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Summary. An attempt to define the concept of a functor covering both cases (co-
variant and contravariant) resulted in a structure consisting of two fields: the object map and
the morphism map, the first one mapping the Cartesian squares of the set of objects rather
than the set of objects. We start with an auxiliary notion ofbifunction, i.e. a function map-
ping the Cartesian square of a setA into the Cartesian square of a setB. A bifunction f is
said to becovariant if there is a functiong from A into B that f is the Cartesian square of
g and f is contravariant if there is a functiong such thatf (o1,o2) = 〈g(o2),g(o1)〉. The
termtransformation, another auxiliary notion, might be misleading. It is not related to natural
transformations. A transformation from a many sorted setA indexed byI into a many sorted
setB indexed byJ w.r.t. a function f from I into J is a (many sorted) function fromA into
B· f . Eventually, the morphism map of a functor fromC1 intoC2 is a transformation from the
arrows of the categoryC1 into the composition of the object map of the functor and the arrows
of C2.

Several kinds of functor structures have been defined: one-to-one, faithful, onto, full and
id-preserving. We were pressed to split property that the composition be preserved into two:
comp-preserving (for covariant functors) and comp-reversing (for contravariant functors). We
defined also some operation on functors, e.g. the composition, the inverse functor. In the last
section it is defined what is meant that two categories are isomorphic (anti-isomorphic).

MML Identifier: FUNCTOR0.

WWW: http://mizar.org/JFM/Vol8/functor0.html

The articles [11], [6], [17], [18], [19], [12], [3], [5], [4], [2], [10], [1], [7], [13], [9], [14], [8], [15],
and [16] provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemeValOnPairdeals with a non empty setA , a functionB, elementsC , D of A , a binary
functorF yielding a set, and a binary predicateP , and states that:

B(C , D) = F (C ,D)
provided the following conditions are met:

• B = {〈〈〈〈o, o′〉〉, F (o,o′)〉〉;o ranges over elements ofA ,o′ ranges over elements of
A : P [o,o′]}, and

• P [C ,D].
One can prove the following propositions:

(1) For every setA holds /0 is a function fromA into /0.

(3)1 For every setI and for every many sorted setM indexed byI holdsM · idI = M.

1 The proposition (2) has been removed.
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Let f be an empty function. Note thatx f is empty. Letg be a function. One can verify that
[: f , g:] is empty and[:g, f :] is empty.

The following two propositions are true:

(4) For every setA and for every functionf holds f ◦(idA) = (x f )◦(idA).

(5) For all setsX, Y and for every functionf from X into Y holds f is onto iff [: f , f :] is onto.

Let f be a function yielding function. Observe thatx f is function yielding.
One can prove the following propositions:

(6) For all setsA, B and for every seta holdsx([:A, B:] 7−→ a) = [:B, A:] 7−→ a.

(7) For all functionsf , g such thatf is one-to-one andg is one-to-one holds[: f , g:]−1 = [: f−1,
g−1 :].

(8) For every functionf such that[: f , f :] is one-to-one holdsf is one-to-one.

(9) For every functionf such thatf is one-to-one holdsx f is one-to-one.

(10) For all functionsf , g such thatx[: f , g:] is one-to-one holds[:g, f :] is one-to-one.

(11) For all functionsf , g such thatf is one-to-one andg is one-to-one holds(x[: f , g:])−1 =
x([:g, f :]−1).

(12) For all setsA, B and for every functionf from A into B such thatf is onto holds idB ⊆ [: f ,
f :]◦(idA).

(13) For all function yielding functionsF , G and for every functionf holds(G◦F) · f = (G ·
f )◦ (F · f ).

Let A, B, C be sets and letf be a function from[:A, B:] into C. Thenx f is a function from[:B,
A:] into C.

We now state two propositions:

(14) For all setsA, B, C and for every functionf from [:A, B:] intoC such thatx f is onto holds
f is onto.

(15) For every setA and for every non empty setB and for every functionf from A into B holds
[: f , f :]◦(idA)⊆ idB.

