On the Go-Board of a Standard Special Circular Sequence

Andrzej Trybulec Warsaw University Białystok

MML Identifier: GOBOARD7.

WWW: http://mizar.org/JFM/Vol7/goboard7.html

The articles [18], [5], [22], [9], [2], [17], [15], [1], [4], [3], [6], [21], [10], [16], [23], [7], [8], [11], [12], [13], [19], [14], and [20] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: f denotes a non empty finite sequence of elements of \mathcal{E}^2_T , i, j, k, n, i_1 , i_2 , j_1 , j_2 denote natural numbers, r, s, r_1 , r_2 denote real numbers, p, q, p_1 denote points of \mathcal{E}^2_T , and G denotes a Go-board.

We now state a number of propositions:

- (1) If $|r_1 r_2| > s$, then $r_1 + s < r_2$ or $r_2 + s < r_1$.
- (2) |r-s| = 0 iff r = s.
- (3) For all points p, p_1 , q of \mathcal{E}_T^n such that $p + p_1 = q + p_1$ holds p = q.
- (4) For all points p, p_1 , q of \mathcal{E}_T^n such that $p_1 + p = p_1 + q$ holds p = q.
- (5) If $p_1 \in \mathcal{L}(p,q)$ and $p_1 = q_1$, then $(p_1)_1 = q_1$.
- (6) If $p_1 \in \mathcal{L}(p,q)$ and $p_2 = q_2$, then $(p_1)_2 = q_2$.
- (7) $\frac{1}{2} \cdot (p+q) \in \mathcal{L}(p,q)$.
- (8) If $p_1 = q_1$ and $q_1 = (p_1)_1$ and $p_2 \le q_2$ and $q_2 \le (p_1)_2$, then $q \in \mathcal{L}(p, p_1)$.
- (9) If $p_1 \le q_1$ and $q_1 \le (p_1)_1$ and $p_2 = q_2$ and $q_2 = (p_1)_2$, then $q \in \mathcal{L}(p, p_1)$.
- (10) Let *D* be a non empty set, given *i*, *j*, and *M* be a matrix over *D*. If $1 \le i$ and $i \le \text{len } M$ and $1 \le j$ and $j \le \text{width } M$, then $\langle i, j \rangle \in \text{the indices of } M$.
- (11) If $1 \le i$ and $i + 1 \le \text{len } G$ and $1 \le j$ and $j + 1 \le \text{width } G$, then $\frac{1}{2} \cdot ((G \circ (i, j)) + (G \circ (i + 1, j + 1))) = \frac{1}{2} \cdot ((G \circ (i, j + 1)) + (G \circ (i + 1, j)))$.
- (12) Suppose $\mathcal{L}(f,k)$ is horizontal. Then there exists j such that $1 \le j$ and $j \le$ width the Goboard of f and for every p such that $p \in \mathcal{L}(f,k)$ holds $p_2 =$ (the Go-board of $f \circ (1,j))_2$.

- (13) Suppose $\mathcal{L}(f,k)$ is vertical. Then there exists i such that $1 \le i$ and $i \le len the Go-board of <math>f$ and for every p such that $p \in \mathcal{L}(f,k)$ holds $p_1 = (\text{the Go-board of } f \circ (i,1))_1$.
- (14) Suppose f is special and $i \le \text{len}$ the Go-board of f and $j \le \text{width}$ the Go-board of f. Then Int cell (the Go-board of f, i, j) misses $\widetilde{L}(f)$.

