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1. PRELIMINARIES

One can check that there exists a non empty category structure which is transitive, associative, and
strict and has units.

Let A be a non empty transitive category structure an@lbe a non empty category structure
with units. Observe that there exists a functor structure #&dmB which is strict, comp-preserving,
comp-reversing, precovariant, precontravariant, and feasible.

Let A be a transitive non empty category structure with units anB ke a non empty category
structure with units. One can check that there exists a functor structureXtorB which is strict,
comp-preserving, comp-reversing, precovariant, precontravariant, feasible, and id-preserving.

Let A be a transitive non empty category structure with units anB ke a non empty category
structure with units. Note that there exists a functor framo B which is strict, feasible, covariant,
and contravariant.

We now state several propositions:

(1) LetC be a category;, 02, 03, 04 be objects ofZ, a be a morphism frone; to 0,, b be a
morphism fromo, to 03, ¢ be a morphism frono; to 04, andd be a morphism frono, to os.
Supposd-a=d-canda-a ! =id,) andd™*-d =id,) and(o,02) # 0 and(0,01) # 0
and(0p,03) # 0 and(03,04) # 0 and(04,03) # 0. Thenc-a 1 =d~1-h.

(2) Let A be a non empty transitive category structuge,C be non empty category struc-
tures with units,F be a feasible precovariant functor structure fréno B, G be a func-
tor structure fromB to C, and o, 0, be objects ofA. Then Morph-Mag (0,01) =
Morph-Map;(F (0),F (01)) - Morph-Mag- (0,01).

(3) Let A be a non empty transitive category structuBe,C be non empty category struc-
tures with units,F be a feasible precontravariant functor structure frAnto B, G be a
functor structure fronB to C, ando, 0; be objects ofA. Then Morph-Map g(0,01) =
Morph-Map;(F(01),F (0)) - Morph-Mag: (0,01).
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(4) LetA be a non empty transitive category structuBehe a non empty category structure
with units, andF be a feasible functor structure frofkto B. Then ig - F = the functor
structure ofF.

(5) LetA be a transitive non empty category structure with uBtbe a non empty category
structure with units, an@ be a feasible functor structure frofto B. ThenF -ida = the
functor structure oF.

For simplicity, we adopt the following conventio®k denotes a non empty category structure,
B, C denote non empty reflexive category structudeésgenotes a feasible precovariant functor
structure fromA to B, G denotes a feasible precovariant functor structure fBolmC, M denotes a
feasible precontravariant functor structure fréno B, N denotes a feasible precontravariant functor
structure fromB to C, 01, 02 denote objects oA, andm denotes a morphism from to os.

We now state four propositions:

(6) If (01,02) # 0, then(G-F)(m) = G(F(m)).
(7) 1f (01,02) #0, then(N-M)(m) = N(M(m)).
(8) If (01,02) # 0, then(N-F)(m) = N(F(m)).
(9) If {01,02) # 0, then(G-M)(m) = G(M(m)).

Let Abe a non empty transitive category structureBlbe a transitive non empty category struc-
ture with units, leC be a non empty category structure with units,Hebe a feasible precovariant
comp-preserving functor structure frofito B, and letG be a feasible precovariant comp-preserving
functor structure fronB to C. One can verify thaG - F is comp-preserving.

Let A be a non empty transitive category structure,Bdbe a transitive non empty category
structure with units, le€ be a non empty category structure with units,Hedbe a feasible precon-
travariant comp-reversing functor structure fréwto B, and letG be a feasible precontravariant
comp-reversing functor structure froBto C. Note thatG - F is comp-preserving.

Let A be a non empty transitive category structure,Bdte a transitive non empty category
structure with units, l1e€ be a non empty category structure with units,Febe a feasible pre-
covariant comp-preserving functor structure frénto B, and letG be a feasible precontravariant
comp-reversing functor structure froBto C. Observe thaG- F is comp-reversing.

Let A be a non empty transitive category structure,Bdbe a transitive non empty category
structure with units, le€ be a non empty category structure with units,Febe a feasible pre-
contravariant comp-reversing functor structure frénto B, and letG be a feasible precovariant
comp-preserving functor structure frddto C. One can check th& - F is comp-reversing.

