More on Segments on a Go-Board

Andrzej Trybulec Warsaw University Białystok

Summary. We continue the preparatory work for the Jordan Curve Theorem.

MML Identifier: GOBOARD8.

WWW: http://mizar.org/JFM/Vol7/goboard8.html

The articles [12], [5], [1], [10], [2], [13], [6], [11], [14], [3], [4], [7], [8], and [9] provide the notation and terminology for this paper.

We adopt the following rules: *i*, *j*, *k* are natural numbers, *p* is a point of \mathcal{E}_{T}^{2} , and *f* is a non constant standard special circular sequence.

We now state a number of propositions:

- (1) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+1 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+1, j)$ and f_{k+2} = the Go-board of $f \circ (i+1, j+2)$ or f_{k+2} = the Go-board of $f \circ (i+1, j)$ and f_k = the Go-board of $f \circ (i+1, j+2)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j + 1)) + (\text{the Go-board of } f \circ (i + 1, j + 2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (2) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+2, j+1)$ and f_{k+2} = the Go-board of $f \circ (i+1, j+2)$ or f_{k+2} = the Go-board of $f \circ (i+2, j+1)$ and f_k = the Go-board of $f \circ (i+1, j+2)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j + 1)) + (\text{the Go-board of } f \circ (i + 1, j + 2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (3) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+2, j+1)$ and f_{k+2} = the Go-board of $f \circ (i+1, j)$ or f_{k+2} = the Go-board of $f \circ (i+2, j+1)$ and f_k = the Go-board of $f \circ (i+1, j)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j + 1)) + (\text{the Go-board of } f \circ (i + 1, j + 2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (4) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+1 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i, j)$ and f_{k+2} = the Go-board of $f \circ (i, j+2)$ or f_{k+2} = the Go-board of $f \circ (i, j)$ and f_k = the Go-board of $f \circ (i, j+2)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j + 1)) + (\text{the Go-board of } f \circ (i + 1, j + 2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (5) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) $f_k = \text{the Go-board of } f \circ (i, j+1) \text{ and } f_{k+2} = \text{the Go-board of } f \circ (i+1, j+2) \text{ or } f_{k+2} = \text{the Go-board of } f \circ (i, j+1) \text{ and } f_k = \text{the Go-board of } f \circ (i+1, j+2).$

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,j)) + (\text{the Go-board of } f \circ (i+2,j+1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,j+1)) + (\text{the Go-board of } f \circ (i+2,j+2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (6) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+2 \leq$ width the Go-board of f,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i, j+1)$ and f_{k+2} = the Go-board of $f \circ (i+1, j)$ or f_{k+2} = the Go-board of $f \circ (i, j+1)$ and f_k = the Go-board of $f \circ (i+1, j)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,j)) + (\text{the Go-board of } f \circ (i+2,j+1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,j+1)) + (\text{the Go-board of } f \circ (i+2,j+2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (7) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) f_{k+1} = the Go-board of $f \circ (i+1,1)$, and
- (iv) f_k = the Go-board of $f \circ (i+2,1)$ and f_{k+2} = the Go-board of $f \circ (i+1,2)$ or f_{k+2} = the Go-board of $f \circ (i+2,1)$ and f_k = the Go-board of $f \circ (i+1,2)$. Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board of } f \circ (i+1,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,1)) + (\text{the Go-board o$

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, 1)) + (\text{the Go-board of } f \circ (i + 1, 1))) - [0, 1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, 1)) + (\text{the Go-board of } f \circ (i + 1, 2))))$ misses $\widetilde{\mathcal{L}}(f)$.

- (8) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) f_{k+1} = the Go-board of $f \circ (i+1,1)$, and
- (iv) f_k = the Go-board of $f \circ (i, 1)$ and f_{k+2} = the Go-board of $f \circ (i+1, 2)$ or f_{k+2} = the Go-board of $f \circ (i, 1)$ and f_k = the Go-board of $f \circ (i+1, 2)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,1)) + (\text{the Go-board of } f \circ (i+2,1))) - [0,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1,1)) + (\text{the Go-board of } f \circ (i+2,2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (9) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) f_{k+1} = the Go-board of $f \circ (i+1)$, width the Go-board of f), and
- (iv) f_k = the Go-board of f ∘ (i + 2, width the Go-board of f) and f_{k+2} = the Go-board of f ∘ (i + 1, width the Go-board of f −' 1) or f_{k+2} = the Go-board of f ∘ (i + 2, width the Go-board of f) and f_k = the Go-board of f ∘ (i + 1, width the Go-board of f −' 1).
 Then L(¹/₂ · ((the Go-board of f ∘ (i, width the Go-board of f −' 1)) + (the Go-board of f ∘ (i + 1, width the Go-board of f ∘ (i, width the Go-board of f ∘ (i, width the Go-board of f)) + (the Go-board of f)) + (the Go-board of f) + (the Go-board of f) + (the Go-board of f)) + (the Go-board of f) +

