=$ the Go-board of $f \circ(1, j+1)$, and
(iv) $f_{k}=$ the Go-board of $f \circ(1, j+2)$ and $f_{k+2}=$ the Go-board of $f \circ(2, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(1, j+2)$ and $f_{k}=$ the Go-board of $f \circ(2, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(1, j))+($ the Go-board of $f \circ(\underset{\sim}{1}, j+1)))-[1,0], \frac{1}{2} \cdot(($ the Go-board of $f \circ(1, j))+($ the Go-board of $f \circ(2, j+1))))$ misses $\widetilde{\mathcal{L}}(f)$.
(18) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $f_{k+1}=$ the Go-board of $f \circ(1, j+1)$, and
(iv) $f_{k}=$ the Go-board of $f \circ(1, j)$ and $f_{k+2}=$ the Go-board of $f \circ(2, j+1)$ or $f_{k+2}=$ the Go-board of $f \circ(1, j)$ and $f_{k}=$ the Go-board of $f \circ(2, j+1)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(1, j+1))+($ the Go-board of $f \circ(1, j+2)))-[1,0], \frac{1}{2} \cdot(($ the Go-board of $f \circ(1, j+1))+($ the Go-board of $f \circ(2, j+2)))$ misses $\widetilde{\mathcal{L}}(f)$.
(19) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ$ (len the Go-board of $f, j+1$), and
(iv) $f_{k}=$ the Go-board of $f \circ$ (len the Go-board of $f, j+2$) and $f_{k+2}=$ the Go-board of $f \circ$ (len the Go-board of $f-^{\prime} 1, j+1$) or $f_{k+2}=$ the Go-board of $f \circ$ (len the Go-board of $f, j+2$) and $f_{k}=$ the Go-board of $f \circ$ (len the Go-board of $\left.f-^{\prime} 1, j+1\right)$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ$ (len the Go-board of $\left.\left.f-^{\prime} 1, j\right)\right)+$ (the Go-board of $f \circ$ (len the Go-board of $f, j+1))$), $\frac{1}{2} \cdot(($ the Go-board of $f \circ($ len the Go-board of $f, j))+($ the Go-board of $f \circ($ len the Go-board of $f, j+1)))+[1,0])$ misses $\widetilde{\mathcal{L}}(f)$.
(20) Let given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Let given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\quad f_{k+1}=$ the Go-board of $f \circ$ (len the Go-board of $f, j+1$), and
(iv) $f_{k}=$ the Go-board of $f \circ$ (len the Go-board of f, j) and $f_{k+2}=$ the Go-board of $f \circ$ (len the Go-board of $f-^{\prime} 1, j+1$) or $f_{k+2}=$ the Go-board of $f \circ$ (len the Go-board of f, j) and $f_{k}=$ the Go-board of $f \circ$ (len the Go-board of $\left.f-^{\prime} 1, j+1\right)$.

Then $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ\left(\right.$ len the Go-board of $\left.\left.f-^{\prime} 1, j+1\right)\right)+($ the Go-board of $f \circ$ (len the Go-board of $f, j+2)), \frac{1}{2} \cdot(($ the Go-board of $f \circ($ len the Go-board of $f, j+1))+$ (the Go-board of $f \circ($ len the Go-board of $f, j+2)))+[1,0])$ misses $\tilde{\mathcal{L}}(f)$.