2. FUNCTIONS BETWEEN CARTESIAN SQUARES

Let A, B be sets. A bifunction fromA into B is a function from[:A, A:] into [:B, B:].
Let A, B be sets and letf be a bifunction fromA into B. We say thatf is precovariant if and

only if:

(Def. 2)2 There exists a functiong from A into B such thatf = [:g, g:].

We say thatf is precontravariant if and only if:

(Def. 3) There exists a functiong from A into B such thatf = x[:g, g:].

One can prove the following proposition

(16) LetA be a set,B be a non empty set,b be an element ofB, and f be a bifunction fromA
into B. If f = [:A, A:] 7−→ 〈〈b, b〉〉, then f is precovariant and precontravariant.

Let A, B be sets. Observe that there exists a bifunction fromA into B which is precovariant and
precontravariant.

The following proposition is true

(17) LetA, B be non empty sets andf be a precovariant precontravariant bifunction fromA into
B. Then there exists an elementb of B such thatf = [:A, A:] 7−→ 〈〈b, b〉〉.

2 The definition (Def. 1) has been removed.
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3. UNARY TRANSFORMATIONS

Let I1, I2 be sets, letf be a function fromI1 into I2, letA be a many sorted set indexed byI1, and letB
be a many sorted set indexed byI2. A many sorted set indexed byI1 is said to be af -transformation
from A to B if:

(Def. 4)(i) There exists a non empty setI ′2 and there exists a many sorted setB′ indexed byI ′2 and
there exists a functionf ′ from I1 into I ′2 such thatf = f ′ andB = B′ and it is a many sorted
function fromA into B′ · f ′ if I2 6= /0,

(ii) it = 0(I1), otherwise.

Let I1 be a set, letI2 be a non empty set, letf be a function fromI1 into I2, letA be a many sorted
set indexed byI1, and letB be a many sorted set indexed byI2. Let us note that thef -transformation
from A to B can be characterized by the following (equivalent) condition:

(Def. 5) It is a many sorted function fromA into B· f .

Let I1, I2 be sets, letf be a function fromI1 into I2, let A be a many sorted set indexed byI1, and
let B be a many sorted set indexed byI2. One can check that everyf -transformation fromA to B is
function yielding.

Next we state the proposition

(18) LetI1 be a set,I2, I3 be non empty sets,f be a function fromI1 into I2, g be a function from
I2 into I3, B be a many sorted set indexed byI2, C be a many sorted set indexed byI3, andG
be ag-transformation fromB to C. ThenG· f is ag· f -transformation fromB· f to C.

Let I1 be a set, letI2 be a non empty set, letf be a function fromI1 into I2, let A be a many
sorted set indexed by[: I1, I1 :], let B be a many sorted set indexed by[: I2, I2 :], and letF be a[: f ,
f :]-transformation fromA to B. ThenxF is a[: f , f :]-transformation fromxA to xB.

The following propositions are true:

(19) Let I1, I2 be non empty sets,A be a many sorted set indexed byI1, B be a many sorted set
indexed byI2, ando be an element ofI2. SupposeB(o) 6= /0. Let mbe an element ofB(o) and
f be a function fromI1 into I2. Supposef = I1 7−→ o. Then{〈〈o′, A(o′) 7−→ m〉〉 : o′ ranges
over elements ofI1} is a f -transformation fromA to B.

(20) Let I1 be a set,I2, I3 be non empty sets,f be a function fromI1 into I2, g be a function
from I2 into I3, A be a many sorted set indexed byI1, B be a many sorted set indexed by
I2, C be a many sorted set indexed byI3, F be a f -transformation fromA to B, andG be
a g · f -transformation fromB · f to C. Suppose that for every seti1 such thati1 ∈ I1 and
(B · f )(i1) = /0 holds A(i1) = /0 or (C · (g · f ))(i1) = /0. Then G◦ (F qua function yielding
function) is ag· f -transformation fromA to C.

