Miscellaneous Facts about Functions

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Andrzej Trybulec
Warsaw University
Białystok

MML Identifier: FUNCT_7.
WWW:http://mizar.org/JFM/Vol8/funct_7.html

The articles [21], [10], [25], [23], [2], [17], [22], [20], [1], [16], [26], [7], [27], [6], [5], [15], [11], [14], [9], [19], [8], [12], [13], [3], [24], [18], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

We follow the rules: a, x, A, B denote sets and m, n denote natural numbers.
The following propositions are true:
(1) For every function f and for every set X such that $\operatorname{rng} f \subseteq X$ holds $\operatorname{id}_{X} \cdot f=f$.
(2) Let X be a set, Y be a non empty set, and f be a function from X into Y. Suppose f is one-to-one. Let B be a subset of X and C be a subset of Y. If $C \subseteq f^{\circ} B$, then $f^{-1}(C) \subseteq B$.
(3) Let X, Y be non empty sets and f be a function from X into Y. Suppose f is one-to-one. Let x be an element of X and A be a subset of X. If $f(x) \in f^{\circ} A$, then $x \in A$.
(4) Let X, Y be non empty sets and f be a function from X into Y. Suppose f is one-to-one. Let x be an element of X, A be a subset of X, and B be a subset of Y. If $f(x) \in f^{\circ} A \backslash B$, then $x \in A \backslash f^{-1}(B)$.
(5) Let X, Y be non empty sets and f be a function from X into Y. Suppose f is one-to-one. Let y be an element of Y, A be a subset of X, and B be a subset of Y. If $y \in f^{\circ} A \backslash B$, then $f^{-1}(y) \in A \backslash f^{-1}(B)$.
(6) For every function f and for every set a such that $a \in \operatorname{dom} f$ holds $f \upharpoonright\{a\}=a \longmapsto f(a)$.

Let x, y be sets. Observe that $x \longmapsto y$ is non empty.
Let x, y, a, b be sets. Observe that $[x \longmapsto a, y \longmapsto b]$ is non empty.
One can prove the following propositions:
(7) For every set I and for every many sorted set M indexed by I and for every set i such that $i \in I$ holds $i \longmapsto M(i)=M \upharpoonright\{i\}$.
(8) Let I, J be sets, M be a many sorted set indexed by $[: I, J:]$, and i, j be sets. If $i \in I$ and $j \in J$, then $[\langle i, j\rangle \mapsto M(i, j)]=M \upharpoonright[:\{i\},\{j\}:]$.
(10) For all functions f, g, h such that $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ holds $f \cdot(g+\cdot h)=$ $f \cdot g+\cdot f \cdot h$.
(11) For all functions f, g, h holds $(g+\cdot h) \cdot f=g \cdot f+\cdot h \cdot f$.
(12) For all functions f, g, h such that $\operatorname{rng} f$ misses dom g holds $(h+\cdot g) \cdot f=h \cdot f$.
(13) For all sets A, B and for every set y such that A meets $\operatorname{rng}\left(\operatorname{id}_{B}+\cdot(A \longmapsto y)\right)$ holds $y \in A$.
(14) For all sets x, y and for every set A such that $x \neq y$ holds $x \notin \operatorname{rng}\left(\mathrm{id}_{A}+\cdot(x \longmapsto y)\right)$.
(15) For every set X and for every set a and for every function f such that $\operatorname{dom} f=X \cup\{a\}$ holds $f=f \upharpoonright X+\cdot(a \longmapsto f(a))$.
(16) For every function f and for all sets X, y, z holds $f+\cdot(X \longmapsto y)+\cdot(X \longmapsto z)=f+\cdot(X \longmapsto$ $z)$.
(17) If $0<m$ and $m \leq n$, then $\mathbb{Z}_{m} \subseteq \mathbb{Z}_{n}$.
(18) $\mathbb{Z} \neq \mathbb{Z}^{*}$.
(19) $\emptyset^{*}=\{\emptyset\}$.
(20) $\langle x\rangle \in A^{*}$ iff $x \in A$.
(21) $A \subseteq B$ iff $A^{*} \subseteq B^{*}$.
(22) For every subset A of \mathbb{N} such that for all n, m such that $n \in A$ and $m<n$ holds $m \in A$ holds A is a cardinal number.
(23) Let A be a finite set and X be a non empty family of subsets of A. Then there exists an element C of X such that for every element B of X such that $B \subseteq C$ holds $B=C$.
(24) Let p, q be finite sequences. Suppose len $p=\operatorname{len} q+1$. Let i be a natural number. Then $i \in \operatorname{dom} q$ if and only if the following conditions are satisfied:
(i) $i \in \operatorname{dom} p$, and
(ii) $i+1 \in \operatorname{dom} p$.

