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Summary. In the article we introduce Go-board as some kinds of matrix which ele-
ments belong to topological spa@;’é. We define the functor of delaying column in Go-board
and relation between Go-board and finite sequence of point E%nBasic facts about those
notations are proved. The concept of the article is based éon [16].

MML Identifier: GOBOARD1.

WWW: http://mizar.orqg/JFM/Vol4d/goboardl.html

The articles([17],[[5],[20],[10],[[18],[[2],[[21] [[4],[[1],[3], [[], [[13],[[1/4],[[15],[[6],[[19],[[8],[[O],
[11]], and [12] provide the notation and terminology for this paper.

1. REAL NUMBERSPRELIMINARIES

For simplicity, we follow the rulesf, f1, f,, g denote finite sequences of element€gf v denotes
a finite sequence of elements®f r, s denote real numbers, m, i, j, k denote natural numbers,
andx denotes a set.

Next we state three propositions:

(1) |r—s=1liffr>sandr=s+1lorr <sands=r+1.
(2 Ji—jl+In—=m=1iff i—jj=1andn=mor |n—m|=1andi = j.

(3) n> 1iff there existansuch thah = m+ 1 andm > 0.

2. FINITE SEQUENCESPRELIMINARIES

The schem&inSegDChoiceleals with a non empty set, a natural numbeB, and a binary predi-
cate?, and states that:
There exists a finite sequent®f elements 0f2 such that lerf = B and for everyn
such than € SegB holds?|n, fy]
provided the parameters satisfy the following condition:
e For everyn such than € SegB there exists an elemedtof 4 such thatP[n,d].
We now state several propositions:

(4) Ifn=m+1andi € Sem, then lenSgriSegn\ {i}) =m.

(5) Suppose =m-+1 andk € Segn andi € Segn. Then
(i) if1 <iandi <k, then(SgmSegn\ {k}))(i) =i, and
(i) if k<iandi <m, then(SgmSegn\{k}))(i)=i+1.

1 © Association of Mizar Users
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(6) For every finite sequenckeand for alln, m such that lef = m+ 1 andn € domf holds
len(fjn) =m.

(7) For every finite sequendeand for alln, m, k such that leri = m+ 1 andn € domf and
k € Segnholds fin(k) = f(k) or fjn(k) = f(k+1).

(8) For every finite sequenck and for alln, m, k such that ledf = m+ 1 andk < n holds
fin(k) = f(k).

(9) For every finite sequenceand for alln, m, k such that led = m+ 1 andn € domf and
n < kandk < mholds fj,(k) = f(k+1).

(10) LetD be a setf be a finite sequence of elementsfand givem, m. If n € domf and
m € Seqn, thenm € domf and(f [n)m = fm.
Let f be a finite sequence of elementsibiand letk be a natural number. Thef(k) is a real

number.
LetI1 be a finite sequence of elementdfafWe say that; is increasing if and only if:

(Def. 1) For alln, msuch thanh € doml; andm € doml1 andn < mholdsli(n) < 11(m).
Let f be afinite sequence. Let us observe tha constant if and only if;
(Def. 2) For alln, msuch than € domf andm e domf holds f(n) = f(m).
Let us note that there exists a finite sequence of elemeritsadfich is non empty and increas-

ing.
Let D be a non empty set. Note that there exists a finite sequence of elem&nighith is non

empty.
Let us mention that there exists a finite sequence of elemeifisdfich is constant.
Let us considerf. The functorX-coordinatéf) yields a finite sequence of elementsoand is

defined as follows:
(Def. 3) lenX-coordinatéf) = lenf and for everyn such thatn € domX-coordinatéf) holds
(X-coordinatéf))(n) = (fn)1.
The functorY-coordinatéf) yields a finite sequence of elementsfoand is defined by:
(Def. 4) lenY-coordinatéf) = lenf and for everyn such thatn € domY-coordinatéf) holds
(Y-coordinatéf))(n) = (fn)2.
We now state three propositions:
(14E] Suppose that # 0 and rngr C Segn andv(lenv) = n and for everyk such that < k and
k <lenv— 1 and for allr, ssuch thatr = v(k) ands= v(k+ 1) holds|r —s| =1 orr = sand

i € Segn andi + 1 € Segn andm € domv andv(m) = i and for everyk such thak € domv
andv(k) =i holdsk <m. Thenm+1 € domv andv(m+1) =i+ 1.