4. FUNCTORS

Let C1, C2 be 1-sorted structures. We consider bimap structures fromC1 into C2 as systems
〈 an object map〉,

where the object map is a bifunction from the carrier ofC1 into the carrier ofC2.
Let C1, C2 be non empty graphs, letF be a bimap structure fromC1 into C2, and leto be an

object ofC1. The functorF(o) yielding an object ofC2 is defined as follows:

(Def. 6) F(o) = (the object map ofF)(o, o)1.

Let A, B be 1-sorted structures and letF be a bimap structure fromA into B. We say thatF is
one-to-one if and only if:

(Def. 7) The object map ofF is one-to-one.

We say thatF is onto if and only if:
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(Def. 8) The object map ofF is onto.

We say thatF is reflexive if and only if:

(Def. 9) (The object map ofF)◦(idthe carrier ofA)⊆ idthe carrier ofB.

We say thatF is coreflexive if and only if:

(Def. 10) idthe carrier ofB ⊆ (the object map ofF)◦(idthe carrier ofA).

Let A, B be non empty graphs and letF be a bimap structure fromA into B. Let us observe that
F is reflexive if and only if:

(Def. 11) For every objecto of A holds (the object map ofF)(o, o) = 〈〈F(o), F(o)〉〉.

Next we state the proposition

(21) LetA, B be reflexive non empty graphs andF be a bimap structure fromA into B. Suppose
F is coreflexive. Leto be an object ofB. Then there exists an objecto′ of A such that
F(o′) = o.

Let C1, C2 be non empty graphs and letF be a bimap structure fromC1 into C2. We say thatF
is feasible if and only if:

(Def. 12) For all objectso1, o2 of C1 such that〈o1,o2〉 6= /0 holds (the arrows ofC2)((the object map
of F)(o1, o2)) 6= /0.

Let C1, C2 be graphs. We introduce functor structures fromC1 to C2 which are extensions of
bimap structure fromC1 into C2 and are systems

〈 an object map, a morphism map〉,
where the object map is a bifunction from the carrier ofC1 into the carrier ofC2 and the morphism
map is a the object map-transformation from the arrows ofC1 to the arrows ofC2.

Let C1, C2 be 1-sorted structures and letI4 be a bimap structure fromC1 into C2. We say thatI4
is precovariant if and only if:

(Def. 13) The object map ofI4 is precovariant.

We say thatI4 is precontravariant if and only if:

(Def. 14) The object map ofI4 is precontravariant.

Let C1, C2 be graphs. One can check that there exists a functor structure fromC1 to C2 which is
precovariant and there exists a functor structure fromC1 to C2 which is precontravariant.

Let C1, C2 be graphs, letF be a functor structure fromC1 to C2, and leto1, o2 be objects ofC1.
The functor Morph-MapF(o1,o2) is defined as follows:

(Def. 15) Morph-MapF(o1,o2) = (the morphism map ofF)(o1, o2).

Let C1, C2 be graphs, letF be a functor structure fromC1 to C2, and leto1, o2 be objects ofC1.
Observe that Morph-MapF(o1,o2) is relation-like and function-like.

Let C1, C2 be non empty graphs, letF be a precovariant functor structure fromC1 to C2, and let
o1, o2 be objects ofC1. Then Morph-MapF(o1,o2) is a function from〈o1,o2〉 into 〈F(o1),F(o2)〉.

Let C1, C2 be non empty graphs, letF be a precovariant functor structure fromC1 to C2, and
let o1, o2 be objects ofC1. Let us assume that〈o1,o2〉 6= /0 and 〈F(o1),F(o2)〉 6= /0. Let m be a
morphism fromo1 to o2. The functorF(m) yielding a morphism fromF(o1) to F(o2) is defined as
follows:

(Def. 16) F(m) = (Morph-MapF(o1,o2))(m).

LetC1, C2 be non empty graphs, letF be a precontravariant functor structure fromC1 toC2, and
leto1, o2 be objects ofC1. Then Morph-MapF(o1,o2) is a function from〈o1,o2〉 into 〈F(o2),F(o1)〉.