Let A, B be transitive non empty category structures with unitsClee a non empty category
structure with units, leF be a covariant functor frorA to B, and letG be a covariant functor from
BtoC. ThenG-F is a strict covariant functor from to C.

Let A, B be transitive non empty category structures with unitsClee a non empty category
structure with units, leff be a contravariant functor frosto B, and letG be a contravariant functor
fromBtoC. ThenG-F is a strict covariant functor from to C.

Let A, B be transitive non empty category structures with unitsClee a non empty category
structure with units, leF be a covariant functor from to B, and letG be a contravariant functor
fromBtoC. ThenG-F is a strict contravariant functor fromto C.

Let A, B be transitive non empty category structures with unitsClee a non empty category
structure with units, leE be a contravariant functor frow to B, and letG be a covariant functor
fromBtoC. ThenG-F is a strict contravariant functor fromto C.

For simplicity, we adopt the following conventiof; B, C, D are transitive non empty category
structures with unitsy, B, Fs are covariant functors froito B, G;, G, Gz are covariant functors
from B to C, Hy, Hy are covariant functors froi@ to D, p is a transformation frorfr; to R, p1is a
transformation front, to Fs, g is a transformation fron®; to G, q; is a transformation fron,
to Gs, andr is a transformation fronki; to Ho.

We now state the proposition

(10) If Fy is transformable té~ andG; is transformable t@s,, thenG; - F; is transformable to
Gy F.
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2. THE COMPOSITION OFFUNCTORS WITH TRANSFORMATIONS

Let A, B, C be transitive non empty category structures with unitsief, be covariant functors
from A to B, lett be a transformation frorg; to F, and letG be a covariant functor frorB to C.
Let us assume th& is transformable té». The functorG -t yielding a transformation frors - F;
to G-, is defined by:

(Def. 1) For every objeab of A holds(G-t)(0) = G(t[0]).
We now state the proposition
(11) For every objead of A such thaf is transformable té» holds(Gs - p)[o] = G1(p[0]).

Let A, B, C be transitive non empty category structures with units,det G, be covariant
functors fromB to C, let F be a covariant functor frorA to B, and letsbe a transformation fror®;
to G,. Let us assume th&; is transformable t&,. The functors- F yields a transformation from
G1-F to G- F and is defined by:

(Def. 2) For every objeab of A holds(s- F)(0) = s[F(0)].
We now state a number of propositions:
(12) For every objead of A such thatG; is transformable t&; holds(q- Fy)[o] = q[F1(0)].
(13) If Fyis transformable té» andF,; is transformable tés, thenG; - (p1° p) = G1- p1° G1- p.
(14) If Gy is transformable t&; andG; is transformable t6&s, then(g1°q) - Fi =01 F1° q- Fy.
(15) If Hy is transformable tddy, then(r - Gy) -Fr =1 - (G1-Fy).
(16) If Gy is transformable t6s,, then(Hy-q)-F1 =Hi-(q-Fy).
(A7) If Ry is transformable té, then(H1-G1)-p=Hi1-(G1- p).
(18) idg,)-F1=idg F, -
(19) Gy idr) =idg,F, -
(20) If Fy is transformable té~, then i - p=p.

(21) If Gy is transformable t&,, theng-idg = q.

3. THE COMPOSITION OFTRANSFORMATIONS

Let A, B, C be transitive non empty category structures with unitsi-ef be covariant functors
from A to B, let G1, G, be covariant functors frorB to C, lett be a transformation frorf;, to F,
and lets be a transformation fror®; to G,. The functorst yields a transformation fror®; - F; to
G- R, and is defined by:

(Def.3) st=s-F°Gy-t.
Next we state several propositions:

(22) Letqbe a natural transformation fro@y to G,. Supposé is transformable té, andG;
is naturally transformable t6,. Theng p= Gz p°q-Fy.

(23) If Fyis transformable td, then idg, p= p.
(24) If Gy is transformable t&;, thenq idig; = 0.
(25) If Fy is transformable té, thenGy - p= id(el) p.
(26) If Gy is transformable t&,, thenq-F1 = qidg).
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We adopt the following conventior, B, C, D are categoriess;, F», F3 are covariant functors
from Ato B, andGy, G,, G3 are covariant functors frorfd to C.
Next we state the proposition

(27) LetHj, H» be covariant functors fror@ to D, t be a transformation frorfr; to R, s be
a transformation fronG; to Gy, andu be a transformation froril; to Ho. Supposéd is

transformable td~ and G; is transformable td5, and H; is transformable tdH,. Then
(usgt=u(st).