(15) Suppose that

i v#0,
(i) rngvC Seq,
@iy  v(1)=1,

(iv) v(lenv) =n,and

(v) for everyk such that 1< k andk < lenv— 1 and for allr, s such thatr = v(k) ands=
v(k+1) holds|r —s|=1orr =s.
Then

(vi) for everyi such thai € Segn there existk such thak € domv andv(k) =i, and

(vii)  forall m K, i, r such thaim € domv andv(m) =i and for everyj such thatj € domv and
v(j) =iholdsj < mandm< kandk € domv andr = v(k) holdsi <.

(16) Ifi € domf and 2< lenf, thenf; € L(f).

1 The propositions (11)-(13) have been removed.
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3. MATRIX PRELIMINARIES
One can prove the following proposition

(17) For every non empty sBtand for every matrisvl overD and for alli, j such thaj € domM
andi € SegwidttM holdsMg;(j) = Line(M, j)(i).

Let D be a non empty set and It be a matrix oveD. Let us observe thail is empty yielding
if and only if:

(Def.5) 0=lenM or 0= widthM.
Let M be a matrix oveE%. We say thaM is line X-constant if and only if:

(Def. 6) For everyn such than € domM holdsX-coordinatéLine(M,n)) is constant.
We say thaM is columnY -constant if and only if:

(Def. 7)  For evenyn such than € SegwidtiM holdsY -coordinat¢Mpg ) is constant.
We say thaM is line Y-increasing if and only if:

(Def. 8) For evenyn such thah € domM holdsY-coordinatéLine(M, n)) is increasing.
We say thaiM is columnX-increasing if and only if;:

(Def. 9) For everyn such than € SegwidthV holdsX-coordinat¢Mm ) is increasing.

One can check that there exists a matrix a#émwhich is non empty yielding, lin&-constant,
columnY -constant, liney -increasing, and columX-increasing.
Next we state two propositions:

(19E| Let M be a columnX-increasing lineX-constant matrix ove? and givenx, n, m. If
x € rngLine(M, n) andx € rngLingM, m) andn € domM andm € domM, thenn =m.

(20) LetM be a lineY-increasing columrY-constant matrix ove? and givenx, n, m. If
x € mg(Mg ) andx € rng(Mg m) andn € SegwidtiM andm € SegwidtiM, thenn=m.

4., BAsIC GO-BOARD'S NOTATION

A Go-board is a non empty yielding lin€-constant columry -constant lineY -increasing column
X-increasing matrix oveE2.

In the sequet is a Go-board.

One can prove the following propositions:

(21) Ifx=Go(mk)andx=Go (i, j) and{m, k) € the indices ofc and(i, j} € the indices of
G, thenm=iandk = j.

(22) Ifmedomf andfy € rg(Go 1), then(ffm)1 € rng(Gp 1).
(23) Ifme domf andfy € mMg(Gowidha), then(f IM)ien t1m) € MA(Go widtha)-
(24) Ifrngf misses rngGo;i) and f, = Go (m,k) andn € domf andm € domG, theni # k.

Let us considelG, i. Let us assume thate SegwidthG and widthG > 1. The deleting of
i-column inG yielding a Go-board is defined by the conditions (Def. 10).

(Def. 10)(i) len(the deleting afcolumn inG) = lenG, and
(i) for everyk such thak € domG holds (the deleting afcolumn inG)(k) = Line(G, k);;.

One can prove the following propositions:

2 The proposition (18) has been removed.
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(25) Ifi € SegwidthG and widthG > 1 andk € domG, then Lin€the deleting ofi-column in
G, k) = Line(G,Kk) ;.

(26) Ifi € SegwidthG and widthG = m+ 1 andm > 0, then width (the deleting dfcolumn in
G)=m

(27) Ifi € SegwidthG and widthG > 1, then widthG = width (the deleting of-column inG) +
1

(28) Suppose € SegwidthG and widthG > 1 andn € domG andm € Segwidth (the deleting
of i-column inG). Then (the deleting dfcolumn inG) o (n,m) = Line(G, n)i(m).

(29) Supposé € Segwidths and widthG = m+ 1 andm > 0 and 1< k andk < i. Then (the
deleting ofi-column inG)n x = Gk andk € Segwidth (the deleting dfcolumn inG) and
k € SegwidthG.

