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The articles [10], [5], [16], [2], [4], [3], [1], [9], [11], [12], [6], [13], [14], [7], [15], and [8] provide
the notation and terminology for this paper.

1. PRELIMINARIES

One can check that there exists a non empty category structure which is transitive, associative, and
strict and has units.

Let A be a non empty transitive category structure and letB be a non empty category structure
with units. Observe that there exists a functor structure fromA to B which is strict, comp-preserving,
comp-reversing, precovariant, precontravariant, and feasible.

Let A be a transitive non empty category structure with units and letB be a non empty category
structure with units. One can check that there exists a functor structure fromA to B which is strict,
comp-preserving, comp-reversing, precovariant, precontravariant, feasible, and id-preserving.

Let A be a transitive non empty category structure with units and letB be a non empty category
structure with units. Note that there exists a functor fromA to B which is strict, feasible, covariant,
and contravariant.

We now state several propositions:

(1) LetC be a category,o1, o2, o3, o4 be objects ofC, a be a morphism fromo1 to o2, b be a
morphism fromo2 to o3, c be a morphism fromo1 to o4, andd be a morphism fromo4 to o3.
Supposeb·a = d ·c anda·a−1 = id(o2) andd−1 ·d = id(o4) and〈o1,o2〉 6= /0 and〈o2,o1〉 6= /0
and〈o2,o3〉 6= /0 and〈o3,o4〉 6= /0 and〈o4,o3〉 6= /0. Thenc·a−1 = d−1 ·b.

(2) Let A be a non empty transitive category structure,B, C be non empty category struc-
tures with units,F be a feasible precovariant functor structure fromA to B, G be a func-
tor structure fromB to C, and o, o1 be objects ofA. Then Morph-MapG·F(o,o1) =
Morph-MapG(F(o),F(o1)) ·Morph-MapF(o,o1).

(3) Let A be a non empty transitive category structure,B, C be non empty category struc-
tures with units,F be a feasible precontravariant functor structure fromA to B, G be a
functor structure fromB to C, and o, o1 be objects ofA. Then Morph-MapG·F(o,o1) =
Morph-MapG(F(o1),F(o)) ·Morph-MapF(o,o1).
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(4) Let A be a non empty transitive category structure,B be a non empty category structure
with units, andF be a feasible functor structure fromA to B. Then idB ·F = the functor
structure ofF .

(5) Let A be a transitive non empty category structure with units,B be a non empty category
structure with units, andF be a feasible functor structure fromA to B. ThenF · idA = the
functor structure ofF .

For simplicity, we adopt the following convention:A denotes a non empty category structure,
B, C denote non empty reflexive category structures,F denotes a feasible precovariant functor
structure fromA to B, G denotes a feasible precovariant functor structure fromB to C, M denotes a
feasible precontravariant functor structure fromA to B, N denotes a feasible precontravariant functor
structure fromB to C, o1, o2 denote objects ofA, andm denotes a morphism fromo1 to o2.

We now state four propositions:

(6) If 〈o1,o2〉 6= /0, then(G·F)(m) = G(F(m)).

(7) If 〈o1,o2〉 6= /0, then(N ·M)(m) = N(M(m)).

(8) If 〈o1,o2〉 6= /0, then(N ·F)(m) = N(F(m)).

(9) If 〈o1,o2〉 6= /0, then(G·M)(m) = G(M(m)).

Let A be a non empty transitive category structure, letB be a transitive non empty category struc-
ture with units, letC be a non empty category structure with units, letF be a feasible precovariant
comp-preserving functor structure fromA to B, and letG be a feasible precovariant comp-preserving
functor structure fromB to C. One can verify thatG·F is comp-preserving.

Let A be a non empty transitive category structure, letB be a transitive non empty category
structure with units, letC be a non empty category structure with units, letF be a feasible precon-
travariant comp-reversing functor structure fromA to B, and letG be a feasible precontravariant
comp-reversing functor structure fromB to C. Note thatG·F is comp-preserving.

Let A be a non empty transitive category structure, letB be a transitive non empty category
structure with units, letC be a non empty category structure with units, letF be a feasible pre-
covariant comp-preserving functor structure fromA to B, and letG be a feasible precontravariant
comp-reversing functor structure fromB to C. Observe thatG·F is comp-reversing.

Let A be a non empty transitive category structure, letB be a transitive non empty category
structure with units, letC be a non empty category structure with units, letF be a feasible pre-
contravariant comp-reversing functor structure fromA to B, and letG be a feasible precovariant
comp-preserving functor structure fromB to C. One can check thatG·F is comp-reversing.

