Miscellaneous Facts about Functions

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences Andrzej Trybulec Warsaw University Białystok

MML Identifier: FUNCT_7.
WWW: http://mizar.org/JFM/Vol8/funct_7.html

The articles [21], [10], [25], [23], [2], [17], [22], [20], [1], [16], [26], [7], [27], [6], [5], [15], [11], [14], [9], [19], [8], [12], [13], [3], [24], [18], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

- We follow the rules: *a*, *x*, *A*, *B* denote sets and *m*, *n* denote natural numbers. The following propositions are true:
 - (1) For every function *f* and for every set *X* such that $\operatorname{rng} f \subseteq X$ holds $\operatorname{id}_X \cdot f = f$.
 - (2) Let X be a set, Y be a non empty set, and f be a function from X into Y. Suppose f is one-to-one. Let B be a subset of X and C be a subset of Y. If $C \subseteq f^{\circ}B$, then $f^{-1}(C) \subseteq B$.
 - (3) Let X, Y be non empty sets and f be a function from X into Y. Suppose f is one-to-one. Let x be an element of X and A be a subset of X. If $f(x) \in f^{\circ}A$, then $x \in A$.
 - (4) Let *X*, *Y* be non empty sets and *f* be a function from *X* into *Y*. Suppose *f* is one-to-one. Let *x* be an element of *X*, *A* be a subset of *X*, and *B* be a subset of *Y*. If $f(x) \in f^{\circ}A \setminus B$, then $x \in A \setminus f^{-1}(B)$.
 - (5) Let X, Y be non empty sets and f be a function from X into Y. Suppose f is one-to-one. Let y be an element of Y, A be a subset of X, and B be a subset of Y. If $y \in f^{\circ}A \setminus B$, then $f^{-1}(y) \in A \setminus f^{-1}(B)$.
 - (6) For every function f and for every set a such that $a \in \text{dom } f \text{ holds } f \upharpoonright \{a\} = a \mapsto f(a)$.

Let *x*, *y* be sets. Observe that $x \mapsto y$ is non empty. Let *x*, *y*, *a*, *b* be sets. Observe that $[x \mapsto a, y \mapsto b]$ is non empty. One can prove the following propositions:

- (7) For every set *I* and for every many sorted set *M* indexed by *I* and for every set *i* such that $i \in I$ holds $i \mapsto M(i) = M \upharpoonright \{i\}$.
- (8) Let *I*, *J* be sets, *M* be a many sorted set indexed by [:I, J:], and *i*, *j* be sets. If $i \in I$ and $j \in J$, then $[\langle i, j \rangle \mapsto M(i, j)] = M \upharpoonright [:\{i\}, \{j\}:]$.

- (10)¹ For all functions f, g, h such that $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ holds $f \cdot (g + \cdot h) = f \cdot g + \cdot f \cdot h$.
- (11) For all functions f, g, h holds $(g+\cdot h) \cdot f = g \cdot f + \cdot h \cdot f$.
- (12) For all functions f, g, h such that rng f misses dom g holds $(h+\cdot g) \cdot f = h \cdot f$.
- (13) For all sets A, B and for every set y such that A meets $rng(id_B + \cdot (A \mapsto y))$ holds $y \in A$.
- (14) For all sets x, y and for every set A such that $x \neq y$ holds $x \notin \operatorname{rng}(\operatorname{id}_A + (x \mapsto y))$.
- (15) For every set X and for every set a and for every function f such that dom $f = X \cup \{a\}$ holds $f = f | X + (a \mapsto f(a))$.
- (16) For every function f and for all sets X, y, z holds $f + (X \mapsto y) + (X \mapsto z) = f + (X \mapsto z)$.
- (17) If 0 < m and $m \le n$, then $\mathbb{Z}_m \subseteq \mathbb{Z}_n$.
- (18) $\mathbb{Z} \neq \mathbb{Z}^*$.
- $(19) \quad \emptyset^* = \{\emptyset\}.$
- (20) $\langle x \rangle \in A^*$ iff $x \in A$.
- (21) $A \subseteq B$ iff $A^* \subseteq B^*$.
- (22) For every subset A of \mathbb{N} such that for all n, m such that $n \in A$ and m < n holds $m \in A$ holds A is a cardinal number.
- (23) Let *A* be a finite set and *X* be a non empty family of subsets of *A*. Then there exists an element *C* of *X* such that for every element *B* of *X* such that $B \subseteq C$ holds B = C.
- (24) Let p, q be finite sequences. Suppose len p = len q + 1. Let i be a natural number. Then $i \in \text{dom } q$ if and only if the following conditions are satisfied:
 - (i) $i \in \operatorname{dom} p$, and
- (ii) $i+1 \in \operatorname{dom} p$.

Let us note that there exists a finite sequence which is function yielding, non empty, and nonempty.