Let us note that there exists a finite sequence which is function yielding, non empty, and nonempty.

Observe that \emptyset is function yielding. Let f be a function. One can verify that $\langle f\rangle$ is function yielding. Let g be a function. One can verify that $\langle f, g\rangle$ is function yielding. Let h be a function. Note that $\langle f, g, h\rangle$ is function yielding.

Let n be a natural number and let f be a function. Note that $n \mapsto f$ is function yielding.
Let p be a finite sequence and let q be a non empty finite sequence. Observe that $p^{\wedge} q$ is non empty and $q^{\wedge} p$ is non empty.

Let p, q be function yielding finite sequences. Observe that $p^{\wedge} q$ is function yielding.
One can prove the following proposition
(25) Let p, q be finite sequences. Suppose $p^{\wedge} q$ is function yielding. Then p is function yielding and q is function yielding.

[^0]
2. SOME USEFUL SCHEMES

In this article we present several logical schemes. The scheme Kappa2D deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and
for every element y of \mathcal{B} holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
provided the following requirement is met:

- For every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The scheme FinMono deals with a set \mathcal{A}, a non empty set \mathcal{B}, and two unary functors \mathcal{F} and \mathcal{G} yielding sets, and states that:
$\{\mathcal{F}(d) ; d$ ranges over elements of $\mathcal{B}: \mathcal{G}(d) \in \mathcal{A}\}$ is finite
provided the parameters have the following properties:

- \mathcal{A} is finite, and
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{G}\left(d_{1}\right)=\mathcal{G}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme CardMono deals with a set \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding a set, and states that:
$\mathcal{A} \approx\{d ; d$ ranges over elements of $\mathcal{B}: \mathcal{F}(d) \in \mathcal{A}\}$
provided the following conditions are met:

- For every set x such that $x \in \mathcal{A}$ there exists an element d of \mathcal{B} such that $x=\mathcal{F}(d)$, and
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{F}\left(d_{1}\right)=\mathcal{F}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme CardMono' deals with a set \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding a set, and states that:
$\mathcal{A} \approx\{\mathcal{F}(d) ; d$ ranges over elements of $\mathcal{B}: d \in \mathcal{A}\}$
provided the following requirements are met:

- $\mathcal{A} \subseteq \mathcal{B}$, and
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{F}\left(d_{1}\right)=\mathcal{F}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme FuncSeqInd concerns a unary predicate \mathcal{P}, and states that:
For every function yielding finite sequence p holds $\mathcal{P}[p]$
provided the parameters meet the following requirements:

- $\mathcal{P}[0]$, and
- For every function yielding finite sequence p such that $\mathcal{P}[p]$ and for every function f holds $\mathcal{P}\left[p^{\wedge}\langle f\rangle\right]$.

3. SOME AUXILIARY CONCEPTS

Let x, y be sets. Let us assume that $x \in y$. The functor $x(\in y)$ yielding an element of y is defined as follows:
(Def. 1) $x(\in y)=x$.
One can prove the following proposition
(26) If $x \in A \cap B$, then $x(\in A)=x(\in B)$.

Let f, g be functions and let A be a set. We say that f and g are equal outside A if and only if:
(Def. 2) $\quad f \upharpoonright(\operatorname{dom} f \backslash A)=g \upharpoonright(\operatorname{dom} g \backslash A)$.
We now state several propositions:
(27) For every function f and for every set A holds f and f are equal outside A.
(28) Let f, g be functions and A be a set. Suppose f and g are equal outside A. Then g and f are equal outside A.
(29) Let f, g, h be functions and A be a set. Suppose f and g are equal outside A and g and h are equal outside A. Then f and h are equal outside A.
(30) For all functions f, g and for every set A such that f and g are equal outside A holds $\operatorname{dom} f \backslash A=\operatorname{dom} g \backslash A$.
(31) For all functions f, g and for every set A such that $\operatorname{dom} g \subseteq A$ holds f and $f+g$ are equal outside A.