(30) Supposé € Segwidths and widthG = m+ 1 andm > 0 andi < k andk < m. Then (the
deleting ofi-column inG) = G k41 andk € Segwidth (the deleting afcolumn inG) and
k+ 1 e SegwidthG.

(31) Suppose € SegwidthG and widthG = m+1 andm > 0 andn € domG and 1< k and
k <i. Then (the deleting afcolumn inG) o (n,k) = Go (n,k) andk € SegwidthG.

(32) Supposeé € SegwidthG and widthG = m+ 1 andm > 0 andn € domG andi < k and
k < m. Then (the deleting afcolumn inG) o (n,k) = Go (n,k+ 1) andk+ 1 € SegwidthG.

(33) Suppose widtt = m+ 1 andm > 0 andk € Segn. Then (the deleting of 1-column in
G)ok = Gok+1 andk € Segwidth (the deleting of 1-column ) andk+ 1 € SegwidtiG.

(34) IfwidthG=m+ 1 andm> 0 andk € Segnandn € domG, then (the deleting of 1-column
in G) o (n,k) = Go(n,k+1) and 1 SegwidtiG.

(35) Suppose widtt = m+ 1 andm > 0 andk € Segm. Then (the deleting of widt®-column
in G)ox = Gox andk € Segwidth (the deleting of widi-column inG).

(36) If widthG = m+1 andm> 0 andk € Segnandn € domG, thenk € SegwidthG and (the
deleting of widthG-column inG) o (n,k) = Go (n,k) and widthG € SegwidthG.

(37) Suppose rngmisses G ;) and f, € rngLing(G, m) andn € domf andi € SegwidthG
andm € domG and widthG > 1. Thenf, € rngLing(the deleting of-column inG, m).

In the sequeD is a set,f is a finite sequence of elements@fandM is a matrix oveD.
Let us consideD, f, M. We say thaff is a sequence which elements belonytdf and only if
the conditions (Def. 11) are satisfied.

(Def. 11)(i)  For everyn such thain € domf there exist, j such thati, j) € the indices oM and

fa=Mo(i,j),and

(i)  for every n such thath € domf andn+ 1 € domf and for allm, k, i, j such that{m,
k) € the indices oM and(i, j) € the indices oM and f, = Mo (m,k) and fr 1 = Mo (i, j)
holds|m—i| + |k— j| =1.

We now state three propositions:

(38)(1)) If me domf, then 1<len(fm), and

(i) if f is a sequence which elements belondvtpthen f [mis a sequence which elements
belong toM.
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(39) Suppose that

(i) for everyn such thatn € domf; there existi, j such that(i, j) € the indices oM and
(fi)n=Mo(i,j), and

(i) for every n such thatn € domf; there exist, j such that(i, j) € the indices oM and
(f2)n=Mo (i, ]).
Let givenn. If ne dom(f1 ™ fz), then there exist, j such thati, j) € the indices oM and
(fa™ f2)n=Mo(i, ]).

(40) Suppose that

(i) foreverynsuch than € domf; andn+ 1 € domf; and for allm, k, i, j such thatm, k) €
the indices oM and(i, j) € the indices oM and(f1)n = Mo (m,k) and(f1)nr1 =Mo(i,j)
holdsim—i|+ |k—j| =1,

(i) for everynsuch than € domf, andn+1 € domf; and for allm, k, i, j such thafm, k)
the indices oM and({i, j) € the indices oM and(f;), = Mo (m,k) and ()1 =Mo(i, )
holds|m—i|+|k—j| =1, and

(i)  for all m, k, i, j such that{m, k) € the indices ofM and (i, j) € the indices ofM and
(f1)lent, = Mo (m,k) and(f2)1 = Mo (i, j) and lenf; € domf; and 1€ domf, holds|m—
i|+|k—j|=1
Let givenn. Suppose € dom( f; ™~ f2) andn—+1 € dom(f; ™ f2). Let givenm, k, i, j. Suppose
{m, k) € the indices oM and(i, j) € the indices oM and(f; "~ f2)n = Mo (mk) and(f1 ™
f2)nr1=Mo(i,j). Thenjm—i| + |k—j| = 1.

In the sequef denotes a finite sequence of elementiéf
Next we state a number of propositions:

(41) Supposd is a sequence which elements belon@tandi € SegwidthG and rngf misses
rmg(Go,i) and widthG > 1. Thenf is a sequence which elements belong to the deleting of
i-column inG.