Go-board of $f \circ (i+1, \text{width the Go-board of } f))) + [0,1])$ misses $\mathcal{L}(f)$.

- (10) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i. Suppose that
- (i) $1 \leq i$,
- (ii) $i+2 \leq \text{len the Go-board of } f$,
- (iii) f_{k+1} = the Go-board of $f \circ (i+1)$, width the Go-board of f), and
- (iv) $f_k = \text{the Go-board of } f \circ (i, \text{width the Go-board of } f) \text{ and } f_{k+2} = \text{the Go-board of } f \circ (i + 1, \text{width the Go-board of } f '1) \text{ or } f_{k+2} = \text{the Go-board of } f \circ (i, \text{width the Go-board of } f) \text{ and } f_k = \text{the Go-board of } f \circ (i + 1, \text{width the Go-board of } f '1).$

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1, \text{width the Go-board of } f - '1)) + (\text{the Go-board of } f \circ (i+2, \text{width the Go-board of } f))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1, \text{width the Go-board of } f))) + (\text{the Go-board of } f \circ (i+2, \text{width the Go-board of } f))) + [0, 1]) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (11) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given i, j. Suppose that
- (i) $1 \leq j$,
- (ii) $j+1 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i, j+1)$ and f_{k+2} = the Go-board of $f \circ (i+2, j+1)$ or f_{k+2} = the Go-board of $f \circ (i, j+1)$ and f_k = the Go-board of $f \circ (i+2, j+1)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i + 1, j)) + (\text{the Go-board of } f \circ (i + 2, j + 1)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (12) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j, i. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+1, j+2)$ and f_{k+2} = the Go-board of $f \circ (i+2, j+1)$ or f_{k+2} = the Go-board of $f \circ (i+1, j+2)$ and f_k = the Go-board of $f \circ (i+2, j+1)$. Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i+1, j+1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+2, j+1))))$ misses $\widetilde{\mathcal{L}}(f)$.
- (13) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j, i. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) $f_k = \text{the Go-board of } f \circ (i+1, j+2) \text{ and } f_{k+2} = \text{the Go-board of } f \circ (i, j+1) \text{ or } f_{k+2} = \text{the Go-board of } f \circ (i+1, j+2) \text{ and } f_k = \text{the Go-board of } f \circ (i, j+1).$

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i + 1, j)) + (\text{the Go-board of } f \circ (i + 2, j + 1)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (14) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j, i. Suppose that
- (i) $1 \leq j$,
- (ii) $j+1 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j)$, and
- (vi) f_k = the Go-board of $f \circ (i, j)$ and f_{k+2} = the Go-board of $f \circ (i+2, j)$ or f_{k+2} = the Go-board of $f \circ (i, j)$ and f_k = the Go-board of $f \circ (i+2, j)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i + 1, j + 1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i + 1, j)) + (\text{the Go-board of } f \circ (i + 2, j + 1)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (15) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j, i. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+1, j)$ and f_{k+2} = the Go-board of $f \circ (i+2, j+1)$ or f_{k+2} = the Go-board of $f \circ (i+1, j)$ and f_k = the Go-board of $f \circ (i+2, j+1)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j+1)) + (\text{the Go-board of } f \circ (i+1, j+2))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1, j+1)) + (\text{the Go-board of } f \circ (i+2, j+2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (16) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j, i. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) $1 \leq i$,
- (iv) $i+2 \leq \text{len the Go-board of } f$,
- (v) f_{k+1} = the Go-board of $f \circ (i+1, j+1)$, and
- (vi) f_k = the Go-board of $f \circ (i+1, j)$ and f_{k+2} = the Go-board of $f \circ (i, j+1)$ or f_{k+2} = the Go-board of $f \circ (i+1, j)$ and f_k = the Go-board of $f \circ (i, j+1)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j+1)) + (\text{the Go-board of } f \circ (i+1, j+2))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1, j+1)) + (\text{the Go-board of } f \circ (i+2, j+2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (17) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) f_{k+1} = the Go-board of $f \circ (1, j+1)$, and
- (iv) $f_k = \text{the Go-board of } f \circ (1, j+2) \text{ and } f_{k+2} = \text{the Go-board of } f \circ (2, j+1) \text{ or } f_{k+2} = \text{the Go-board of } f \circ (1, j+2) \text{ and } f_k = \text{the Go-board of } f \circ (2, j+1).$