2. SEGMENTS ON A GO-BOARD

The following propositions are true:

- (15) If $1 \le i$ and $i \le \text{len } G$ and $1 \le j$ and $j+2 \le \text{width } G$, then $\mathcal{L}(G \circ (i,j), G \circ (i,j+1)) \cap \mathcal{L}(G \circ (i,j+1), G \circ (i,j+2)) = \{G \circ (i,j+1)\}.$
- (16) If $1 \le i$ and $i+2 \le \operatorname{len} G$ and $1 \le j$ and $j \le \operatorname{width} G$, then $\mathcal{L}(G \circ (i,j), G \circ (i+1,j)) \cap \mathcal{L}(G \circ (i+1,j), G \circ (i+2,j)) = \{G \circ (i+1,j)\}.$
- (17) If $1 \le i$ and $i + 1 \le \text{len } G$ and $1 \le j$ and $j + 1 \le \text{width } G$, then $\mathcal{L}(G \circ (i, j), G \circ (i, j + 1)) \cap \mathcal{L}(G \circ (i, j + 1), G \circ (i + 1, j + 1)) = \{G \circ (i, j + 1)\}.$
- (18) If $1 \le i$ and $i+1 \le \text{len } G$ and $1 \le j$ and $j+1 \le \text{width } G$, then $\mathcal{L}(G \circ (i,j+1), G \circ (i+1,j+1)) \cap \mathcal{L}(G \circ (i+1,j), G \circ (i+1,j+1)) = \{G \circ (i+1,j+1)\}.$
- (19) If $1 \le i$ and $i+1 \le \text{len } G$ and $1 \le j$ and $j+1 \le \text{width } G$, then $\mathcal{L}(G \circ (i,j), G \circ (i+1,j)) \cap \mathcal{L}(G \circ (i,j), G \circ (i,j+1)) = \{G \circ (i,j)\}.$
- (20) If $1 \le i$ and $i + 1 \le \text{len } G$ and $1 \le j$ and $j + 1 \le \text{width } G$, then $\mathcal{L}(G \circ (i, j), G \circ (i + 1, j)) \cap \mathcal{L}(G \circ (i + 1, j), G \circ (i + 1, j + 1)) = \{G \circ (i + 1, j)\}.$
- (21) Let i_1 , j_1 , i_2 , j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 + 1 \le \operatorname{width} G$ and $1 \le i_2$ and $i_2 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 + 1 \le \operatorname{width} G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2, j_2 + 1))$. Then $i_1 = i_2$ and $|j_1 j_2| \le 1$.
- (22) Let $i_1, \ j_1, \ i_2, \ j_2$ be natural numbers. Suppose $1 \le i_1$ and $i_1 + 1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 \le \operatorname{width} G$ and $1 \le i_2$ and $i_2 + 1 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 \le \operatorname{width} G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1 + 1, j_1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$. Then $j_1 = j_2$ and $|i_1 i_2| \le 1$.
- (23) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \text{len } G$ and $1 \le j_1$ and $j_1 + 1 \le \text{width } G$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } G$ and $1 \le j_2$ and $j_2 \le \text{width } G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$. Then $i_1 = i_2$ or $i_1 = i_2 + 1$ but $j_1 = j_2$ or $j_1 + 1 = j_2$.
- (24) Let i_1 , j_1 , i_2 , j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 + 1 \le \operatorname{width} G$ and $1 \le i_2$ and $i_2 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 + 1 \le \operatorname{width} G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2, j_2 + 1))$. Then
 - (i) $j_1 = j_2$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1)) = \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2, j_2 + 1))$, or
- (ii) $j_1 = j_2 + 1$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1)) \cap \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2, j_2 + 1)) = \{G \circ (i_1, j_1)\}$, or
- (iii) $j_1+1=j_2$ and $\mathcal{L}(G\circ (i_1,j_1),G\circ (i_1,j_1+1))\cap \mathcal{L}(G\circ (i_2,j_2),G\circ (i_2,j_2+1))=\{G\circ (i_2,j_2)\}.$
- (25) Let i_1 , j_1 , i_2 , j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 + 1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 \le \operatorname{width} G$ and $1 \le i_2$ and $i_2 + 1 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 \le \operatorname{width} G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1 + 1, j_1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$. Then
 - (i) $i_1 = i_2$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1 + 1, j_1)) = \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$, or
- (ii) $i_1 = i_2 + 1$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1 + 1, j_1)) \cap \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2)) = \{G \circ (i_1, j_1)\}, \text{ or }$
- (iii) $i_1+1=i_2$ and $\mathcal{L}(G\circ (i_1,j_1),G\circ (i_1+1,j_1))\cap \mathcal{L}(G\circ (i_2,j_2),G\circ (i_2+1,j_2))=\{G\circ (i_2,j_2)\}.$

