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Summary. An attempt to define the concept of a functor covering both cases (co-
variant and contravariant) resulted in a structure consisting of two fields: the object map and
the morphism map, the first one mapping the Cartesian squares of the set of objects rather
than the set of objects. We start with an auxiliary notiorbiéfinction i.e. a function map-
ping the Cartesian square of a geinto the Cartesian square of a &t A bifunction fis
said to becovariantif there is a functiorg from A into B that f is the Cartesian square of
g and f is contravariantif there is a functiong such thatf(o1,02) = (g(02),9(01)). The
termtransformation another auxiliary notion, might be misleading. It is not related to natural
transformations. A transformation from a many sortedésietdexed byl into a many sorted
setB indexed byJ w.r.t. a functionf from | into J is a (many sorted) function fror into
B- f. Eventually, the morphism map of a functor fr@ninto C; is a transformation from the
arrows of the categor@; into the composition of the object map of the functor and the arrows
of Co.

Several kinds of functor structures have been defined: one-to-one, faithful, onto, full and
id-preserving. We were pressed to split property that the composition be preserved into two:
comp-preserving (for covariant functors) and comp-reversing (for contravariant functors). We
defined also some operation on functors, e.g. the composition, the inverse functor. In the last
section it is defined what is meant that two categories are isomorphic (anti-isomorphic).

MML Identifier: FUNCTORO.

WWW: http://mizar.org/JFM/Vol8/functor0.html

The articles[[11],[[6],[[1/7],[[18],[[19],[[12],[3],[[5],14],[[2],[[10], 1], T7], [[183], (18], 114], (8], [115],
and [16] provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemé&/alOnPairdeals with a non empty set, a functionB, elementsC, D of 4, a binary
functor ¥ yielding a set, and a binary predicafe and states that:
B(C,D)=F(C,D)
provided the following conditions are met:
e B=1{{(0,0), F(0,0));0 ranges over elements ¢t,0' ranges over elements of
4 Plo,d]}, and
o P[C,D].
One can prove the following propositions:

(1) Forevery sef\ holds0 is a function fromA into 0.

(3H For every set and for every many sorted setindexed byl holdsM -id; = M.

1 The proposition (2) has been removed.
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Let f be an empty function. Note thatf is empty. Letg be a function. One can verify that

[ f,g]is empty and: g, f]is empty.
The following two propositions are true:

(4) Forevery sef and for every functiorf holdsf°(ida) = (\f)°(ida).
(5) For all set, Y and for every functiorf from X intoY holdsf is onto iff [: f, f ] is onto.

Let f be a function yielding function. Observe thatf is function yielding.
One can prove the following propositions:

(6) For all sets\, B and for every sea holds~\(A,B]+—a) =[B,A]— a.

(7) For all functionsf, g such thatf is one-to-one and is one-to-one holdgf, g}t =[f~1,
g t.
(8) For every functiorf such thaf; f, f ] is one-to-one hold$ is one-to-one.
(9) For every functiorf such thatf is one-to-one holds~f is one-to-one.
(10) For all functionsf, g such that~[: f, g is one-to-one holdkg, f ] is one-to-one.

(11) For all functionsf, g such thatf is one-to-one and is one-to-one holdé~\[; f, g])~* =

(kg fI7.

(12) For all set#, B and for every functiorf from A into B such thatf is onto holds i@ C [ f,
f1°(ida).

(13) For all function yielding function&, G and for every functiorf holds(GoF)-f = (G-
flo(F-f).

Let A, B, C be sets and let be a function fronf: A, B]] into C. Thenf is a function from|: B,
A]intoC.
We now state two propositions:

(14) For all set\, B, C and for every functiorf from [: A, B] into C such that~f is onto holds
f is onto.

(15) For every sef and for every non empty sBtand for every functiorf from A into B holds
[f, ]°(ida) C idg.

2. FUNCTIONSBETWEEN CARTESIAN SQUARES

Let A, B be sets. A bifunction fronA into B is a function from[: A, A] into [ B, B].
Let A, B be sets and let be a bifunction fromA into B. We say thatf is precovariant if and
only if:

(Def. ZE] There exists a functiog from A into B such thatf = [:g, g
We say thaff is precontravariant if and only if:
(Def. 3) There exists a functiopfrom A into B such thatf = ~\[:g, g3
One can prove the following proposition

(16) LetA be a setB be a non empty seh be an element dB, and f be a bifunction fromA
intoB. If f =[A, A]— (b, b), thenf is precovariant and precontravariant.