Let C1, C2 be non empty graphs, letF be a precontravariant functor structure fromC1 to C2,
and leto1, o2 be objects ofC1. Let us assume that〈o1,o2〉 6= /0 and〈F(o2),F(o1)〉 6= /0. Let m be a
morphism fromo1 to o2. The functorF(m) yields a morphism fromF(o2) to F(o1) and is defined
as follows:
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(Def. 17) F(m) = (Morph-MapF(o1,o2))(m).

Let C1, C2 be non empty graphs and leto be an object ofC2. Let us assume that〈o,o〉 6= /0. Let
m be a morphism fromo to o. The functorC1 7−→ m yielding a strict functor structure fromC1 to
C2 is defined by the conditions (Def. 18).

(Def. 18)(i) The object map of(C1 7−→ m) = [: the carrier ofC1, the carrier ofC1 :] 7−→ 〈〈o, o〉〉, and

(ii) the morphism map of(C1 7−→ m) = {〈〈〈〈o1, o2〉〉, (〈o1,o2〉) 7−→ m〉〉 : o1 ranges over objects
of C1, o2 ranges over objects ofC1}.

Next we state the proposition

(22) LetC1, C2 be non empty graphs ando2 be an object ofC2. Suppose〈o2,o2〉 6= /0. Let m be
a morphism fromo2 to o2 ando1 be an object ofC1. Then(C1 7−→ m)(o1) = o2.

LetC1 be a non empty graph, letC2 be a non empty reflexive graph, leto be an object ofC2, and
let mbe a morphism fromo to o. Note thatC1 7−→m is precovariant, precontravariant, and feasible.

Let C1 be a non empty graph and letC2 be a non empty reflexive graph. One can verify that
there exists a functor structure fromC1 to C2 which is feasible, precovariant, and precontravariant.

Next we state the proposition

(23) LetC1, C2 be non empty graphs,F be a precovariant functor structure fromC1 to C2, and
o1, o2 be objects ofC1. Then (the object map ofF)(o1, o2) = 〈〈F(o1), F(o2)〉〉.

LetC1, C2 be non empty graphs and letF be a precovariant functor structure fromC1 toC2. Let
us observe thatF is feasible if and only if:

(Def. 19) For all objectso1, o2 of C1 such that〈o1,o2〉 6= /0 holds〈F(o1),F(o2)〉 6= /0.

One can prove the following proposition

(24) LetC1, C2 be non empty graphs,F be a precontravariant functor structure fromC1 to C2,
ando1, o2 be objects ofC1. Then (the object map ofF)(o1, o2) = 〈〈F(o2), F(o1)〉〉.

Let C1, C2 be non empty graphs and letF be a precontravariant functor structure fromC1 to C2.
Let us observe thatF is feasible if and only if:

(Def. 20) For all objectso1, o2 of C1 such that〈o1,o2〉 6= /0 holds〈F(o2),F(o1)〉 6= /0.

Let C1, C2 be graphs and letF be a functor structure fromC1 to C2. Note that the morphism
map ofF is function yielding.

One can verify that there exists a category structure which is non empty and reflexive.
Let C1, C2 be non empty category structures with units and letF be a functor structure fromC1

to C2. We say thatF is id-preserving if and only if:

(Def. 21) For every objecto of C1 holds(Morph-MapF(o,o))(ido) = idF(o) .

We now state the proposition

(25) LetC1, C2 be non empty graphs ando2 be an object ofC2. Suppose〈o2,o2〉 6= /0. Let m
be a morphism fromo2 to o2, o, o′ be objects ofC1, and f be a morphism fromo to o′. If
〈o,o′〉 6= /0, then(Morph-MapC1 7−→m(o,o′))( f ) = m.