Let A, B be transitive non empty category structures with units, letC be a non empty category
structure with units, letF be a covariant functor fromA to B, and letG be a covariant functor from
B to C. ThenG·F is a strict covariant functor fromA to C.

Let A, B be transitive non empty category structures with units, letC be a non empty category
structure with units, letF be a contravariant functor fromA to B, and letG be a contravariant functor
from B to C. ThenG·F is a strict covariant functor fromA to C.

Let A, B be transitive non empty category structures with units, letC be a non empty category
structure with units, letF be a covariant functor fromA to B, and letG be a contravariant functor
from B to C. ThenG·F is a strict contravariant functor fromA to C.

Let A, B be transitive non empty category structures with units, letC be a non empty category
structure with units, letF be a contravariant functor fromA to B, and letG be a covariant functor
from B to C. ThenG·F is a strict contravariant functor fromA to C.

For simplicity, we adopt the following convention:A, B, C, D are transitive non empty category
structures with units,F1, F2, F3 are covariant functors fromA to B, G1, G2, G3 are covariant functors
from B to C, H1, H2 are covariant functors fromC to D, p is a transformation fromF1 to F2, p1 is a
transformation fromF2 to F3, q is a transformation fromG1 to G2, q1 is a transformation fromG2

to G3, andr is a transformation fromH1 to H2.
We now state the proposition

(10) If F1 is transformable toF2 andG1 is transformable toG2, thenG1 ·F1 is transformable to
G2 ·F2.
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2. THE COMPOSITION OFFUNCTORS WITHTRANSFORMATIONS

Let A, B, C be transitive non empty category structures with units, letF1, F2 be covariant functors
from A to B, let t be a transformation fromF1 to F2, and letG be a covariant functor fromB to C.
Let us assume thatF1 is transformable toF2. The functorG· t yielding a transformation fromG·F1

to G·F2 is defined by:

(Def. 1) For every objecto of A holds(G· t)(o) = G(t[o]).

We now state the proposition

(11) For every objecto of A such thatF1 is transformable toF2 holds(G1 · p)[o] = G1(p[o]).

Let A, B, C be transitive non empty category structures with units, letG1, G2 be covariant
functors fromB toC, let F be a covariant functor fromA to B, and letsbe a transformation fromG1

to G2. Let us assume thatG1 is transformable toG2. The functors·F yields a transformation from
G1 ·F to G2 ·F and is defined by:

(Def. 2) For every objecto of A holds(s·F)(o) = s[F(o)].

We now state a number of propositions:

(12) For every objecto of A such thatG1 is transformable toG2 holds(q·F1)[o] = q[F1(o)].

(13) If F1 is transformable toF2 andF2 is transformable toF3, thenG1 ·(p1 ◦ p) = G1 · p1 ◦ G1 · p.

(14) If G1 is transformable toG2 andG2 is transformable toG3, then(q1 ◦ q) ·F1 = q1 ·F1 ◦ q·F1.

(15) If H1 is transformable toH2, then(r ·G1) ·F1 = r · (G1 ·F1).

(16) If G1 is transformable toG2, then(H1 ·q) ·F1 = H1 · (q·F1).

(17) If F1 is transformable toF2, then(H1 ·G1) · p = H1 · (G1 · p).

(18) id(G1) ·F1 = idG1·F1 .

(19) G1 · id(F1) = idG1·F1 .

(20) If F1 is transformable toF2, then idB · p = p.

(21) If G1 is transformable toG2, thenq· idB = q.

3. THE COMPOSITION OFTRANSFORMATIONS

Let A, B, C be transitive non empty category structures with units, letF1, F2 be covariant functors
from A to B, let G1, G2 be covariant functors fromB to C, let t be a transformation fromF1 to F2,
and lets be a transformation fromG1 to G2. The functors t yields a transformation fromG1 ·F1 to
G2 ·F2 and is defined by:

(Def. 3) s t = s·F2 ◦ G1 · t.

Next we state several propositions:

(22) Letq be a natural transformation fromG1 to G2. SupposeF1 is transformable toF2 andG1

is naturally transformable toG2. Thenq p= G2 · p◦ q·F1.

(23) If F1 is transformable toF2, then ididB p = p.

(24) If G1 is transformable toG2, thenq ididB = q.

(25) If F1 is transformable toF2, thenG1 · p = id(G1) p.

(26) If G1 is transformable toG2, thenq·F1 = q id(F1) .
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We adopt the following convention:A, B, C, D are categories,F1, F2, F3 are covariant functors
from A to B, andG1, G2, G3 are covariant functors fromB to C.

Next we state the proposition

(27) Let H1, H2 be covariant functors fromC to D, t be a transformation fromF1 to F2, s be
a transformation fromG1 to G2, andu be a transformation fromH1 to H2. SupposeF1 is
transformable toF2 and G1 is transformable toG2 and H1 is transformable toH2. Then
(u s) t = u (s t).