Let f be a function and let i, x be sets. The functor $f+\cdot(i, x)$ yielding a function is defined by:
(Def. 3) $f+\cdot(i, x)=\left\{\begin{array}{l}f+\cdot(i \mapsto x), \text { if } i \in \operatorname{dom} f, \\ f, \text { otherwise. }\end{array}\right.$
We now state several propositions:
(32) For every function f and for all sets d, i holds $\operatorname{dom}(f+\cdot(i, d))=\operatorname{dom} f$.
(33) For every function f and for all sets d, i such that $i \in \operatorname{dom} f$ holds $(f+\cdot(i, d))(i)=d$.
(34) For every function f and for all sets d, i, j such that $i \neq j$ holds $(f+\cdot(i, d))(j)=f(j)$.
(35) For every function f and for all sets d, e, i, j such that $i \neq j$ holds $f+\cdot(i, d)+\cdot(j, e)=$ $f+\cdot(j, e)+\cdot(i, d)$.
(36) For every function f and for all sets d, e, i holds $f+\cdot(i, d)+\cdot(i, e)=f+\cdot(i, e)$.
(37) For every function f and for every set i holds $f+\cdot(i, f(i))=f$.

Let f be a finite sequence, let i be a natural number, and let x be a set. Note that $f+\cdot(i, x)$ is finite sequence-like.

Let D be a set, let f be a finite sequence of elements of D, let i be a natural number, and let d be an element of D. Then $f+\cdot(i, d)$ is a finite sequence of elements of D.

Next we state three propositions:
(38) Let D be a non empty set, f be a finite sequence of elements of D, d be an element of D, and i be a natural number. If $i \in \operatorname{dom} f$, then $(f+\cdot(i, d))_{i}=d$.
(39) Let D be a non empty set, f be a finite sequence of elements of D, d be an element of D, and i, j be natural numbers. If $i \neq j$ and $j \in \operatorname{dom} f$, then $(f+\cdot(i, d))_{j}=f_{j}$.
(40) Let D be a non empty set, f be a finite sequence of elements of D, d, e be elements of D, and i be a natural number. Then $f+\cdot\left(i, f_{i}\right)=f$.

4. On The composition of a finite sequence of functions

Let X be a set and let p be a function yielding finite sequence. The functor compose ${ }_{X} p$ yields a function and is defined by the condition (Def. 4).
(Def. 4) There exists a many sorted function f indexed by \mathbb{N} such that
(i) $\operatorname{compose}_{X} p=f(\operatorname{len} p)$,
(ii) $f(0)=\mathrm{id}_{X}$, and
(iii) for every natural number i such that $i+1 \in \operatorname{dom} p$ and for all functions g, h such that $g=f(i)$ and $h=p(i+1)$ holds $f(i+1)=h \cdot g$.

Let p be a function yielding finite sequence and let x be a set. The functor $\operatorname{apply}(p, x)$ yields a finite sequence and is defined by the conditions (Def. 5).
(Def. 5)(i) lenapply $(p, x)=\operatorname{len} p+1$,
(ii) $\quad(\operatorname{apply}(p, x))(1)=x$, and
(iii) for every natural number i and for every function f such that $i \in \operatorname{dom} p$ and $f=p(i)$ holds $(\operatorname{apply}(p, x))(i+1)=f((\operatorname{apply}(p, x))(i))$.

We adopt the following convention: X, Y, x denote sets, p, q denote function yielding finite sequences, and f, g, h denote functions.