Observe that \emptyset is function yielding. Let f be a function. One can verify that $\langle f \rangle$ is function yielding. Let g be a function. One can verify that $\langle f, g \rangle$ is function yielding. Let h be a function. Note that $\langle f, g, h \rangle$ is function yielding.

Let *n* be a natural number and let *f* be a function. Note that $n \mapsto f$ is function yielding.

Let p be a finite sequence and let q be a non empty finite sequence. Observe that $p \cap q$ is non empty and $q \cap p$ is non empty.

Let *p*, *q* be function yielding finite sequences. Observe that $p \cap q$ is function yielding. One can prove the following proposition

(25) Let p, q be finite sequences. Suppose $p \cap q$ is function yielding. Then p is function yielding and q is function yielding.

¹ The proposition (9) has been removed.

2. Some useful schemes

In this article we present several logical schemes. The scheme Kappa2D deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and

for every element *y* of \mathcal{B} holds $f(\langle x, y \rangle) = \mathcal{F}(x, y)$

provided the following requirement is met:

• For every element *x* of \mathcal{A} and for every element *y* of \mathcal{B} holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The scheme *FinMono* deals with a set \mathcal{A} , a non empty set \mathcal{B} , and two unary functors \mathcal{F} and \mathcal{G} yielding sets, and states that:

 $\{\mathcal{F}(d); d \text{ ranges over elements of } \mathcal{B}: \mathcal{G}(d) \in \mathcal{A}\}$ is finite provided the parameters have the following properties:

• \mathcal{A} is finite, and

• For all elements d_1 , d_2 of \mathcal{B} such that $\mathcal{G}(d_1) = \mathcal{G}(d_2)$ holds $d_1 = d_2$.

The scheme *CardMono* deals with a set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a set, and states that:

 $\mathcal{A} \approx \{d; d \text{ ranges over elements of } \mathcal{B} : \mathcal{F}(d) \in \mathcal{A}\}$

provided the following conditions are met:

• For every set x such that $x \in \mathcal{A}$ there exists an element d of \mathcal{B} such that $x = \mathcal{F}(d)$, and

• For all elements d_1 , d_2 of \mathcal{B} such that $\mathcal{F}(d_1) = \mathcal{F}(d_2)$ holds $d_1 = d_2$.

The scheme *CardMono'* deals with a set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a set, and states that:

 $\mathcal{A} \approx \{\mathcal{F}(d); d \text{ ranges over elements of } \mathcal{B}: d \in \mathcal{A}\}$

- provided the following requirements are met:
 - $\mathcal{A} \subseteq \mathcal{B}$, and
 - For all elements d_1 , d_2 of \mathcal{B} such that $\mathcal{F}(d_1) = \mathcal{F}(d_2)$ holds $d_1 = d_2$.

The scheme $\mathit{FuncSeqInd}$ concerns a unary predicate $\mathcal{P},$ and states that:

For every function yielding finite sequence p holds $\mathcal{P}[p]$

provided the parameters meet the following requirements:

- $\mathcal{P}[\emptyset]$, and
- For every function yielding finite sequence p such that P[p] and for every function f holds P[p ^ ⟨f⟩].

3. SOME AUXILIARY CONCEPTS

Let *x*, *y* be sets. Let us assume that $x \in y$. The functor $x (\in y)$ yielding an element of *y* is defined as follows:

(Def. 1) $x (\in y) = x$.

One can prove the following proposition

(26) If $x \in A \cap B$, then $x \in A = x \in B$.

Let f, g be functions and let A be a set. We say that f and g are equal outside A if and only if:

(Def. 2) $f \upharpoonright (\operatorname{dom} f \setminus A) = g \upharpoonright (\operatorname{dom} g \setminus A).$

We now state several propositions:

- (27) For every function f and for every set A holds f and f are equal outside A.
- (28) Let f, g be functions and A be a set. Suppose f and g are equal outside A. Then g and f are equal outside A.
- (29) Let f, g, h be functions and A be a set. Suppose f and g are equal outside A and g and h are equal outside A. Then f and h are equal outside A.

- (30) For all functions f, g and for every set A such that f and g are equal outside A holds dom $f \setminus A = \text{dom } g \setminus A$.
- (31) For all functions f, g and for every set A such that dom $g \subseteq A$ holds f and f+g are equal outside A.
- Let f be a function and let i, x be sets. The functor f + (i,x) yielding a function is defined by:

(Def. 3)
$$f + (i,x) = \begin{cases} f + (i \mapsto x), \text{ if } i \in \text{dom } f, \\ f, \text{ otherwise.} \end{cases}$$

We now state several propositions:

- (32) For every function f and for all sets d, i holds dom(f + (i, d)) = dom f.
- (33) For every function f and for all sets d, i such that $i \in \text{dom } f$ holds (f + (i,d))(i) = d.
- (34) For every function f and for all sets d, i, j such that $i \neq j$ holds (f + (i,d))(j) = f(j).
- (35) For every function f and for all sets d, e, i, j such that $i \neq j$ holds f + (i,d) + (j,e) = f + (j,e) + (i,d).
- (36) For every function f and for all sets d, e, i holds f + (i,d) + (i,e) = f + (i,e).
- (37) For every function *f* and for every set *i* holds f + (i, f(i)) = f.