- (26) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 + 1 \le \operatorname{width} G$ and $1 \le i_2$ and $i_2 + 1 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 \le \operatorname{width} G$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1))$ meets $\mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$. Then $j_1 = j_2$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1)) \cap \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2)) = \{G \circ (i_1, j_1)\}$ or $j_1 + 1 = j_2$ and $\mathcal{L}(G \circ (i_1, j_1), G \circ (i_1, j_1 + 1)) \cap \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2)) = \{G \circ (i_1, j_1 + 1)\}$.
- (27) Suppose $1 \le i_1$ and $i_1 \le \text{len } G$ and $1 \le j_1$ and $j_1 + 1 \le \text{width } G$ and $1 \le i_2$ and $i_2 \le \text{len } G$ and $1 \le j_2$ and $j_2 + 1 \le \text{width } G$ and $\frac{1}{2} \cdot ((G \circ (i_1, j_1)) + (G \circ (i_1, j_1 + 1))) \in \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2, j_2 + 1))$. Then $i_1 = i_2$ and $j_1 = j_2$.
- (28) Suppose $1 \le i_1$ and $i_1 + 1 \le \text{len } G$ and $1 \le j_1$ and $j_1 \le \text{width } G$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } G$ and $1 \le j_2$ and $j_2 \le \text{width } G$ and $\frac{1}{2} \cdot ((G \circ (i_1, j_1)) + (G \circ (i_1 + 1, j_1))) \in \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$. Then $i_1 = i_2$ and $j_1 = j_2$.
- (29) Suppose $1 \le i_1$ and $i_1+1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 \le \operatorname{width} G$. Then it is not true that there exist i_2 , j_2 such that $1 \le i_2$ and $i_2 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2+1 \le \operatorname{width} G$ and $\frac{1}{2} \cdot ((G \circ (i_1,j_1)) + (G \circ (i_1+1,j_1))) \in \mathcal{L}(G \circ (i_2,j_2), G \circ (i_2,j_2+1))$.
- (30) Suppose $1 \le i_1$ and $i_1 \le \operatorname{len} G$ and $1 \le j_1$ and $j_1 + 1 \le \operatorname{width} G$. Then it is not true that there exist i_2 , j_2 such that $1 \le i_2$ and $i_2 + 1 \le \operatorname{len} G$ and $1 \le j_2$ and $j_2 \le \operatorname{width} G$ and $\frac{1}{2} \cdot ((G \circ (i_1, j_1)) + (G \circ (i_1, j_1 + 1))) \in \mathcal{L}(G \circ (i_2, j_2), G \circ (i_2 + 1, j_2))$.

3. STANDARD SPECIAL CIRCULAR SEQUENCES

In the sequel f denotes a non constant standard special circular sequence.

The following propositions are true:

- (31) For every standard non empty finite sequence f of elements of \mathcal{E}_T^2 such that $i \in \text{dom } f$ and $i+1 \in \text{dom } f$ holds $f_i \neq f_{i+1}$.
- (32) There exists i such that $i \in \text{dom } f$ and $(f_i)_1 \neq (f_1)_1$.
- (33) There exists i such that $i \in \text{dom } f$ and $(f_i)_2 \neq (f_1)_2$.
- (34) lenthe Go-board of f > 1.
- (35) width the Go-board of f > 1.
- (36) len f > 4.
- (37) Let f be a circular s.c.c. finite sequence of elements of \mathcal{E}_T^2 . Suppose len f > 4. Let i, j be natural numbers. If $1 \le i$ and i < j and j < len f, then $f_i \ne f_j$.
- (38) For all natural numbers i, j such that $1 \le i$ and i < j and j < len f holds $f_i \ne f_j$.
- (39) For all natural numbers i, j such that 1 < i and i < j and $j \le \text{len } f$ holds $f_i \ne f_j$.
- (40) For every natural number i such that 1 < i and $i \le \text{len } f$ and $f_i = f_1$ holds i = len f.
- (41) Suppose that
 - (i) $1 \le i$,
- (ii) $i \le \text{len the Go-board of } f$,
- (iii) $1 \le j$,
- (iv) $j+1 \le$ width the Go-board of f, and
- (v) $\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i, j)) + (\text{the Go-board of } f \circ (i, j+1))) \in \widetilde{\mathcal{L}}(f).$