In the sequelt denotes a natural transformation fromF1 to F2, sdenotes a natural transformation
from G1 to G2, ands1 denotes a natural transformation fromG2 to G3.

We now state four propositions:

(28) If F1 is naturally transformable toF2, thenG1 · t is a natural transformation fromG1 ·F1 to
G1 ·F2.

(29) If G1 is naturally transformable toG2, thens·F1 is a natural transformation fromG1 ·F1 to
G2 ·F1.

(30) SupposeF1 is naturally transformable toF2 andG1 is naturally transformable toG2. Then
G1 ·F1 is naturally transformable toG2 ·F2 ands t is a natural transformation fromG1 ·F1 to
G2 ·F2.

(31) Lett be a transformation fromF1 to F2 andt1 be a transformation fromF2 to F3. Suppose
that

(i) F1 is naturally transformable toF2,

(ii) F2 is naturally transformable toF3,

(iii) G1 is naturally transformable toG2, and

(iv) G2 is naturally transformable toG3.

Then(s1 ◦ s) (t1 ◦ t) = s1 t1 ◦ s t.

4. NATURAL EQUIVALENCES

We now state the proposition

(32) SupposeF1 is naturally transformable toF2 andF2 is transformable toF1 and for every
objecta of A holdst[a] is iso. Then

(i) F2 is naturally transformable toF1, and

(ii) there exists a natural transformationf from F2 to F1 such that for every objecta of A holds
f (a) = t[a]−1 and f [a] is iso.

Let A, B be categories and letF1, F2 be covariant functors fromA to B. We say thatF1 andF2

are naturally equivalent if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) F1 is naturally transformable toF2,

(ii) F2 is transformable toF1, and

(iii) there exists a natural transformationt from F1 to F2 such that for every objecta of A holds
t[a] is iso.

Let us notice that the predicateF1 andF2 are naturally equivalent is reflexive and symmetric.
Let A, B be categories and letF1, F2 be covariant functors fromA to B. Let us assume that

F1 andF2 are naturally equivalent. A natural transformation fromF1 to F2 is said to be a natural
equivalence ofF1 andF2 if:

(Def. 5) For every objecta of A holds it[a] is iso.
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In the sequele is a natural equivalence ofF1 andF2, e1 is a natural equivalence ofF2 andF3,
and f is a natural equivalence ofG1 andG2.

Next we state several propositions:

(33) SupposeF1 andF2 are naturally equivalent andF2 andF3 are naturally equivalent. ThenF1

andF3 are naturally equivalent.

(34) SupposeF1 andF2 are naturally equivalent andF2 andF3 are naturally equivalent. Then
e1 ◦ e is a natural equivalence ofF1 andF3.

(35) SupposeF1 andF2 are naturally equivalent. ThenG1 ·F1 andG1 ·F2 are naturally equivalent
andG1 ·e is a natural equivalence ofG1 ·F1 andG1 ·F2.

(36) SupposeG1 andG2 are naturally equivalent. ThenG1 ·F1 andG2 ·F1 are naturally equiva-
lent andf ·F1 is a natural equivalence ofG1 ·F1 andG2 ·F1.

(37) SupposeF1 andF2 are naturally equivalent andG1 andG2 are naturally equivalent. Then
G1 ·F1 andG2 ·F2 are naturally equivalent andf e is a natural equivalence ofG1 ·F1 and
G2 ·F2.

Let A, B be categories, letF1, F2 be covariant functors fromA to B, and lete be a natural
equivalence ofF1 andF2. Let us assume thatF1 andF2 are naturally equivalent. The functore−1

yields a natural equivalence ofF2 andF1 and is defined as follows:

(Def. 6) For every objecta of A holdse−1(a) = e[a]−1.

The following three propositions are true:

(38) For every objecto of A such thatF1 andF2 are naturally equivalent holdse−1[o] = e[o]−1.

(39) If F1 andF2 are naturally equivalent, thene◦ e−1 = id(F2) .

(40) If F1 andF2 are naturally equivalent, thene−1 ◦ e= id(F1) .

Let A, B be categories and letF be a covariant functor fromA to B. Then idF is a natural
equivalence ofF andF .

The following propositions are true:

(41) If F1 andF2 are naturally equivalent, then(e−1)−1 = e.

(42) Letk be a natural equivalence ofF1 andF3. Supposek = e1 ◦ e andF1 andF2 are naturally
equivalent andF2 andF3 are naturally equivalent. Thenk−1 = e−1 ◦ e1

−1.

(43) (id(F1))−1 = id(F1) .
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