One can verify that every non empty category structure which has units is also reflexive.
Let C1, C2 be non empty category structures with units and leto2 be an object ofC2. One can

check thatC1 7−→ id(o2) is id-preserving.
Let C1 be a non empty graph, letC2 be a non empty reflexive graph, leto2 be an object ofC2,

and letm be a morphism fromo2 to o2. Observe thatC1 7−→ m is reflexive.
Let C1 be a non empty graph and letC2 be a non empty reflexive graph. One can check that

there exists a functor structure fromC1 to C2 which is feasible and reflexive.
Let C1, C2 be non empty category structures with units. Observe that there exists a functor

structure fromC1 to C2 which is id-preserving, feasible, reflexive, and strict.
Let C1, C2 be non empty category structures and letF be a functor structure fromC1 to C2. We

say thatF is comp-preserving if and only if the condition (Def. 22) is satisfied.
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(Def. 22) Leto1, o2, o3 be objects ofC1. Suppose〈o1,o2〉 6= /0 and〈o2,o3〉 6= /0. Let f be a mor-
phism fromo1 to o2 and g be a morphism fromo2 to o3. Then there exists a morphism
f ′ from F(o1) to F(o2) and there exists a morphismg′ from F(o2) to F(o3) such thatf ′ =
(Morph-MapF(o1,o2))( f ) andg′ = (Morph-MapF(o2,o3))(g) and(Morph-MapF(o1,o3))(g·
f ) = g′ · f ′.

Let C1, C2 be non empty category structures and letF be a functor structure fromC1 to C2. We
say thatF is comp-reversing if and only if the condition (Def. 23) is satisfied.

(Def. 23) Leto1, o2, o3 be objects ofC1. Suppose〈o1,o2〉 6= /0 and〈o2,o3〉 6= /0. Let f be a mor-
phism fromo1 to o2 and g be a morphism fromo2 to o3. Then there exists a morphism
f ′ from F(o2) to F(o1) and there exists a morphismg′ from F(o3) to F(o2) such thatf ′ =
(Morph-MapF(o1,o2))( f ) andg′ = (Morph-MapF(o2,o3))(g) and(Morph-MapF(o1,o3))(g·
f ) = f ′ ·g′.

Let C1 be a non empty transitive category structure, letC2 be a non empty reflexive category
structure, and letF be a precovariant feasible functor structure fromC1 toC2. Let us observe thatF
is comp-preserving if and only if the condition (Def. 24) is satisfied.

(Def. 24) Leto1, o2, o3 be objects ofC1. Suppose〈o1,o2〉 6= /0 and〈o2,o3〉 6= /0. Let f be a morphism
from o1 to o2 andg be a morphism fromo2 to o3. ThenF(g· f ) = F(g) ·F( f ).

Let C1 be a non empty transitive category structure, letC2 be a non empty reflexive category
structure, and letF be a precontravariant feasible functor structure fromC1 to C2. Let us observe
thatF is comp-reversing if and only if the condition (Def. 25) is satisfied.

(Def. 25) Leto1, o2, o3 be objects ofC1. Suppose〈o1,o2〉 6= /0 and〈o2,o3〉 6= /0. Let f be a morphism
from o1 to o2 andg be a morphism fromo2 to o3. ThenF(g· f ) = F( f ) ·F(g).

We now state two propositions:

(26) LetC1 be a non empty graph,C2 be a non empty reflexive graph,o2 be an object ofC2, m
be a morphism fromo2 to o2, andF be a precovariant feasible functor structure fromC1 to
C2. SupposeF = C1 7−→ m. Let o, o′ be objects ofC1 and f be a morphism fromo to o′. If
〈o,o′〉 6= /0, thenF( f ) = m.

(27) LetC1 be a non empty graph,C2 be a non empty reflexive graph,o2 be an object ofC2, m
be a morphism fromo2 to o2, o, o′ be objects ofC1, and f be a morphism fromo to o′. If
〈o,o′〉 6= /0, then(C1 7−→ m)( f ) = m.

LetC1 be a non empty transitive category structure, letC2 be a non empty category structure with
units, and leto be an object ofC2. Note thatC1 7−→ ido is comp-preserving and comp-reversing.

LetC1 be a transitive non empty category structure with units and letC2 be a non empty category
structure with units. A functor structure fromC1 to C2 is said to be a functor fromC1 to C2 if:

(Def. 26) It is feasible and id-preserving but it is precovariant and comp-preserving or it is precon-
travariant and comp-reversing.