Let A, B be sets. Observe that there exists a bifunction ffoimto B which is precovariant and
precontravariant.
The following proposition is true

(17) LetA, Bbe non empty sets arnfdbe a precovariant precontravariant bifunction franmto
B. Then there exists an elemdnof B such thatf = [: A, A] — (b, b).

2 The definition (Def. 1) has been removed.
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3. UNARY TRANSFORMATIONS

Letly, I> be sets, lef be a function from; into I, let A be a many sorted set indexedlhyand letB
be a many sorted set indexedlby A many sorted set indexed lbyis said to be & -transformation
fromAto Bif:

(Def. 4)(i) There exists a non empty détand there exists a many sorted Bétndexed byl; and
there exists a functiof’ from Iy into I; such thatf = f’ andB = B’ and it is a many sorted
function fromAinto B'- f' if 1, £ 0,

(i) it =0, otherwise.

Letl; be a set, lek, be a non empty set, Idtbe a function froniy into I, let Abe a many sorted
set indexed byy, and letB be a many sorted set indexed by Let us note that thé-transformation
from A to B can be characterized by the following (equivalent) condition:

(Def. 5) Itis a many sorted function frominto B- f.

Letls, |2 be sets, lef be a function from; into I, let A be a many sorted set indexed layand
let B be a many sorted set indexed by One can check that evefytransformation fronA to B is
function yielding.

Next we state the proposition

(18) Letl; be a setly, I3 be non empty setd, be a function from into I, g be a function from
I, into I3, B be a many sorted set indexed lbyC be a many sorted set indexed hy andG
be ag-transformation fronB to C. ThenG- f is ag- f-transformation fronB- f to C.

Let I1 be a set, let, be a non empty set, l€t be a function fromiy into I, let A be a many
sorted set indexed bjyli, |1 ], let B be a many sorted set indexed plg, 1,1, and letF be a[: f,
f ]-transformation fromA to B. Then~F is a[ f, f ]-transformation from~A to .~B.

The following propositions are true:

(19) Letly, I be non empty set#y be a many sorted set indexed khyB be a many sorted set
indexed byl», ando be an element db. Supposé(0) # 0. Let mbe an element dB(o) and
f be a function fromy into I,. Supposef = I; — 0. Then{{0’, A(0') — m) : o’ ranges
over elements off; } is a f-transformation fronA to B.

(20) Letl; be a set],, I3 be non empty setd, be a function from into I, g be a function
from I into I3, A be a many sorted set indexed hy B be a many sorted set indexed by
I,, C be a many sorted set indexed by F be a f-transformation fromA to B, andG be
a g- f-transformation fromB- f to C. Suppose that for every sit such thati; € 11 and
(B- f)(i1) = 0 holdsA(i1) =0 or (C-(g- f))(i1) = 0. ThenGo (F qua function yielding
function) is ag- f-transformation fromA to C.

4, FUNCTORS

LetCy, C be 1-sorted structures. We consider bimap structures@pmto C, as systems

( an object map,
where the object map is a bifunction from the carrie€ginto the carrier ofC,.

Let Cy, Co be non empty graphs, I& be a bimap structure froi@; into C,, and leto be an
object ofC;. The functor(0) yielding an object of; is defined as follows:

(Def. 6) F(0) = (the object map oF)(o, 0).

Let A, B be 1-sorted structures and Fetbe a bimap structure frol into B. We say thaf is
one-to-one if and only if:

(Def. 7) The object map df is one-to-one.

We say thaf is onto if and only if:
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(Def. 8) The object map df is onto.
We say thaf is reflexive if and only if;
(Def. 9) (The object map d )°(idine carrier ota) < idtne carrier ofe-
We say thaf is coreflexive if and only if:
(Def. 10) idne carrier o8  (the object map oF )°(idthe carrier ofa)-

Let A, B be non empty graphs and IEtbe a bimap structure frointo B. Let us observe that
F is reflexive if and only if:

(Def. 11) For every objeat of A holds (the object map d¥)(o, 0) = (F(0), F(0)).
Next we state the proposition

(21) LetA, B be reflexive non empty graphs aRdoe a bimap structure frolinto B. Suppose
F is coreflexive. Leto be an object oB. Then there exists an objeot of A such that
F(d)=o.

