Category of Functors between Alternative Categories

Robert Nieszczerzewski Warsaw University Białystok

MML Identifier: FUNCTOR2. WWW: http://mizar.org/JFM/Vol9/functor2.html

The articles [7], [5], [13], [12], [14], [1], [3], [4], [2], [6], [8], [9], [10], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let A be a transitive non empty category structure with units and let B be a non empty category structure with units. Note that every functor from A to B is feasible and id-preserving.

Let *A* be a transitive non empty category structure with units and let *B* be a non empty category structure with units. One can verify the following observations:

- * every functor from A to B which is covariant is also precovariant and comp-preserving,
- * every functor from A to B which is precovariant and comp-preserving is also covariant,
- * every functor from A to B which is contravariant is also precontravariant and comp-reversing, and
- * every functor from A to B which is precontravariant and comp-reversing is also contravariant.

Next we state the proposition

(2)¹ Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $F(id_a) = id_{F(a)}$.

2. TRANSFORMATIONS

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. We say that F_1 is transformable to F_2 if and only if:

(Def. 1) For every object *a* of *A* holds $\langle F_1(a), F_2(a) \rangle \neq \emptyset$.

Let us note that the predicate F_1 is transformable to F_2 is reflexive. The following proposition is true

¹ The proposition (1) has been removed.

(4)² Let A, B be transitive non empty category structures with units and F, F_1 , F_2 be covariant functors from A to B. Suppose F is transformable to F_1 and F_1 is transformable to F_2 . Then F is transformable to F_2 .

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is transformable to F_2 . A many sorted set indexed by the carrier of A is said to be a transformation from F_1 to F_2 if:

(Def. 2) For every object *a* of *A* holds it(a) is a morphism from $F_1(a)$ to $F_2(a)$.

Let *A*, *B* be transitive non empty category structures with units and let *F* be a covariant functor from *A* to *B*. The functor id_F yields a transformation from *F* to *F* and is defined by:

(Def. 3) For every object *a* of *A* holds $id_F(a) = id_{F(a)}$.

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 and let a be an object of A. The functor t[a] yielding a morphism from $F_1(a)$ to $F_2(a)$ is defined as follows:

(Def. 4) t[a] = t(a).

Let *A*, *B* be transitive non empty category structures with units and let *F*, F_1 , F_2 be covariant functors from *A* to *B*. Let us assume that *F* is transformable to F_1 and F_1 is transformable to F_2 . Let t_1 be a transformation from *F* to F_1 and let t_2 be a transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yields a transformation from *F* to F_2 and is defined by:

(Def. 5) For every object *a* of *A* holds $(t_2 \circ t_1)[a] = t_2[a] \cdot t_1[a]$.

The following four propositions are true:

- (5) Let *A*, *B* be transitive non empty category structures with units and F_1 , F_2 be covariant functors from *A* to *B*. Suppose F_1 is transformable to F_2 . Let t_1 , t_2 be transformations from F_1 to F_2 . If for every object *a* of *A* holds $t_1[a] = t_2[a]$, then $t_1 = t_2$.
- (6) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $id_F[a] = id_{F(a)}$.
- (7) Let *A*, *B* be transitive non empty category structures with units and *F*₁, *F*₂ be covariant functors from *A* to *B*. Suppose *F*₁ is transformable to *F*₂. Let *t* be a transformation from *F*₁ to *F*₂. Then $id_{(F_1)} \circ t = t$ and $t \circ id_{(F_1)} = t$.
- (8) Let *A*, *B* be categories and *F*, F_1 , F_2 , F_3 be covariant functors from *A* to *B*. Suppose *F* is transformable to F_1 and F_1 is transformable to F_2 and F_2 is transformable to F_3 . Let t_1 be a transformation from *F* to F_1 , t_2 be a transformation from F_1 to F_2 , and t_3 be a transformation from F_2 to F_3 . Then $(t_3 \circ t_2) \circ t_1 = t_3 \circ (t_2 \circ t_1)$.

3. NATURAL TRANSFORMATIONS

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. We say that F_1 is naturally transformable to F_2 if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) F_1 is transformable to F_2 , and

(ii) there exists a transformation t from F_1 to F_2 such that for all objects a, b of A such that $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds $t[b] \cdot F_1(f) = F_2(f) \cdot t[a]$.