Let C1 be a transitive non empty category structure with units, letC2 be a non empty category
structure with units, and letF be a functor fromC1 to C2. We say thatF is covariant if and only if:

(Def. 27) F is precovariant and comp-preserving.

We say thatF is contravariant if and only if:

(Def. 28) F is precontravariant and comp-reversing.

Let A be a category structure and letB be a substructure ofA. The functor B
↪→ yielding a strict

functor structure fromB to A is defined by the conditions (Def. 29).

(Def. 29)(i) The object map of( B
↪→ ) = id[: the carrier ofB, the carrier ofB:], and

(ii) the morphism map of( B
↪→ ) = idthe arrows ofB.
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Let A be a graph. The functor idA yielding a strict functor structure fromA to A is defined by
the conditions (Def. 30).

(Def. 30)(i) The object map of idA = id[: the carrier ofA, the carrier ofA:], and

(ii) the morphism map of idA = idthe arrows ofA.

Let A be a category structure and letB be a substructure ofA. One can check thatB↪→ is preco-
variant.

We now state two propositions:

(28) LetA be a non empty category structure,B be a non empty substructure ofA, ando be an
object ofB. Then( B

↪→ )(o) = o.

(29) LetA be a non empty category structure,B be a non empty substructure ofA, ando1, o2 be
objects ofB. Then〈o1,o2〉 ⊆ 〈( B

↪→ )(o1),( B
↪→ )(o2)〉.

Let A be a non empty category structure and letB be a non empty substructure ofA. One can
verify that B

↪→ is feasible.
Let A, B be graphs and letF be a functor structure fromA to B. We say thatF is faithful if and

only if:

(Def. 31) The morphism map ofF is “1-1”.

Let A, B be graphs and letF be a functor structure fromA to B. We say thatF is full if and only
if the condition (Def. 32) is satisfied.

(Def. 32) There exists a many sorted setB′ indexed by[: the carrier ofA, the carrier ofA:] and there
exists a many sorted functionf from the arrows ofA into B′ such thatB′ = (the arrows of
B) · (the object map ofF) and f = the morphism map ofF and f is onto.

Let A be a graph, letB be a non empty graph, and letF be a functor structure fromA to B. Let
us observe thatF is full if and only if the condition (Def. 33) is satisfied.

(Def. 33) There exists a many sorted functionf from the arrows ofA into (the arrows ofB) · (the
object map ofF) such thatf = the morphism map ofF and f is onto.

Let A, B be graphs and letF be a functor structure fromA to B. We say thatF is injective if and
only if:

(Def. 34) F is one-to-one and faithful.

We say thatF is surjective if and only if:

(Def. 35) F is full and onto.

Let A, B be graphs and letF be a functor structure fromA to B. We say thatF is bijective if and
only if:

(Def. 36) F is injective and surjective.

Let A, B be transitive non empty category structures with units. Note that there exists a functor
from A to B which is strict, covariant, contravariant, and feasible.

Next we state two propositions:

(30) For every non empty graphA and for every objecto of A holds idA(o) = o.

(31) Let A be a non empty graph ando1, o2 be objects ofA. If 〈o1,o2〉 6= /0, then for every
morphismm from o1 to o2 holds(Morph-MapidA

(o1,o2))(m) = m.

Let A be a non empty graph. One can check that idA is feasible and precovariant.
Let A be a non empty graph. One can check that there exists a functor structure fromA to A

which is precovariant and feasible.
We now state the proposition
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(32) LetA be a non empty graph ando1, o2 be objects ofA. Suppose〈o1,o2〉 6= /0. Let F be a
precovariant feasible functor structure fromA to A. If F = idA, then for every morphismm
from o1 to o2 holdsF(m) = m.

Let A be a transitive non empty category structure with units. Observe that idA is id-preserving
and comp-preserving.

Let A be a transitive non empty category structure with units. Then idA is a strict covariant
functor fromA to A.

Let A be a graph. Note that idA is bijective.