(42) If f is a sequence which elements belon@tandi € domf, then there exista such that
n € domG andf; € rngLing(G, n).

(43) Suppose is a sequence which elements belong@@ndi € domf andi + 1 € domf
andn € domG and f; € rngLine(G,n). Then fi;1 € rngLing(G, n) or for everyk such that
fit1 € rngLing(G, k) andk € domG holds|n—k| = 1.

(44) Suppose that & lenf and fiens € rngLingG,lenG) and f is a sequence which elements
belong toG andi € domG andi + 1 € domG andm € domf and f, € rngLing(G, i) and for
everyk such thakk € domf and fy € rngLing(G,i) holdsk < m. Thenm+ 1 € domf and
fme1 € rngLing(G,i +1).

(45) Suppose X lenf and f; € rngLing(G,1) and fiens € rngLingG,lenG) and f is a se-
guence which elements belong@ Then

(i) for everyi such that 1< i andi < lenG there existk such thatk € domf and fx €
rngLine(G,i),

(i) for everyi such that i< i andi < lenG and 2< lenf holdsZ(f) meets rngLinéG, i), and

(i)  forall i, j, k, msuch that I< i andi < lenG and 1< j andj < lenG andk € domf and

me domf andfy € rngLingG,i) and for everyn such than € domf andf, € rngLine(G, i)
holdsn < k andk < mand f, € rngLing(G, j) holdsi < j.

(46) If f is a sequence which elements belon@tandi € domf, then there exista such that
n € SegwidthG and f; € rng(Go ).

(47) Supposef is a sequence which elements belong@@ndi € domf andi + 1 € domf
andn € SegwidthG and fi € rg(Gg ). Then fi.1 € rg(Go ) or for everyk such that
fiy1 € mg(Go k) andk € SegwidthG holds|n—k| = 1.
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(48) Suppose that £ lenf and fient € rg(Gowigihg) and f is a sequence which elements
belong toG andi € SegwidthG andi + 1 € SegwidthG andm € domf and f, € rng(Gp)
and for evenk such thak € domf and fy € rng(G ;) holdsk < m. Thenm+ 1 € domf and
fmi1 € Mg(Gojir1).

(49) Suppose ¥ lenf andf; € rng(Go 1) andfient € rY(Go width) andf is a sequence which
elements belong t6. Then
(i) for everyi such that 1< i andi < widthG there existk such thatk € domf and fy €
mg(Goi),
(i) for everyi such that < i andi < widthG and 2< lenf holdsZ(f) meets rmgGo;i), and
(i) forall i, j, k, msuch that I< i andi < widthG and 1< j andj < widthG andk € domf
andm e domf and fx € rng(Gn ;) and for everyn such thatn € domf and f, € rng(Gn;;)
holdsn < k andk < mand fy, € rng(Gg ) holdsi < j.
(50) Suppose that
(i) nedomf,
(i)  fnermg(Goy),
(i) ke Segwidths,
(v) fremg(Goya),
(v) fis asequence which elements belongtand
(vi) for everyi such thai € domf andf; € rng(Go k) holdsn <.
Let giveni. If i € domf andi < n, then for everym such thatm € SegwidthG and f; €
rmg(Go,m) holdsm < k.
(51) Supposef is a sequence which elements belongGand f; € rg(Go 1) and fient €
ro(Go widihg) @and widthG > 1 and 1< lenf. Then there existg such that
() g1 € rng((the deleting of widtlG-column inG) 1),
(i) Jeng € mg((the deleting of widtiG-column inG)EI.,width(the deleting ofwidthG-column inG))a
(i) 1 <leng,
(iv) gis asequence which elements belong to the deleting of vi@dtblumn inG, and
(v) rnggcCrngf.
(52) Supposd is a sequence which elements belongtand rngf Nrng(Go 1) # 0 and rngf N

rmo(Gowidihg) # 0. Then there existg such that rng C rng f andg; € rng(Gn 1) andgieng €
rmg(Go wigihg) and 1< leng andg is a sequence which elements belongsto

(53) Supposek € domG and f is a sequence which elements belongGoand fien €
rngLing(G,lenG) andn € domf and f, € rngLine(G, k). Then

(i) for everyi such thak < i andi < lenG there existg such thatj € domf andn < j and
f; e rngLing(G,i), and

(i) for everyi such thak < i andi < lenG there existg such thatj € domf andn < j and
f; e rngLing(G,i).
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