Next we state two propositions:

² The proposition (3) has been removed.

- (9) For all transitive non empty category structures A, B with units holds every covariant functor F from A to B is naturally transformable to F.
- (10) Let A, B be categories and F, F_1 , F_2 be covariant functors from A to B. Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Then F is naturally transformable to F_2 .

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is naturally transformable to F_2 . A transformation from F_1 to F_2 is said to be a natural transformation from F_1 to F_2 if:

(Def. 7) For all objects *a*, *b* of *A* such that $\langle a, b \rangle \neq \emptyset$ and for every morphism *f* from *a* to *b* holds it[*b*] $\cdot F_1(f) = F_2(f) \cdot it[a]$.

Let A, B be transitive non empty category structures with units and let F be a covariant functor from A to B. Then id_F is a natural transformation from F to F.

Let *A*, *B* be categories and let *F*, F_1 , F_2 be covariant functors from *A* to *B*. Let us assume that *F* is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from *F* to F_1 and let t_2 be a natural transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yields a natural transformation from *F* to F_2 and is defined as follows:

(Def. 8) $t_2 \circ t_1 = t_2 \circ t_1$.

Next we state three propositions:

- (11) Let *A*, *B* be transitive non empty category structures with units and F_1 , F_2 be covariant functors from *A* to *B*. Suppose F_1 is naturally transformable to F_2 . Let *t* be a natural transformation from F_1 to F_2 . Then $id_{(F_2)} \circ t = t$ and $t \circ id_{(F_1)} = t$.
- (12) Let *A*, *B* be transitive non empty category structures with units and *F*, F_1 , F_2 be covariant functors from *A* to *B*. Suppose *F* is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from *F* to F_1 , t_2 be a natural transformation from F_1 to F_2 , and *a* be an object of *A*. Then $(t_2 \circ t_1)[a] = t_2[a] \cdot t_1[a]$.
- (13) Let *A*, *B* be categories, *F*, F_1 , F_2 , F_3 be covariant functors from *A* to *B*, *t* be a natural transformation from *F* to F_1 , and t_1 be a natural transformation from F_1 to F_2 . Suppose *F* is naturally transformable to F_1 and F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 . Let t_3 be a natural transformation from F_2 to F_3 . Then $(t_3 \circ t_1) \circ t = t_3 \circ (t_1 \circ t)$.

4. CATEGORY OF FUNCTORS

Let *I* be a set and let *A*, *B* be many sorted sets indexed by *I*. The functor B^A yielding a set is defined as follows:

- (Def. 9)(i) For every set x holds $x \in B^A$ iff x is a many sorted function from A into B if for every set i such that $i \in I$ holds if $B(i) = \emptyset$, then $A(i) = \emptyset$,
 - (ii) $B^A = \emptyset$, otherwise.

Let *A*, *B* be transitive non empty category structures with units. The functor Funct(A, B) yields a set and is defined as follows:

(Def. 10) For every set x holds $x \in Funct(A, B)$ iff x is a covariant strict functor from A to B.

Let A, B be categories. The functor B^A yielding a strict non empty transitive category structure is defined by the conditions (Def. 11).

- (Def. 11)(i) The carrier of B^A = Funct(A,B),
 - (ii) for all strict covariant functors F, G from A to B and for every set x holds $x \in$ (the arrows of B^A)(F, G) iff F is naturally transformable to G and x is a natural transformation from F to G, and
 - (iii) for all strict covariant functors F, G, H from A to B such that F is naturally transformable to G and G is naturally transformable to H and for every natural transformation t_1 from Fto G and for every natural transformation t_2 from G to H there exists a function f such that $f = (\text{the composition of } B^A)(F, G, H)$ and $f(t_2, t_1) = t_2 \circ t_1$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [6] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/multop_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [9] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [10] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [11] Andrzej Trybulec. Categories without uniqueness of cod and dom. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/V017/altcat_1.html.
- [12] Andrzej Trybulec. Functors for alternative categories. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/ functor0.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received June 12, 1997

Published January 2, 2004