LetCy, C; be non empty graphs and Ietbe a bimap structure fro@; into C,. We say thafF
is feasible if and only if:

(Def. 12) For all object®s, 02 of C; such thatog,0,) # 0 holds (the arrows oF;)((the object map
of F)(01, 02)) # 0.

Let Cy, C; be graphs. We introduce functor structures frémto C, which are extensions of
bimap structure front; into C; and are systems

( an object map, a morphism map
where the object map is a bifunction from the carrie€gfinto the carrier ofC; and the morphism
map is a the object map-transformation from the arrow@;db the arrows o€,.

LetCq, C, be 1-sorted structures and Igthe a bimap structure fro@; into C,. We say that,
is precovariant if and only if:

(Def. 13) The object map df; is precovariant.
We say that, is precontravariant if and only if:
(Def. 14) The object map df; is precontravariant.

LetCq, G be graphs. One can check that there exists a functor structurefrooCy, which is
precovariant and there exists a functor structure f@&no C, which is precontravariant.

LetCq, C, be graphs, IeF be a functor structure froi§; to Cy, and letos, 0, be objects ofZ;.
The functor Morph-Map(01,0,) is defined as follows:

(Def. 15) Morph-Mag (01,02) = (the morphism map df (o1, 02).

LetCy, C, be graphs, leE be a functor structure froi; to C,, and letos, 0, be objects o€C;.
Observe that Morph-Mag{ 01, 0) is relation-like and function-like.

LetCy, Co be non empty graphs, 1€t be a precovariant functor structure fr@nto C,, and let
01, 02 be objects of;. Then Morph-Map (01,0,) is a function from(os,02) into (F(01),F (02)).

Let Cy, C; be non empty graphs, I€ be a precovariant functor structure frdda to Cy, and
let 01, 02 be objects ofC;. Let us assume thgb;,02) # 0 and (F(01),F(02)) # 0. Let m be a
morphism fromo; to 0. The functor=(m) yielding a morphism fronfr (01) to F(0) is defined as
follows:

(Def. 16) F(m) = (Morph-Map: (01,02))(m).

LetCy, C; be non empty graphs, I€tbe a precontravariant functor structure fre@mto C,, and
letos, 02 be objects o€;. Then Morph-Map (01, 0,) is a function fromo1,0,) into (F (02),F (01)).

Let C1, C; be non empty graphs, I be a precontravariant functor structure fr@nto C,,
and letos, 0, be objects o€;. Let us assume thdb;,02) # 0 and(F(02),F(01)) # 0. Letmbe a
morphism fromo; to 0p. The functor(m) yields a morphism fronf (02) to F(01) and is defined
as follows:
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(Def. 17) F(m) = (Morph-Map:(01,02))(m).

LetC4, C; be non empty graphs and lebe an object o€,. Let us assume thab, o) # 0. Let
m be a morphism frono to 0. The functorC; —— myielding a strict functor structure fro@; to
C; is defined by the conditions (Def. 18).

(Def. 18)(i) The object map afC; — m) = [:the carrier ofCy, the carrier ofc; ] — (0, 0}, and

(i)  the morphism map ofC; — m) = {((01, 02), ((01,02)) — m) : 01 ranges over objects
of C4, 02 ranges over objects @ }.

Next we state the proposition

(22) LetCy, Cy be non empty graphs armd be an object o€;. Suppos€oy,0,) # 0. Letmbe
a morphism fronmo, to 0, ando; be an object o€;. Then(Cy — m)(01) = 0.

LetC; be a non empty graph, 1€ be a non empty reflexive graph, ebe an object of,, and
let mbe a morphism frono to 0. Note thaiC; —— mis precovariant, precontravariant, and feasible.
Let C; be a non empty graph and Ie; be a non empty reflexive graph. One can verify that
there exists a functor structure frada to C, which is feasible, precovariant, and precontravariant.
Next we state the proposition

(23) LetCy, C, be non empty graphs; be a precovariant functor structure fr&@p to C,, and
01, 02 be objects of;. Then (the object map &) (01, 02) = (F(01), F(02)).