Next we state a number of propositions:
(41) compose $_{X} \emptyset=\mathrm{id}_{X}$.
(42) $\operatorname{apply}(\emptyset, x)=\langle x\rangle$.
(43) $\operatorname{compose}_{X}\left(p^{\wedge}\langle f\rangle\right)=f \cdot \operatorname{compose}_{X} p$.
(44) $\operatorname{apply}\left(p^{\wedge}\langle f\rangle, x\right)=(\operatorname{apply}(p, x))^{\wedge}\langle f((\operatorname{apply}(p, x))(\operatorname{len} p+1))\rangle$.
(45) $\operatorname{compose}_{X}\left(\langle f\rangle^{\wedge} p\right)=\operatorname{compose}_{f^{\circ} X} p \cdot(f \backslash X)$.
(46) $\operatorname{apply}\left(\langle f\rangle^{\wedge} p, x\right)=\langle x\rangle^{\wedge} \operatorname{apply}(p, f(x))$.
(47) compose $_{X}\langle f\rangle=f \cdot \mathrm{id}_{X}$.
(48) If $\operatorname{dom} f \subseteq X$, then compose $_{X}\langle f\rangle=f$.
(49) $\operatorname{apply}(\langle f\rangle, x)=\langle x, f(x)\rangle$.
(50) If rng compose ${ }_{X} p \subseteq Y$, then $\operatorname{compose}_{X}\left(p^{\wedge} q\right)=$ compose $_{Y} q \cdot$ compose $_{X} p$.
(51) $\quad\left(\operatorname{apply}\left(p^{\wedge} q, x\right)\right)\left(\operatorname{len}\left(p^{\wedge} q\right)+1\right)=(\operatorname{apply}(q,(\operatorname{apply}(p, x))(\operatorname{len} p+1)))(\operatorname{len} q+1)$.
(52) $\operatorname{apply}\left(p^{\wedge} q, x\right)=(\operatorname{apply}(p, x))^{\$ \curvearrowright} \operatorname{apply}(q,(\operatorname{apply}(p, x))(\operatorname{len} p+1))$.
(53) compose $_{X}\langle f, g\rangle=g \cdot f \cdot \mathrm{id}_{X}$.
(54) If $\operatorname{dom} f \subseteq X$ or $\operatorname{dom}(g \cdot f) \subseteq X$, then compose $_{X}\langle f, g\rangle=g \cdot f$.
(55) $\quad \operatorname{apply}(\langle f, g\rangle, x)=\langle x, f(x), g(f(x))\rangle$.
(56) compose $_{X}\langle f, g, h\rangle=h \cdot g \cdot f \cdot \mathrm{id}_{X}$.
(57) If $\operatorname{dom} f \subseteq X$ or $\operatorname{dom}(g \cdot f) \subseteq X$ or $\operatorname{dom}(h \cdot g \cdot f) \subseteq X$, then compose $_{X}\langle f, g, h\rangle=h \cdot g \cdot f$.
(58) $\operatorname{apply}(\langle f, g, h\rangle, x)=\langle x\rangle{ }^{\wedge}\langle f(x), g(f(x)), h(g(f(x)))\rangle$.

Let F be a finite sequence. The functor firstdom (F) is defined by:
(Def. 6)(i) firstdom (F) is empty if F is empty,
(ii) firstdom $(F)=\pi_{1}(F(1))$, otherwise.

The functor lastrng (F) is defined as follows:
(Def. 7)(i) $\quad \operatorname{lastrng}(F)$ is empty if F is empty,
(ii) $\quad \operatorname{lastrng}(F)=\pi_{2}(F(\operatorname{len} F))$, otherwise.

The following three propositions are true:
(59) firstdom $(\emptyset)=\emptyset$ and lastrng $(\emptyset)=\emptyset$.
(60) For every finite sequence p holds firstdom $\left(\langle f\rangle^{\wedge} p\right)=\operatorname{dom} f$ and lastrng $\left(p^{\wedge}\langle f\rangle\right)=\operatorname{rng} f$.
(61) For every function yielding finite sequence p such that $p \neq \emptyset$ holds rng compose ${ }_{X} p \subseteq$ lastrng (p).

Let I_{1} be a finite sequence. We say that I_{1} is composable if and only if:
(Def. 8) There exists a finite sequence p such that len $p=\operatorname{len} I_{1}+1$ and for every natural number i such that $i \in \operatorname{dom} I_{1}$ holds $I_{1}(i) \in p(i+1)^{p(i)}$.

One can prove the following proposition
(62) For all finite sequences p, q such that $p^{\wedge} q$ is composable holds p is composable and q is composable.

One can check that every finite sequence which is composable is also function yielding.
Let us observe that every finite sequence which is empty is also composable.
Let f be a function. Observe that $\langle f\rangle$ is composable.
Let us note that there exists a finite sequence which is composable, non empty, and non-empty.
A composable sequence is a composable finite sequence.
Next we state several propositions:
(63) For every composable sequence p such that $p \neq \emptyset$ holds dom $\operatorname{compose}_{X} p=\operatorname{firstdom}(p) \cap$ X.
(64) For every composable sequence p holds dom compose $\mathrm{firstdom}(p)^{p}=$ firstdom (p).
(65) For every composable sequence p and for every function f such that $\operatorname{rng} f \subseteq$ firstdom (p) holds $\langle f\rangle^{\wedge} p$ is a composable sequence.
(66) For every composable sequence p and for every function f such that lastrng $(p) \subseteq \operatorname{dom} f$ holds $p^{\complement}\langle f\rangle$ is a composable sequence.
(67) For every composable sequence p such that $x \in \operatorname{firstdom}(p)$ and $x \in X$ holds $(\operatorname{apply}(p, x))(\operatorname{len} p+1)=\left(\operatorname{compose}_{X} p\right)(x)$.

Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A composable sequence is said to be a composable sequence from X into Y if:
(Def. 9) firstdom $($ it $)=X$ and lastrng $($ it $) \subseteq Y$.
Let Y be a non empty set, let X be a set, and let F be a composable sequence from X into Y. Then compose $_{X} F$ is a function from X into Y.

Let q be a non-empty non empty finite sequence. A finite sequence is called a composable sequence along q if:
(Def. 10) lenit $+1=\operatorname{len} q$ and for every natural number i such that $i \in \operatorname{domit}$ holds $\operatorname{it}(i) \in q(i+1)^{q(i)}$.
Let q be a non-empty non empty finite sequence. Note that every composable sequence along q is composable and non-empty.

One can prove the following two propositions:
(68) Let q be a non-empty non empty finite sequence and p be a composable sequence along q. If $p \neq \emptyset$, then firstdom $(p)=q(1)$ and lastrng $(p) \subseteq q(\operatorname{len} q)$.
(69) Let q be a non-empty non empty finite sequence and p be a composable sequence along q. Then dom $\operatorname{compose}_{q(1)} p=q(1)$ and $\operatorname{rng} \operatorname{compose}_{q(1)} p \subseteq q(\operatorname{len} q)$.

Let f be a function and let n be an element of \mathbb{N}. The functor f^{n} yielding a function is defined by the condition (Def. 11).
(Def. 11) There exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \dot{\rightarrow}(\operatorname{dom} f \cup \operatorname{rng} f)$ such that $f^{n}=p(n)$ and $p(0)=\operatorname{id}_{\operatorname{dom} f \cup r n g} f$ and for every element k of \mathbb{N} there exists a function g such that $g=p(k)$ and $p(k+1)=g \cdot f$.

In the sequel m, n are natural numbers.
We now state a number of propositions:

$$
\begin{align*}
& f^{0}=\operatorname{id}_{\operatorname{dom} f \cup \mathrm{rng} f} . \tag{70}\\
& f^{n+1}=f^{n} \cdot f \\
& f^{1}=f
\end{align*}
$$

(73) $f^{n+1}=f \cdot f^{n}$.
(74) $\operatorname{dom}\left(f^{n}\right) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$.
(75) If $n \neq 0$, then $\operatorname{dom}\left(f^{n}\right) \subseteq \operatorname{dom} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{rng} f$.
(76) If $\operatorname{rng} f \subseteq \operatorname{dom} f$, then $\operatorname{dom}\left(f^{n}\right)=\operatorname{dom} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{dom} f$.
(77) $\quad f^{n} \cdot \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}=f^{n}$.
(78) $\quad \operatorname{id}_{\text {dom } f \cup \operatorname{rng} f} \cdot f^{n}=f^{n}$.
(79) $f^{n} \cdot f^{m}=f^{n+m}$.
(80) If $n \neq 0$, then $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(81) If rng $f \subseteq \operatorname{dom} f$, then $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(82) $\emptyset^{n}=\emptyset$.
(83) $\quad\left(\mathrm{id}_{X}\right)^{n}=\mathrm{id}_{X}$.
(84) If $\operatorname{rng} f$ misses $\operatorname{dom} f$, then $f^{2}=\emptyset$.
(85) For every function f from X into X holds f^{n} is a function from X into X.
(86) For every function f from X into X holds $f^{0}=\operatorname{id}_{X}$.
(87) For every function f from X into X holds $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(88) For every partial function f from X to X holds f^{n} is a partial function from X to X.
(89) If $n \neq 0$ and $a \in X$ and $f=X \longmapsto a$, then $f^{n}=f$.
(90) For every function f and for every natural number n holds $f^{n}=\operatorname{compose}_{\operatorname{dom} f \cup \operatorname{rng} f}(n \mapsto f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[3] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html
[4] Grzegorz Bancerek. Reduction relations. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/rewrite1. html.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[6] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[11] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_ lang.html
[12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html
[14] Czesław Byliński. Cartesian categories. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/cat_4.html
[15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[16] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_1.html
[17] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html
[18] Dariusz Surowik. Cyclic groups and some of their properties - part I. Journal of Formalized Mathematics, 3, 1991. http: //mizar. org/JFM/Vol3/gr_cy_1.html
[19] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
[20] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[22] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html
[23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[24] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html
[25] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[26] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[27] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Received January 12, 1996
Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (9) has been removed.