In the sequel denotes a natural transformation frémto F», sdenotes a natural transformation
from G, to G,, ands; denotes a natural transformation frdsa to Gs.
We now state four propositions:

(28) If F1 is naturally transformable tB,, thenG; -t is a natural transformation fro; - F; to
G F.

(29) If Gy is naturally transformable t@,, thens- F; is a natural transformation froM; - F; to
Gy F.

(30) Supposé is naturally transformable B, andG; is naturally transformable t@,. Then

G - F1 is naturally transformable t6; - F, andstis a natural transformation fro; - F; to
G- F.

(31) Lett be a transformation frorf; to F, andt; be a transformation frorf, to Fs. Suppose
that
(i) Fyis naturally transformable B,
(i) R is naturally transformable B3,
(i) Gy is naturally transformable 1@, and
(iv) Gy is naturally transformable tGs.
Then(s;°s) (t1°t) =spt1°st.

4. NATURAL EQUIVALENCES

We now state the proposition

(32) Supposd- is naturally transformable tB, andF; is transformable td~; and for every
objecta of A holdst[a] is iso. Then

(i) Fis naturally transformable ti;, and
(i) there exists a natural transformatiérirom F, to F; such that for every objeetof A holds
f(a) =t[a]~* andf[a] is iso.

Let A, B be categories and I&, F, be covariant functors from to B. We say that; andF,
are naturally equivalent if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) Fqis naturally transformable 6y,
(i) R istransformable té4, and
(iii) there exists a natural transformatibfrom F; to F, such that for every objeetof A holds
t[a] is iso.

Let us notice that the predicafg andF, are naturally equivalent is reflexive and symmetric.

Let A, B be categories and Ié, F, be covariant functors fronA to B. Let us assume that
F, andF, are naturally equivalent. A natural transformation fréito F, is said to be a natural
equivalence of; andF; if:

(Def. 5) For every objech of A holds ifa] is iso.
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In the sequek is a natural equivalence &4 andF,, e; is a natural equivalence & andFs,
andf is a natural equivalence &; andGs.
Next we state several propositions:

(33) Supposé&; andF,; are naturally equivalent arfeh andFs are naturally equivalent. Thdr
andF; are naturally equivalent.

(34) Supposé; andF; are naturally equivalent argh andFs are naturally equivalent. Then
e ° eis a hatural equivalence &f andFs.

(85) Supposé&; andR; are naturally equivalent. Théy - F; andG; - F» are naturally equivalent
andG; - eis a natural equivalence & - F; andGy - .

(36) Suppos&; andG; are naturally equivalent. The®, - F; andG; - F; are naturally equiva-
lent andf - F7 is a natural equivalence & - F; andG; - Fy.

(37) Supposé; andF; are naturally equivalent ar@; andG; are naturally equivalent. Then
G: - F1 and G, - F, are naturally equivalent anfle is a natural equivalence @; - F; and
Gy F.

Let A, B be categories, Ief;, I be covariant functors fronA to B, and lete be a natural
equivalence of; andF,. Let us assume th#& andF, are naturally equivalent. The functer?!
yields a natural equivalence Bf andF; and is defined as follows:

(Def. 6) For every object of A holdse™!(a) = efa] L.
The following three propositions are true:
(38) For every objeab of A such thaF; andF, are naturally equivalent holds*[o] = [o] 2.
(39) If F, andF, are naturally equivalent, theay e 1 = id(R,) -
(40) If F, andF, are naturally equivalent, thearl-e= id(E,) -

Let A, B be categories and Iét be a covariant functor frorh to B. Then id: is a natural
equivalence ofF andF.
The following propositions are true:

(41) If Fy andF; are naturally equivalent, thee 1)1 =e.

(42) Letk be a natural equivalence Bf andFs. Suppos&k = e; ° eandF; andF, are naturally
equivalent andr, andFs are naturally equivalent. Thenl =e 1o¢g 1.

43) (ide) L =id@).
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