LetCy, Cy be non empty graphs and [Etbe a precovariant functor structure fr@nto C,. Let
us observe that is feasible if and only if;

(Def. 19) For all object®, 0y of Cy such thatiog,02) # 0 holds(F (01),F(02)) # 0.
One can prove the following proposition

(24) LetCq, C; be non empty graphs; be a precontravariant functor structure fr@nto Cy,
andos, 0z be objects o€;. Then (the object map &%)(01, 02) = (F(02), F(01)).

LetCy, Co be non empty graphs and [Etbe a precontravariant functor structure fr@mnto Cs.
Let us observe thdt is feasible if and only if:

(Def. 20) For all object®;, 0, of C; such thato;,0,) # 0 holds(F (02),F(01)) # 0.

Let C4, C, be graphs and I€t be a functor structure fror@; to C,. Note that the morphism
map ofF is function yielding.

One can verify that there exists a category structure which is non empty and reflexive.

LetCy, C; be non empty category structures with units andFlée a functor structure froi@;
to Cp. We say thaF is id-preserving if and only if:

(Def. 21)  For every objeat of C; holds(Morph-Magp:(0,0))(ido) = idg () -
We now state the proposition

(25) LetCq, C; be non empty graphs am be an object o;. Suppos€o,,0;) # 0. Let m
be a morphism frono, to 0z, 0, o’ be objects ofC;, and f be a morphism frono to o'. If
(0,0') # 0, then(Morph-Mag;,, (0,0))(f) =m.

One can verify that every non empty category structure which has units is also reflexive.

Let Cy, C, be non empty category structures with units andjebe an object o€,. One can
check thaCy — idq,) is id-preserving.

Let C; be a non empty graph, 1€ be a non empty reflexive graph, ket be an object o€,,
and letm be a morphism frone, to 0,. Observe that; — mis reflexive.

Let C; be a non empty graph and €t be a non empty reflexive graph. One can check that
there exists a functor structure frada to C, which is feasible and reflexive.

Let C1, C; be non empty category structures with units. Observe that there exists a functor
structure fromC; to C; which is id-preserving, feasible, reflexive, and strict.

LetCy, C; be non empty category structures andHdte a functor structure fro@; to C,. We
say that~ is comp-preserving if and only if the condition (Def. 22) is satisfied.
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(Def. 22) Letos, 0y, 03 be objects ofC;. Supposgo;,02) # 0 and (02,03) # 0. Let f be a mor-
phism fromo; to 0, andg be a morphism frono, to o3. Then there exists a morphism
f’ from F(01) to F(02) and there exists a morphisgh from F(0;) to F(o3) such thatf’ =
(Morph-Map: (01,02))(f) andg’ = (Morph-Mag: (02,03))(g) and(Morph-Mag: (01,03)) (g-
fy=d-f.

LetCy, C; be non empty category structures andHdte a functor structure fro@; to C,. We
say that~ is comp-reversing if and only if the condition (Def. 23) is satisfied.

(Def. 23) Letoy, 0z, 03 be objects ofC;. Suppose€01,02) # 0 and (02,03) # 0. Let f be a mor-
phism fromo; to 0, andg be a morphism frono, to 03. Then there exists a morphism
f’ from F(0,) to F(01) and there exists a morphisghfrom F(o03) to F(0z) such thatf’ =
(Morph-Map: (01,02))(f) andg’ = (Morph-Mag: (02,03))(g) and(Morph-Mag: (01,03))(g-
f)=1.d.

Let C; be a non empty transitive category structure dgte a non empty reflexive category
structure, and |eff be a precovariant feasible functor structure fiGqrto C,. Let us observe thdt
is comp-preserving if and only if the condition (Def. 24) is satisfied.

(Def. 24) Letoy, 02, 03 be objects 0€;. Suppos€o;,02) # 0 and(0p,03) # 0. Let f be a morphism
from 01 to 02 andg be a morphism frono, to 03. ThenF(g- f) = F(g)-F(f).

Let C; be a non empty transitive category structure dgte a non empty reflexive category
structure, and e be a precontravariant feasible functor structure fi@mo C,. Let us observe
thatF is comp-reversing if and only if the condition (Def. 25) is satisfied.