Then there exists k such that $1 \le k$ and $k+1 \le \text{len } f$ and $\mathcal{L}(\text{the Go-board of } f \circ (i,j), \text{the Go-board of } f \circ (i,j+1)) = \mathcal{L}(f,k).$

- (42) Suppose that
 - (i) $1 \leq i$,
- (ii) $i+1 \le \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j \le$ width the Go-board of f, and
- (v) $\frac{1}{2} \cdot ((\text{the Go-board of } f \circ (i,j)) + (\text{the Go-board of } f \circ (i+1,j))) \in \widetilde{\mathcal{L}}(f).$ Then there exists k such that $1 \leq k$ and $k+1 \leq \text{len } f$ and $\mathcal{L}(\text{the Go-board of } f \circ (i,j), \text{the Go-board of } f \circ (i+1,j)) = \mathcal{L}(f,k).$
- (43) Suppose that $1 \le i$ and $i+1 \le l$ enthe Go-board of f and $1 \le j$ and $j+1 \le l$ width the Go-board of f and $1 \le k$ and k+1 < l en f and L (the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i+1,j+1) = L(f,k)$ and L (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1) = L(f,k+1)$. Then $f_k = l$ the Go-board of $f \circ (i,j+1)$ and $f_{k+1} = l$ the Go-board of $f \circ (i+1,j+1)$ and $f_{k+2} = l$ the Go-board of $f \circ (i+1,j)$.
- (44) Suppose that $1 \leq i$ and $i \leq len$ the Go-board of f and $1 \leq j$ and j+1 < width the Go-board of f and $1 \leq k$ and k+1 < len f and \mathcal{L} (the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i,j+2) = \mathcal{L}(f,k)$ and \mathcal{L} (the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i,j+1) = \mathcal{L}(f,k+1)$. Then $f_k =$ the Go-board of $f \circ (i,j+2)$ and $f_{k+1} =$ the Go-board of $f \circ (i,j+1)$ and $f_{k+2} =$ the Go-board of $f \circ (i,j)$.
- (45) Suppose that $1 \le i$ and $i+1 \le len$ the Go-board of f and $1 \le j$ and $j+1 \le width$ the Go-board of f and $1 \le k$ and k+1 < len f and \mathcal{L} (the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i+1,j+1) = \mathcal{L}(f,k)$ and \mathcal{L} (the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i,j+1) = \mathcal{L}(f,k+1)$. Then $f_k =$ the Go-board of $f \circ (i+1,j+1)$ and $f_{k+1} =$ the Go-board of $f \circ (i,j+1)$ and $f_{k+2} =$ the Go-board of $f \circ (i,j)$.