5. THE COMPOSITION OFFUNCTORS

Let C1 be a non empty graph, letC2, C3 be non empty reflexive graphs, letF be a feasible functor
structure fromC1 to C2, and letG be a functor structure fromC2 to C3. The functorG ·F yields a
strict functor structure fromC1 to C3 and is defined by the conditions (Def. 37).

(Def. 37)(i) The object map ofG·F = (the object map ofG) · (the object map ofF), and

(ii) the morphism map ofG ·F = ((the morphism map ofG) · (the object map ofF)) ◦ the
morphism map ofF .

Let C1 be a non empty graph, letC2, C3 be non empty reflexive graphs, letF be a precovariant
feasible functor structure fromC1 toC2, and letG be a precovariant functor structure fromC2 toC3.
Note thatG·F is precovariant.

LetC1 be a non empty graph, letC2,C3 be non empty reflexive graphs, letF be a precontravariant
feasible functor structure fromC1 toC2, and letG be a precovariant functor structure fromC2 toC3.
Observe thatG·F is precontravariant.

Let C1 be a non empty graph, letC2, C3 be non empty reflexive graphs, letF be a precovariant
feasible functor structure fromC1 to C2, and letG be a precontravariant functor structure fromC2

to C3. Observe thatG·F is precontravariant.
LetC1 be a non empty graph, letC2,C3 be non empty reflexive graphs, letF be a precontravariant

feasible functor structure fromC1 to C2, and letG be a precontravariant functor structure fromC2

to C3. Note thatG·F is precovariant.
LetC1 be a non empty graph, letC2,C3 be non empty reflexive graphs, letF be a feasible functor

structure fromC1 to C2, and letG be a feasible functor structure fromC2 to C3. One can check that
G·F is feasible.

We now state three propositions:

(33) LetC1 be a non empty graph,C2, C3, C4 be non empty reflexive graphs,F be a feasible
functor structure fromC1 to C2, G be a feasible functor structure fromC2 to C3, andH be a
functor structure fromC3 to C4. Then(H ·G) ·F = H · (G·F).

(34) LetC1 be a non empty category structure,C2,C3 be non empty reflexive category structures,
F be a feasible reflexive functor structure fromC1 to C2, G be a functor structure fromC2 to
C3, ando be an object ofC1. Then(G·F)(o) = G(F(o)).

(35) LetC1 be a non empty graph,C2,C3 be non empty reflexive graphs,F be a feasible reflexive
functor structure fromC1 to C2, G be a functor structure fromC2 to C3, ando be an object of
C1. Then Morph-MapG·F(o,o) = Morph-MapG(F(o),F(o)) ·Morph-MapF(o,o).

Let C1, C2, C3 be non empty category structures with units, letF be an id-preserving feasible
reflexive functor structure fromC1 to C2, and letG be an id-preserving functor structure fromC2 to
C3. Observe thatG·F is id-preserving.

Let A, C be non empty reflexive category structures, letB be a non empty substructure ofA, and
let F be a functor structure fromA to C. The functorF�B yielding a functor structure fromB to C
is defined by:

(Def. 38) F�B = F · ( B
↪→ ).
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6. THE INVERSEFUNCTOR

Let A, B be non empty graphs and letF be a functor structure fromA to B. Let us assume that
F is bijective. The functorF−1 yields a strict functor structure fromB to A and is defined by the
conditions (Def. 39).

(Def. 39)(i) The object map ofF−1 = (the object map ofF)−1, and

(ii) there exists a many sorted functionf from the arrows ofA into (the arrows ofB) ·(the object
map ofF) such thatf = the morphism map ofF and the morphism map ofF−1 = f−1 · (the
object map ofF)−1.

Next we state several propositions:

(36) LetA, B be transitive non empty category structures with units andF be a feasible functor
structure fromA to B. If F is bijective, thenF−1 is bijective and feasible.

(37) LetA, B be transitive non empty category structures with units andF be a feasible reflexive
functor structure fromA to B. If F is bijective and coreflexive, thenF−1 is reflexive.