(Def. 25) Letoy, 02, 03 be objects 0€;. Supposeo;,0z) # 0 and(op,03) # 0. Let f be a morphism
from o3 to 0, andg be a morphism frono; to 03. ThenF(g- f) =F(f)-F(0g).

We now state two propositions:

(26) LetC; be a non empty grapki; be a non empty reflexive grapby be an object o€, m
be a morphism frono, to 02, andF be a precovariant feasible functor structure frémto
C,. Supposd= = C; — m. Let o, 0’ be objects ofZ; and f be a morphism fronoto o'. If
(0,0) # 0, thenF(f) =m.

(27) LetCy be a non empty grapit,; be a non empty reflexive grapbg be an object o€, m
be a morphism frono, to 0z, 0, 0’ be objects ofC;, and f be a morphism frono to o'. If
(0,0) # 0, then(Cy — m)(f) =m.

LetC; be a non empty transitive category structureClelbe a non empty category structure with
units, and leb be an object of,. Note thatC; — id, is comp-preserving and comp-reversing.

LetC; be a transitive non empty category structure with units an@)lée a non empty category
structure with units. A functor structure froBy to C, is said to be a functor fror@; to C; if:

(Def. 26) ltis feasible and id-preserving but it is precovariant and comp-preserving or it is precon-
travariant and comp-reversing.

Let C; be a transitive non empty category structure with unitsCelbe a non empty category
structure with units, and It be a functor fronC; to C,. We say thaf is covariant if and only if:

(Def. 27) F is precovariant and comp-preserving.
We say thaf is contravariant if and only if:
(Def. 28) F is precontravariant and comp-reversing.

Let A be a category structure and Btbe a substructure &. The functori yielding a strict
functor structure fronB to A is defined by the conditions (Def. 29).

(Def- 29) (') The ObjeCt map de,) = id[: the carrier ofB, the carrier ofB]» and

(i) the morphism map of 2 ) = idine arrows om-
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Let A be a graph. The functor idyielding a strict functor structure from to A is defined by
the conditions (Def. 30).

(Def- 30) (') The ObjeCt map of kj: id[: the carrier ofA, the carrier ofA]> and
(i)  the morphism map of il = idihe arrows ofA-

Let A be a category structure and Bbe a substructure @. One can check thai is preco-
variant.
We now state two propositions:

(28) LetA be a non empty category structuBebe a non empty substructure &f ando be an
object ofB. Then( 2 )(0) =o.

(29) LetAbe a non empty category structuBebe a non empty substructureAfando;, o, be
objects ofB. Then(oy,02) C (( B )(01),( 2 )(02)).

Let A be a non empty category structure andBdie a non empty substructure &Af One can

verify that B is feasible.
Let A, B be graphs and Idgt be a functor structure fror to B. We say thaf is faithful if and

only if:
(Def. 31) The morphism map &f is “1-1".

Let A, B be graphs and Idt be a functor structure from to B. We say thaf is full if and only
if the condition (Def. 32) is satisfied.

(Def. 32) There exists a many sorted Bétndexed by the carrier ofA, the carrier ofA;] and there
exists a many sorted functiohfrom the arrows ofA into B’ such thatB’ = (the arrows of
B) - (the object map oF) and f = the morphism map df andf is onto.

Let A be a graph, leB be a non empty graph, and Ietbe a functor structure frorA to B. Let
us observe that is full if and only if the condition (Def. 33) is satisfied.

(Def. 33) There exists a many sorted functibrirom the arrows ofA into (the arrows oB) - (the
object map of) such thatf = the morphism map df and f is onto.

Let A, B be graphs and lét be a functor structure fror to B. We say thaF is injective if and
only if:

(Def. 34) F is one-to-one and faithful.
We say thaf is surjective if and only if:
(Def. 35) F is full and onto.

Let A, B be graphs and lét be a functor structure from to B. We say thaF is bijective if and
only if:

(Def. 36) F is injective and surjective.

Let A, B be transitive non empty category structures with units. Note that there exists a functor

from A to B which is strict, covariant, contravariant, and feasible.
Next we state two propositions:

(30) For every non empty grapghand for every objeab of A holds ich(0) = o.

(31) LetA be a non empty graph ar@, o be objects ofA. If (01,0,) # 0, then for every
morphismm from o, to 0, holds(Morph-Mapg, (01,02))(m) = m.