- (46) Suppose that $1 \le i$ and $i+1 \le l$ enthe Go-board of f and $1 \le j$ and $j+1 \le l$ width the Go-board of f and $1 \le k$ and k+1 < l en f and L (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1) = L(f,k)$ and L (the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i+1,j+1) = L(f,k+1)$. Then $f_k = l$ the Go-board of $f \circ (i+1,j)$ and $f_{k+1} = l$ the Go-board of $f \circ (i+1,j+1)$ and $f_{k+2} = l$ the Go-board of $f \circ (i,j+1)$.
- (47) Suppose that $1 \le i$ and i+1 < len the Go-board of f and $1 \le j$ and $j \le \text{width}$ the Go-board of f and $1 \le k$ and k+1 < len f and \mathcal{L} (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+2,j) = \mathcal{L}(f,k)$ and \mathcal{L} (the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i+1,j) = \mathcal{L}(f,k+1)$. Then $f_k = \text{the Go-board}$ of $f \circ (i+2,j)$ and $f_{k+1} = \text{the Go-board}$ of $f \circ (i+1,j)$ and $f_{k+2} = \text{the Go-board}$ of $f \circ (i,j)$.
- (48) Suppose that $1 \le i$ and $i+1 \le l$ en the Go-board of f and $1 \le j$ and $j+1 \le l$ width the Go-board of f and $1 \le k$ and k+1 < l en f and L (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1) = L(f,k)$ and L (the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i+1,j) = L(f,k+1)$. Then $f_k = l$ the Go-board of $f \circ (i+1,j+1)$ and $f_{k+1} = l$ the Go-board of $f \circ (i+1,j)$ and $f_{k+2} = l$ the Go-board of $f \circ (i,j)$.
- (49) Suppose that $1 \leq i$ and $i+1 \leq l$ enthe Go-board of f and $1 \leq j$ and $j+1 \leq l$ width the Go-board of f and $1 \leq k$ and k+1 < l en f and f (the Go-board of $f \circ (i+1,j)$), the Go-board of $f \circ (i+1,j+1) = f$ and f (the Go-board of $f \circ (i+1,j+1) = f$). Then f = the Go-board of $f \circ (i+1,j+1) = f$ and $f \circ (i+1,j+1) = f$ and $f \circ (i+1,j+1) = f$ and $f \circ (i+1,j+1) = f$
- (50) Suppose that $1 \le i$ and $i \le len the Go-board of <math>f$ and $1 \le j$ and j+1 < width the Go-board of <math>f and $1 \le k$ and k+1 < len f and $\mathcal{L}(the Go-board of <math>f \circ (i,j)$, the Go-board of $f \circ (i,j+1)) = \mathcal{L}(f,k)$ and $\mathcal{L}(the Go-board of <math>f \circ (i,j+1)$, the Go-board of $f \circ (i,j+2)) = \mathcal{L}(f,k+1)$. Then $f_k = the Go-board of <math>f \circ (i,j)$ and $f_{k+1} = the Go-board of <math>f \circ (i,j+1)$ and $f_{k+2} = the Go-board of <math>f \circ (i,j+2)$.