(38) LetA, B be transitive non empty category structures with units andF be a feasible reflexive
id-preserving functor structure fromA to B. If F is bijective and coreflexive, thenF−1 is
id-preserving.

(39) LetA, B be transitive non empty category structures with units andF be a feasible functor
structure fromA to B. If F is bijective and precovariant, thenF−1 is precovariant.

(40) LetA, B be transitive non empty category structures with units andF be a feasible functor
structure fromA to B. If F is bijective and precontravariant, thenF−1 is precontravariant.

(41) Let A, B be transitive non empty category structures with units andF be a feasible re-
flexive functor structure fromA to B. SupposeF is bijective, coreflexive, and precovari-
ant. Leto1, o2 be objects ofB andm be a morphism fromo1 to o2. If 〈o1,o2〉 6= /0, then
(Morph-MapF(F−1(o1),F−1(o2)))((Morph-MapF−1(o1,o2))(m)) = m.

(42) Let A, B be transitive non empty category structures with units andF be a feasible re-
flexive functor structure fromA to B. SupposeF is bijective, coreflexive, and precontravari-
ant. Leto1, o2 be objects ofB andm be a morphism fromo1 to o2. If 〈o1,o2〉 6= /0, then
(Morph-MapF(F−1(o2),F−1(o1)))((Morph-MapF−1(o1,o2))(m)) = m.

(43) LetA, B be transitive non empty category structures with units andF be a feasible reflexive
functor structure fromA to B. SupposeF is bijective, comp-preserving, precovariant, and
coreflexive. ThenF−1 is comp-preserving.

(44) LetA, B be transitive non empty category structures with units andF be a feasible reflexive
functor structure fromA to B. SupposeF is bijective, comp-reversing, precontravariant, and
coreflexive. ThenF−1 is comp-reversing.

Let C1 be a 1-sorted structure and letC2 be a non empty 1-sorted structure. Observe that every
bimap structure fromC1 into C2 which is precovariant is also reflexive.

Let C1 be a 1-sorted structure and letC2 be a non empty 1-sorted structure. One can check that
every bimap structure fromC1 into C2 which is precontravariant is also reflexive.

The following two propositions are true:

(45) LetC1, C2 be 1-sorted structures andM be a bimap structure fromC1 into C2. If M is
precovariant and onto, thenM is coreflexive.

(46) LetC1, C2 be 1-sorted structures andM be a bimap structure fromC1 into C2. If M is
precontravariant and onto, thenM is coreflexive.
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LetC1 be a transitive non empty category structure with units and letC2 be a non empty category
structure with units. Note that every functor fromC1 to C2 which is covariant is also reflexive.

LetC1 be a transitive non empty category structure with units and letC2 be a non empty category
structure with units. One can check that every functor fromC1 to C2 which is contravariant is also
reflexive.

Next we state four propositions:

(47) LetC1 be a transitive non empty category structure with units,C2 be a non empty category
structure with units, andF be a functor fromC1 to C2. If F is covariant and onto, thenF is
coreflexive.

(48) LetC1 be a transitive non empty category structure with units,C2 be a non empty category
structure with units, andF be a functor fromC1 to C2. If F is contravariant and onto, thenF
is coreflexive.

(49) LetA, B be transitive non empty category structures with units andF be a covariant functor
from A to B. SupposeF is bijective. Then there exists a functorG from B to A such that
G = F−1 andG is bijective and covariant.

(50) Let A, B be transitive non empty category structures with units andF be a contravariant
functor fromA to B. SupposeF is bijective. Then there exists a functorG from B to A such
thatG = F−1 andG is bijective and contravariant.

Let A, B be transitive non empty category structures with units. We say thatA andB are isomor-
phic if and only if:

(Def. 40) There exists a functor fromA to B which is bijective and covariant.

Let us notice that the predicateA andB are isomorphic is reflexive and symmetric. We say thatA,
B are anti-isomorphic if and only if:

(Def. 41) There exists a functor fromA to B which is bijective and contravariant.

Let us note that the predicateA, B are anti-isomorphic is symmetric.
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