Let A be a non empty graph. One can check thatisdfeasible and precovariant.

Let A be a non empty graph. One can check that there exists a functor structuré tw#
which is precovariant and feasible.

We now state the proposition
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(32) LetA be a non empty graph arad, o, be objects ofA. Suppose€o;,0;) # 0. Let F be a
precovariant feasible functor structure fragkrto A. If F = ida, then for every morphisrm
from 03 to 02 holdsF(m) = m.

Let A be a transitive non empty category structure with units. Observe that id-preserving
and comp-preserving.

Let A be a transitive non empty category structure with units. Th@nisca strict covariant
functor fromAto A.

Let A be a graph. Note that ids bijective.

5. THE COMPOSITION OFFUNCTORS

Let C; be a non empty graph, I€, C3 be non empty reflexive graphs, Etbe a feasible functor
structure fromC; to Cyp, and letG be a functor structure fror@; to Cz. The functorG- F yields a
strict functor structure fror@; to Cz and is defined by the conditions (Def. 37).

(Def. 37)()) The object map dB- F = (the object map 0o6) - (the object map oF), and

(i) the morphism map ofs-F = ((the morphism map o) - (the object map of)) o the
morphism map oF.

Let C; be a non empty graph, 1€, C3 be non empty reflexive graphs, IEtbe a precovariant
feasible functor structure fro@; to Cy, and letG be a precovariant functor structure fr@pto Cs.
Note thatG- F is precovariant.

LetC; be anon empty graph, 1€, C3 be non empty reflexive graphs, lEbe a precontravariant
feasible functor structure fro®; to Cy, and letG be a precovariant functor structure fr@pto Cs.
Observe thaG - F is precontravariant.

Let C; be a non empty graph, 1€, C3 be non empty reflexive graphs, Etbe a precovariant
feasible functor structure fro@; to Cy, and letG be a precontravariant functor structure fr@m
to C3. Observe thaG - F is precontravariant.

LetC; be anon empty graph, 1€, C3 be non empty reflexive graphs, lEbe a precontravariant
feasible functor structure frof@; to Cy, and letG be a precontravariant functor structure fr@n
to Cs. Note thatG - F is precovariant.

LetC; be a non empty graph, 1€, C3 be non empty reflexive graphs, lete a feasible functor
structure fronC; to Cy, and letG be a feasible functor structure froBa to Cs. One can check that
G-F is feasible.

We now state three propositions:

(833) LetC; be a non empty grapl@,, Cs, C4 be non empty reflexive graphB, be a feasible
functor structure fron€; to C,, G be a feasible functor structure froBs to Cs, andH be a
functor structure fronC3 toC4. Then(H-G)-F =H - (G-F).

(34) LetCy be anonempty category structue, Cz be non empty reflexive category structures,
F be a feasible reflexive functor structure fr@nto C,, G be a functor structure froi@;, to
Cs, ando be an object o€;. Then(G-F)(0) = G(F(0)).

(35) LetCs be anonempty graplp, C3 be non empty reflexive graphs be a feasible reflexive
functor structure fron€; to C,, G be a functor structure fromd, to Cs, ando be an object of
Ci. Then Morph-Mag, ¢ (0,0) = Morph-Map;(F (0),F (0)) - Morph-Map: (0, 0).

Let Cq, Cp, C3 be non empty category structures with units,Hebe an id-preserving feasible
reflexive functor structure fror@; to C,, and letG be an id-preserving functor structure fr@p to
Cs. Observe thaG - F is id-preserving.

Let A, C be non empty reflexive category structuresBéte a non empty substructureAfand
let F be a functor structure frorA to C. The functorF |B yielding a functor structure fror8 to C
is defined by:

(Def.38) FIB=F-(B).
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6. THE INVERSEFUNCTOR

Let A, B be non empty graphs and IEtbe a functor structure from to B. Let us assume that
F is bijective. The functof ! yields a strict functor structure frof to A and is defined by the
conditions (Def. 39).

(Def. 39)(i) The object map df ~* = (the object map oF )1, and
(i) there exists a many sorted functiérirom the arrows oA into (the arrows oB) - (the object

map ofF) such thatf = the morphism map df and the morphism map & 1 = 1. (the
object map of )~1.