- (51) Suppose that $1 \le i$ and $i+1 \le l$ en the Go-board of f and $1 \le j$ and $j+1 \le w$ idth the Go-board of f and $1 \le k$ and k+1 < len f and L(the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i,j+1)$) = L(f,k) and L(the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i+1,j+1)$) = L(f,k+1). Then f_k = the Go-board of $f \circ (i,j)$ and f_{k+1} = the Go-board of $f \circ (i,j+1)$ and f_{k+2} = the Go-board of $f \circ (i+1,j+1)$.
- (52) Suppose that $1 \le i$ and $i+1 \le l$ en the Go-board of f and $1 \le j$ and $j+1 \le l$ width the Go-board of f and $1 \le k$ and k+1 < l en f and L (the Go-board of $f \circ (i,j+1)$, the Go-board of $f \circ (i+1,j+1) = L(f,k)$ and L (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1) = L(f,k+1)$. Then $f_k = l$ the Go-board of $f \circ (i,j+1)$ and $f_{k+1} = l$ the Go-board of $f \circ (i+1,j+1)$ and $f_{k+1} = l$ the Go-board of $f \circ (i+1,j)$.
- (53) Suppose that $1 \le i$ and i+1 < len the Go-board of f and $1 \le j$ and $j \le \text{width}$ the Go-board of f and $1 \le k$ and k+1 < len f and \mathcal{L} (the Go-board of $f \circ (i,j)$, the Go-board of $f \circ (i+1,j) = \mathcal{L}(f,k)$ and \mathcal{L} (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+2,j) = \mathcal{L}(f,k+1)$. Then $f_k = \text{the Go-board}$ of $f \circ (i,j)$ and $f_{k+1} = \text{the Go-board}$ of $f \circ (i+1,j)$ and $f_{k+2} = \text{the Go-board}$ of $f \circ (i+2,j)$.
- (54) Suppose that $1 \le i$ and $i+1 \le l$ en the Go-board of f and $1 \le j$ and $j+1 \le l$ width the Go-board of f and $1 \le k$ and k+1 < l en f and f (the Go-board of $f \circ (i,j)$), the Go-board of $f \circ (i+1,j) = f$ and f (the Go-board of $f \circ (i+1,j) = f$). Then f is the Go-board of $f \circ (i+1,j) = f$ and f is the Go-board of $f \circ (i+1,j) = f$ and f is the Go-board of $f \circ (i+1,j) = f$.
- (55) Suppose that
 - (i) $1 \le i$,
- (ii) $i \le \text{len the Go-board of } f$,
- (iii) $1 \le j$,
- (iv) j+1 < width the Go-board of f,
- (v) \mathcal{L} (the Go-board of $f \circ (i, j)$, the Go-board of $f \circ (i, j+1)$) $\subseteq \widetilde{\mathcal{L}}(f)$, and
- $\text{(vi)} \quad \mathcal{L}(\text{the Go-board of } f\circ (i,j+1), \text{the Go-board of } f\circ (i,j+2))\subseteq \widetilde{\mathcal{L}}(f).$ Then
- (vii) f_1 = the Go-board of $f \circ (i, j+1)$ but f_2 = the Go-board of $f \circ (i, j)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i, j+2)$ or f_2 = the Go-board of $f \circ (i, j+2)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i, j)$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $f_{k+1} = \text{the Go-board of } f \circ (i, j+1)$ and $f_k = \text{the Go-board of } f \circ (i, j+2)$ and $f_{k+2} = \text{the Go-board of } f \circ (i, j+2)$ or $f_k = \text{the Go-board of } f \circ (i, j+2)$ and $f_{k+2} = \text{the Go-board of } f \circ (i, j)$.
- (56) Suppose that
 - (i) $1 \le i$,
- (ii) $i+1 \le \text{len the Go-board of } f$,
- (iii) $1 \le j$,
- (iv) $j+1 \le$ width the Go-board of f,
- (v) \mathcal{L} (the Go-board of $f \circ (i, j)$, the Go-board of $f \circ (i, j+1) \subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) $\mathcal{L}(\text{the Go-board of }f\circ(i,j+1), \text{the Go-board of }f\circ(i+1,j+1))\subseteq\widetilde{\mathcal{L}}(f).$ Then
- (vii) f_1 = the Go-board of $f \circ (i,j+1)$ but f_2 = the Go-board of $f \circ (i,j)$ and $f_{\text{len}\,f-'1}$ = the Go-board of $f \circ (i+1,j+1)$ or f_2 = the Go-board of $f \circ (i+1,j+1)$ and $f_{\text{len}\,f-'1}$ = the Go-board of $f \circ (i,j)$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $f_{k+1} = \text{the Go-board of } f \circ (i, j+1)$ and $f_k = \text{the Go-board of } f \circ (i, j)$ and $f_{k+2} = \text{the Go-board of } f \circ (i+1, j+1)$ or $f_k = \text{the Go-board of } f \circ (i+1, j+1)$ and $f_{k+2} = \text{the Go-board of } f \circ (i, j)$.