In the sequel P is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
Next we state a number of propositions:
(21) If for every p such that $p \in P$ holds $p_{\mathbf{1}}<(\text { the Go-board of } f \circ(1,1))_{\mathbf{1}}$, then P misses $\tilde{\mathcal{L}}(f)$.
(22) If for every p such that $p \in P$ holds $p_{\mathbf{1}}>(\text { the Go-board of } f \circ(\text { len the Go-board of } f, 1))_{\mathbf{1}}$, then P misses $\widetilde{L}(f)$.
(23) If for every p such that $p \in P$ holds $p_{\mathbf{2}}<(\text { the Go-board of } f \circ(1,1))_{\mathbf{2}}$, then P misses $\tilde{\mathcal{L}}(f)$.
(24) If for every p such that $p \in P$ holds $p_{\mathbf{2}}>(\text { the Go-board of } f \circ(1 \text {, width the Go-board of } f))_{\mathbf{2}}$, then P misses $\widetilde{L}(f)$.
(25) Let given i. Suppose $1 \leq i$ and $i+2 \leq$ len the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i, 1))+($ the Go-board of $f \circ(i+1,1)))-[0,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1,1))+($ the Go-board of $f \circ(i+2,1)))-[0,1])$ misses $\widetilde{L}(f)$.
(26) $\mathcal{L}\left((\right.$ the Go-board of $f \circ(\underset{\sim}{1}, 1))-[1,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(1,1))+$ (the Go-board of $f \circ(2,1)))-[0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(27) $\quad \mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ$ (len the Go-board of $\left.\left.f-^{\prime} 1,1\right)\right)+($ the Go-board of $f \circ$ (len the Go-board of $f, 1))$) - [0, 1], (the Go-board of $f \circ($ len the Go-board of $f, 1))+[1,-1])$ misses $\tilde{\mathcal{L}}(f)$.
(28) Let given i. Suppose $1 \leq i$ and $i+2 \leq$ lenthe Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(i$, width the Go-board of $f))+($ the Go-board of $f \circ(i+1$, width the Go-board of $f)))+$ $[0,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(i+1$, width the Go-board of $f))+($ the Go-board of $f \circ(i+$ 2 , width the Go-board of $f)))+[0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(29) $\mathcal{L}\left((\right.$ the Go-board of $f \circ(1$, width the Go-board of $f))+[-1,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ$ $(1$, width the Go-board of $f))+($ the Go-board of $f \circ(2$, width the Go-board of $f)))+[0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(30) $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ\left(\right.$ len the Go-board of $f-^{\prime} 1$, width the Go-board of $\left.\left.f\right)\right)+($ the Go-board of $f \circ($ len the Go-board of f, width the Go-board of $f)))+[0,1]$, (the Go-board of $f \circ($ len the Go-board of f, width the Go-board of $f))+[1,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(31) Let given j. Suppose $1 \leq j$ and $j+2 \leq$ width the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ(1, j))+($ the Go-board of $f \circ(1, j+1))-[1,0], \frac{1}{2} \cdot(($ the Go-board of $f \circ(1, j+1))+$ (the Go-board of $f \circ(1, j+2))$) $[1,0])$ misses $\tilde{\mathcal{L}}(f)$.
(32) $\mathcal{L}(($ the Go-board of $f \circ \underset{\sim}{1}, 1))-[1,1], \frac{1}{2} \cdot(($ the Go-board of $f \circ(1,1))+$ (the Go-board of $f \circ(1,2)))-[1,0])$ misses $\widetilde{\mathcal{L}}(f)$.
(33) $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ\left(1\right.$, width the Go-board of $\left.\left.f-^{\prime} 1\right)\right)+($ the Go-board of $f \circ$ $(1$, width the Go-board of $f)))-[1,0]$, (the Go-board of $f \circ(1$, widththe Go-board of $f))+$ $[-1,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(34) Let given j. Suppose $1 \leq j$ and $j+2 \leq$ width the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot((\right.$ the Go-board of $f \circ($ len the Go-board of $f, j))+($ the Go-board of $f \circ($ len the Go-board of $f, j+1)))+[1$, $0], \frac{1}{2} \cdot(($ the Go-board of $f \circ$ (len the Go-board of $f, j+1))+$ (the Go-board of $f \circ$ (lenthe Go-board of $f, j+2))+[1,0])$ misses $\widetilde{\mathcal{L}}(f)$.
(35) $\mathcal{L}\left((\right.$ the Go-board of $f \circ($ len the Go-board of $f, 1))+[1,-1], \frac{1}{2} \cdot(($ the Go-board of $f \circ$ $($ len the Go-board of $f, 1))+($ the Go-board of $f \circ($ len the Go-board of $f, 2)))+[1,0])$ misses $\widetilde{\mathcal{L}}(f)$.
(36) $\mathcal{L}\left(\frac{1}{2} \cdot\left(\left(\right.\right.\right.$ the Go-board of $f \circ$ (len the Go-board of f, width the Go-board of $\left.\left.f-^{\prime} 1\right)\right)+($ the Go-board of $f \circ($ len the Go-board of f, width the Go-board of $f)))+[1,0]$, (the Go-board of $f \circ($ len the Go-board of f, width the Go-board of $f))+[1,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(37) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{leftcell}(f, k)$ misses $\widetilde{\mathcal{L}}(f)$.
(38) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Intrightcell}(f, k)$ misses $\tilde{\mathcal{L}}(f)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/euclid.html
[4] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topreal1.html.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
[7] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board - part I. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/goboard1.html
[8] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board - part II. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/goboard2.html
[9] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/goboard5.html
[10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1,1989 http://mizar.org/JFM/Vol1/pre_topc.html
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[13] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html
[14] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Journal of Formalized Mathematics, $1,1989$. \qquad //mizar.org/JFM/Vol1/tops_1.html

Published January 2, 2004