Next we state several propositions:

(36) LetA, B be transitive non empty category structures with unitsfarte a feasible functor
structure fromA to B. If F is bijective, therF ~1 is bijective and feasible.

(87) LetA, Bbe transitive non empty category structures with unitskaibe a feasible reflexive
functor structure fronA to B. If F is bijective and coreflexive, thefi 1 is reflexive.

(38) LetA, B be transitive non empty category structures with unitskahé a feasible reflexive
id-preserving functor structure fror to B. If F is bijective and coreflexive, theR— is
id-preserving.

(39) LetA, B be transitive non empty category structures with unitsfart a feasible functor
structure fromA to B. If F is bijective and precovariant, théir ! is precovariant.

(40) LetA, B be transitive non empty category structures with unitsfarte a feasible functor
structure fromA to B. If F is bijective and precontravariant, then'! is precontravariant.

(41) LetA, B be transitive non empty category structures with units Brloe a feasible re-
flexive functor structure fronfA to B. SupposeF is bijective, coreflexive, and precovari-
ant. Leto;, 0; be objects oB andm be a morphism fromo; to 0. If (01,02) # 0, then
(Morph-Mag: (F~(01),F~1(02)))((Morph-Map--1(01,02))(m)) = m.

(42) LetA, B be transitive non empty category structures with units Brloe a feasible re-
flexive functor structure from to B. Supposé- is bijective, coreflexive, and precontravari-
ant. Leto;, 0p be objects oB andm be a morphism frono; to 0,. If (01,02) # 0, then
(Morph-Map: (F~(02),F ~1(01)))((Morph-Map--1(01,02))(m)) = m.

(43) LetA, B be transitive non empty category structures with unitskahe a feasible reflexive
functor structure fromA to B. SupposeF is bijective, comp-preserving, precovariant, and
coreflexive. TherF ~1 is comp-preserving.

(44) LetA, B be transitive non empty category structures with unitskahe a feasible reflexive
functor structure fronA to B. Supposd- is bijective, comp-reversing, precontravariant, and
coreflexive. TherF —1 is comp-reversing.

LetC; be a 1-sorted structure and &t be a non empty 1-sorted structure. Observe that every
bimap structure front; into C, which is precovariant is also reflexive.

LetC; be a 1-sorted structure and @&t be a non empty 1-sorted structure. One can check that
every bimap structure frod; into C; which is precontravariant is also reflexive.

The following two propositions are true:

(45) LetCy, Cy be 1-sorted structures amd be a bimap structure fror@; into C,. If M is
precovariant and onto, thévi is coreflexive.

(46) LetCq, C, be 1-sorted structures amd be a bimap structure frog; into C,. If M is
precontravariant and onto, théhis coreflexive.
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LetC, be a transitive non empty category structure with units an@,lée a non empty category
structure with units. Note that every functor fr@@n to C, which is covariant is also reflexive.

LetC; be a transitive non empty category structure with units and)lée a non empty category
structure with units. One can check that every functor fnto C, which is contravariant is also
reflexive.

Next we state four propositions:

(47) LetC; be a transitive non empty category structure with uitshe a non empty category
structure with units, anéf be a functor fronC; to C,. If F is covariant and onto, thdn is
coreflexive.

(48) LetC; be a transitive non empty category structure with uitdhe a non empty category
structure with units, an# be a functor fronC; to C,. If F is contravariant and onto, thén
is coreflexive.

(49) LetA, B be transitive non empty category structures with unitskabe a covariant functor
from A to B. Suppose- is bijective. Then there exists a funct@rfrom B to A such that
G =F~1andGis bijective and covariant.

(50) LetA, B be transitive non empty category structures with units Rrge a contravariant
functor fromA to B. Supposéd- is bijective. Then there exists a funct@rfrom B to A such
thatG = F~! andG is bijective and contravariant.

Let A, B be transitive non empty category structures with units. We sayAthatiB are isomor-
phic if and only if:

(Def. 40) There exists a functor frofto B which is bijective and covariant.

Let us notice that the predicateandB are isomorphic is reflexive and symmetric. We say that
B are anti-isomorphic if and only if:

(Def. 41) There exists a functor frofto B which is bijective and contravariant.

Let us note that the predicate B are anti-isomorphic is symmetric.
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