- (57) Suppose that
 - (i) $1 \le i$,
- (ii) $i+1 \le \text{len the Go-board of } f$,
- (iii) $1 \le j$,
- (iv) $j+1 \le \text{width the Go-board of } f$,
- (v) \mathcal{L} (the Go-board of $f \circ (i, j+1)$, the Go-board of $f \circ (i+1, j+1)$) $\subseteq \widetilde{\mathcal{L}}(f)$, and
- $\text{(vi)} \qquad \mathcal{L}(\text{the Go-board of } f\circ (i+1,j+1), \text{the Go-board of } f\circ (i+1,j))\subseteq \widetilde{\mathcal{L}}(f).$ Then
- (vii) f_1 = the Go-board of $f \circ (i+1, j+1)$ but f_2 = the Go-board of $f \circ (i, j+1)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i+1, j)$ or f_2 = the Go-board of $f \circ (i+1, j)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i, j+1)$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $f_{k+1} = \text{the Go-board of } f \circ (i+1,j+1)$ and $f_k = \text{the Go-board of } f \circ (i,j+1)$ and $f_{k+2} = \text{the Go-board of } f \circ (i+1,j)$ or $f_k = \text{the Go-board of } f \circ (i+1,j)$ and $f_{k+2} = \text{the Go-board of } f \circ (i,j+1)$.
- (58) Suppose that
 - (i) $1 \le i$,
- (ii) i+1 < len the Go-board of f,
- (iii) $1 \le j$,
- (iv) $j \le$ width the Go-board of f,
- (v) \mathcal{L} (the Go-board of $f \circ (i, j)$, the Go-board of $f \circ (i + 1, j)$) $\subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) \mathcal{L} (the Go-board of $f\circ (i+1,j)$, the Go-board of $f\circ (i+2,j))\subseteq \widetilde{\mathcal{L}}(f)$. Then
- (vii) f_1 = the Go-board of $f \circ (i+1,j)$ but f_2 = the Go-board of $f \circ (i,j)$ and $f_{\text{len }f-'1}$ = the Go-board of $f \circ (i+2,j)$ or f_2 = the Go-board of $f \circ (i+2,j)$ and $f_{\text{len }f-'1}$ = the Go-board of $f \circ (i,j)$, or
- (viii) there exists k such that $1 \le k$ and $k+1 < \operatorname{len} f$ and $f_{k+1} = \operatorname{the}$ Go-board of $f \circ (i+1,j)$ and $f_k = \operatorname{the}$ Go-board of $f \circ (i,j)$ and $f_{k+2} = \operatorname{the}$ Go-board of $f \circ (i+2,j)$ or $f_k = \operatorname{the}$ Go-board of $f \circ (i+2,j)$ and $f_{k+2} = \operatorname{the}$ Go-board of $f \circ (i,j)$.
- (59) Suppose that
 - (i) $1 \le i$,
- (ii) $i+1 \le \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+1 \le$ width the Go-board of f,
- (v) \mathcal{L} (the Go-board of $f \circ (i, j)$, the Go-board of $f \circ (i + 1, j)$) $\subseteq \widetilde{\mathcal{L}}(f)$, and
- $\text{(vi)} \qquad \mathcal{L}(\text{the Go-board of } f \circ (i+1,j), \text{the Go-board of } f \circ (i+1,j+1)) \subseteq \widetilde{\mathcal{L}}(f).$ Then
- (vii) f_1 = the Go-board of $f \circ (i+1,j)$ but f_2 = the Go-board of $f \circ (i,j)$ and $f_{\text{len }f-'1}$ = the Go-board of $f \circ (i+1,j+1)$ or f_2 = the Go-board of $f \circ (i+1,j+1)$ and $f_{\text{len }f-'1}$ = the Go-board of $f \circ (i,j)$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $f_{k+1} = \text{the Go-board of } f \circ (i+1,j)$ and $f_k = \text{the Go-board of } f \circ (i,j)$ and $f_{k+2} = \text{the Go-board of } f \circ (i+1,j+1)$ or $f_k = \text{the Go-board of } f \circ (i+1,j+1)$ and $f_{k+2} = \text{the Go-board of } f \circ (i,j)$.