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j)) + (\text{the Go-board of } f \circ (1, j + 1))) - [1, 0], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j)) + (\text{the Go-board of } f \circ (2, j + 1)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (18) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) f_{k+1} = the Go-board of $f \circ (1, j+1)$, and
- (iv) f_k = the Go-board of $f \circ (1, j)$ and f_{k+2} = the Go-board of $f \circ (2, j+1)$ or f_{k+2} = the Go-board of $f \circ (1, j)$ and f_k = the Go-board of $f \circ (2, j+1)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j+1)) + (\text{the Go-board of } f \circ (1, j+2))) - [1, 0], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j+1)) + (\text{the Go-board of } f \circ (2, j+2)))) \text{ misses } \widetilde{\mathcal{L}}(f).$

- (19) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) f_{k+1} = the Go-board of $f \circ ($ len the Go-board of f, j+1), and
- (iv) f_k = the Go-board of $f \circ (\text{len the Go-board of } f, j+2)$ and f_{k+2} = the Go-board of $f \circ (\text{len the Go-board of } f-'1, j+1)$ or f_{k+2} = the Go-board of $f \circ (\text{len the Go-board of } f, j+2)$ and f_k = the Go-board of $f \circ (\text{len the Go-board of } f-'1, j+1)$.

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f - '1, j)) + (\text{the Go-board of } f \circ (\text{len the Go-board of } f, j+1))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f, j)) + (\text{the Go-board of } f, j))$

- (20) Let given k. Suppose $1 \le k$ and $k+2 \le \text{len } f$. Let given j. Suppose that
- (i) $1 \leq j$,
- (ii) $j+2 \leq$ width the Go-board of f,
- (iii) f_{k+1} = the Go-board of $f \circ$ (len the Go-board of f, j+1), and
- (iv) f_k = the Go-board of $f \circ$ (len the Go-board of f, j) and f_{k+2} = the Go-board of $f \circ$ (len the Go-board of f (1, j+1)) or f_{k+2} = the Go-board of $f \circ$ (len the Go-board of f, j) and f_k = the Go-board of $f \circ$ (len the Go-board of f (1, j+1)).

Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f - (1, j + 1)) + (\text{the Go-board of } f \circ ((\text{len the Go-board of } f, j + 2))), \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f, j + 1)) + (\text{the Go-board of } f, j + 1)) + ((\text{the Go-board of } f, j + 2))) + [1, 0]) \text{ misses } \widetilde{\mathcal{L}}(f).$

In the sequel *P* is a subset of \mathcal{E}_{T}^{2} . Next we state a number of propositions:

- (21) If for every p such that $p \in P$ holds $p_1 < ($ the Go-board of $f \circ (1,1))_1$, then P misses $\mathcal{L}(f)$.
- (22) If for every p such that $p \in P$ holds $p_1 > ($ the Go-board of $f \circ ($ len the Go-board of $f, 1))_1$, then P misses $\widetilde{\mathcal{L}}(f)$.
- (23) If for every p such that $p \in P$ holds $p_2 < (\text{the Go-board of } f \circ (1,1))_2$, then P misses $\mathcal{L}(f)$.
- (24) If for every p such that $p \in P$ holds $p_2 > ($ the Go-board of $f \circ (1,$ width the Go-board of $f))_2$, then P misses $\widetilde{\mathcal{L}}(f)$.
- (25) Let given *i*. Suppose $1 \le i$ and $i+2 \le len$ the Go-board of *f*. Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, 1)) + (\text{the Go-board of } f \circ (i+1, 1))) [0, 1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i+1, 1)) + (\text{the Go-board of } f \circ (i+2, 1))) [0, 1])$ misses $\widetilde{\mathcal{L}}(f)$.
- (26) $\mathcal{L}((\text{the Go-board of } f \circ (1,1)) [1,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1,1)) + (\text{the Go-board of } f \circ (2,1))) [0,1])$ misses $\widetilde{\mathcal{L}}(f)$.
- (27) $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f '1, 1)) + (\text{the Go-board of } f \circ (\text{len the Go-board of } f, 1))) [0, 1], (\text{the Go-board of } f \circ (\text{len the Go-board of } f, 1)) + [1, -1]) \text{ misses } \widetilde{\mathcal{L}}(f).$
- (28) Let given *i*. Suppose 1 ≤ *i* and *i*+2 ≤ len the Go-board of *f*. Then L(¹/₂ · ((the Go-board of *f* ∘ (*i*, width the Go-board of *f*)) + (the Go-board of *f* ∘ (*i*+1, width the Go-board of *f*))) + [0,1], ¹/₂ · ((the Go-board of *f* ∘ (*i*+1, width the Go-board of *f*)) + (the Go-board of *f* ∘ (*i*+2, width the Go-board of *f*))) + [0,1]) misses L(*f*).
- (29) $\mathcal{L}((\text{the Go-board of } f \circ (1, \text{width the Go-board of } f)) + [-1, 1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, \text{width the Go-board of } f))) + (\text{the Go-board of } f \circ (2, \text{width the Go-board of } f))) + [0, 1])$ misses $\widetilde{\mathcal{L}}(f)$.
- (30) L(¹/₂ · ((the Go-board of f ∘ (len the Go-board of f −' 1, width the Go-board of f)) + (the Go-board of f ∘ (len the Go-board of f, width the Go-board of f))) + [0,1], (the Go-board of f ∘ (len the Go-board of f, width the Go-board of f)) + [1,1]) misses L(f).
- (31) Let given j. Suppose $1 \le j$ and $j+2 \le$ width the Go-board of f. Then $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j)) + (\text{the Go-board of } f \circ (1, j+1))) [1,0], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, j+1)) + (\text{the Go-board of } f \circ (1, j+2))) [1,0])$ misses $\widetilde{\mathcal{L}}(f)$.
- (32) $\mathcal{L}((\text{the Go-board of } f \circ (1,1)) [1,1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1,1)) + (\text{the Go-board of } f \circ (1,2))) [1,0]) \text{ misses } \widetilde{\mathcal{L}}(f).$
- (33) $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (1, \text{width the Go-board of } f '1)) + (\text{the Go-board of } f \circ (1, \text{width the Go-board of } f))) [1,0], (\text{the Go-board of } f \circ (1, \text{width the Go-board of } f)) + [-1,1]) \text{ misses } \widetilde{\mathcal{L}}(f).$
- (34) Let given j. Suppose 1 ≤ j and j+2 ≤ width the Go-board of f. Then L(¹/₂ · ((the Go-board of f ∘ (len the Go-board of f, j)) + (the Go-board of f ∘ (len the Go-board of f, j+1))) + [1, 0], ¹/₂ · ((the Go-board of f ∘ (len the Go-board of f, j+1)) + (the Go-board of f ∘ (len the Go-board of f, j+1)) + (the Go-board of f ∘ (len the Go-board of f, j+1)) + [1, 0]) misses L(f).

- (35) $\mathcal{L}((\text{the Go-board of } f \circ (\text{len the Go-board of } f, 1)) + [1, -1], \frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f, 1)) + (\text{the Go-board of } f \circ (\text{len the Go-board of } f, 2))) + [1, 0]) \text{ misses } \widetilde{\mathcal{L}}(f).$
- (36) $\mathcal{L}(\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (\text{len the Go-board of } f, \text{ width the Go-board of } f (1)) + (\text{the Go-board of } f \circ (\text{len the Go-board of } f, \text{ width the Go-board of } f))) + [1,0], (\text{the Go-board of } f \circ (\text{len the Go-board of } f, \text{ width the Go-board of } f))) + [1,1]) \text{ misses } \widetilde{\mathcal{L}}(f).$
- (37) If $1 \le k$ and $k+1 \le \text{len } f$, then Int leftcell(f,k) misses $\widetilde{\mathcal{L}}(f)$.
- (38) If $1 \le k$ and $k+1 \le \text{len } f$, then Intrightcell(f,k) misses $\widetilde{\mathcal{L}}(f)$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [4] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_T^2\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.
- [6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
- [7] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboardl.html.
- [8] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part II. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/goboard2.html.
- [9] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/goboard5.html.
- [10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [13] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [14] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Voll/tops_1.html.

Received October 17, 1995

Published January 2, 2004