- (60) Suppose that
 - (i) 1 < i,
- (ii) $i+1 \le \text{len the Go-board of } f$,
- (iii) $1 \le j$,
- (iv) $j+1 \le$ width the Go-board of f,
- (v) \mathcal{L} (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1)$) $\subseteq \mathcal{L}(f)$, and
- $\text{(vi)} \qquad \mathcal{L}(\text{the Go-board of } f\circ (i+1,j+1), \text{the Go-board of } f\circ (i,j+1))\subseteq \widetilde{\mathcal{L}}(f).$ Then
- (vii) f_1 = the Go-board of $f \circ (i+1, j+1)$ but f_2 = the Go-board of $f \circ (i+1, j)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i, j+1)$ or f_2 = the Go-board of $f \circ (i, j+1)$ and $f_{\text{len } f-'1}$ = the Go-board of $f \circ (i+1, j)$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $f_{k+1} = \text{the Go-board of } f \circ (i+1,j+1)$ and $f_k = \text{the Go-board of } f \circ (i+1,j)$ and $f_{k+2} = \text{the Go-board of } f \circ (i,j+1)$ or $f_k = \text{the Go-board of } f \circ (i,j+1)$ and $f_{k+2} = \text{the Go-board of } f \circ (i+1,j)$.
- (61) Suppose $1 \le i$ and i < len the Go-board of f and $1 \le j$ and j+1 < width the Go-board of f. Then
 - (i) $\mathcal{L}(\text{the Go-board of }f\circ(i,j),\text{the Go-board of }f\circ(i,j+1))\not\subseteq\widetilde{\mathcal{L}}(f),$ or
- (ii) \mathcal{L} (the Go-board of $f \circ (i, j+1)$, the Go-board of $f \circ (i, j+2)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (iii) \mathcal{L} (the Go-board of $f \circ (i, j+1)$, the Go-board of $f \circ (i+1, j+1)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$.
- (62) Suppose $1 \le i$ and i < len the Go-board of <math>f and $1 \le j$ and j+1 < width the Go-board of <math>f. Then
 - (i) \mathcal{L} (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (ii) \mathcal{L} (the Go-board of $f \circ (i+1,j+1)$, the Go-board of $f \circ (i+1,j+2)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (iii) \mathcal{L} (the Go-board of $f \circ (i, j+1)$, the Go-board of $f \circ (i+1, j+1)$) $\not\subseteq \mathcal{L}(f)$.
- (63) Suppose $1 \le j$ and j < width the Go-board of f and $1 \le i$ and i+1 < len the Go-board of f. Then
 - (i) \mathcal{L} (the Go-board of $f \circ (i, j)$, the Go-board of $f \circ (i + 1, j)$) $\subseteq \widetilde{\mathcal{L}}(f)$, or
- (ii) \mathcal{L} (the Go-board of $f \circ (i+1, j)$, the Go-board of $f \circ (i+2, j) \not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (iii) \mathcal{L} (the Go-board of $f \circ (i+1, j)$, the Go-board of $f \circ (i+1, j+1)$) $\not\subset \widetilde{\mathcal{L}}(f)$.
- (64) Suppose $1 \le j$ and j < width the Go-board of f and $1 \le i$ and i+1 < len the Go-board of f. Then
 - (i) \mathcal{L} (the Go-board of $f \circ (i, j+1)$, the Go-board of $f \circ (i+1, j+1)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (ii) \mathcal{L} (the Go-board of $f \circ (i+1, j+1)$, the Go-board of $f \circ (i+2, j+1)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$, or
- (iii) \mathcal{L} (the Go-board of $f \circ (i+1,j)$, the Go-board of $f \circ (i+1,j+1)$) $\not\subseteq \widetilde{\mathcal{L}}(f)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.

- [6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [7] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{\text{T}}^2\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboardl.html.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part II. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard2.html.
- [13] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/sppol_1.html.
- [14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. On the decomposition of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/finseq_6.html.
- [20] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.

Received October 15, 1995

Published January 2, 2004