Let f be a finite sequence, let i be a natural number, and let x be a set. Note that f + (i,x) is finite sequence-like.

Let *D* be a set, let *f* be a finite sequence of elements of *D*, let *i* be a natural number, and let *d* be an element of *D*. Then f + (i,d) is a finite sequence of elements of *D*.

Next we state three propositions:

- (38) Let *D* be a non empty set, *f* be a finite sequence of elements of *D*, *d* be an element of *D*, and *i* be a natural number. If $i \in \text{dom } f$, then $(f + (i,d))_i = d$.
- (39) Let *D* be a non empty set, *f* be a finite sequence of elements of *D*, *d* be an element of *D*, and *i*, *j* be natural numbers. If $i \neq j$ and $j \in \text{dom } f$, then $(f + (i,d))_i = f_i$.
- (40) Let D be a non empty set, f be a finite sequence of elements of D, d, e be elements of D, and i be a natural number. Then $f + (i, f_i) = f$.
 - 4. ON THE COMPOSITION OF A FINITE SEQUENCE OF FUNCTIONS

Let *X* be a set and let *p* be a function yielding finite sequence. The functor $compose_X p$ yields a function and is defined by the condition (Def. 4).

- (Def. 4) There exists a many sorted function f indexed by \mathbb{N} such that
 - (i) compose_{*X*} $p = f(\operatorname{len} p)$,
 - (ii) $f(0) = id_X$, and
 - (iii) for every natural number *i* such that $i + 1 \in \text{dom } p$ and for all functions *g*, *h* such that g = f(i) and h = p(i+1) holds $f(i+1) = h \cdot g$.

Let *p* be a function yielding finite sequence and let *x* be a set. The functor apply(p,x) yields a finite sequence and is defined by the conditions (Def. 5).

(Def. 5)(i) len apply $(p,x) = \operatorname{len} p + 1$,

- (ii) (apply(p,x))(1) = x, and
- (iii) for every natural number *i* and for every function *f* such that $i \in \text{dom } p$ and f = p(i) holds (apply(p,x))(i+1) = f((apply(p,x))(i)).

We adopt the following convention: X, Y, x denote sets, p, q denote function yielding finite sequences, and f, g, h denote functions.

Next we state a number of propositions:

- (41) $\operatorname{compose}_X \emptyset = \operatorname{id}_X.$
- (42) apply(\emptyset , x) = $\langle x \rangle$.
- (43) $\operatorname{compose}_X(p \cap \langle f \rangle) = f \cdot \operatorname{compose}_X p.$
- (44) apply $(p \land \langle f \rangle, x) = (apply(p, x)) \land \langle f((apply(p, x))(len p + 1)) \rangle$.
- (45) $\operatorname{compose}_{X}(\langle f \rangle \cap p) = \operatorname{compose}_{f^{\circ}X} p \cdot (f \upharpoonright X).$
- (46) apply $(\langle f \rangle \cap p, x) = \langle x \rangle \cap apply(p, f(x)).$
- (47) compose_{*X*} $\langle f \rangle = f \cdot id_X$.
- (48) If dom $f \subseteq X$, then compose_{*X*} $\langle f \rangle = f$.
- (49) apply $(\langle f \rangle, x) = \langle x, f(x) \rangle$.
- (50) If rng compose_{*X*} $p \subseteq Y$, then compose_{*X*} $(p \cap q) = \text{compose}_Y q \cdot \text{compose}_X p$.
- (51) $(\operatorname{apply}(p \cap q, x))(\operatorname{len}(p \cap q) + 1) = (\operatorname{apply}(q, (\operatorname{apply}(p, x))(\operatorname{len} p + 1)))(\operatorname{len} q + 1).$
- (52) $\operatorname{apply}(p \cap q, x) = (\operatorname{apply}(p, x))^{\circ} \operatorname{apply}(q, (\operatorname{apply}(p, x))(\operatorname{len} p + 1)).$
- (53) $\operatorname{compose}_X \langle f, g \rangle = g \cdot f \cdot \operatorname{id}_X.$
- (54) If dom $f \subseteq X$ or dom $(g \cdot f) \subseteq X$, then compose_{*X*} $\langle f, g \rangle = g \cdot f$.
- (55) apply($\langle f, g \rangle, x$) = $\langle x, f(x), g(f(x)) \rangle$.
- (56) $\operatorname{compose}_X \langle f, g, h \rangle = h \cdot g \cdot f \cdot \operatorname{id}_X.$
- (57) If dom $f \subseteq X$ or dom $(g \cdot f) \subseteq X$ or dom $(h \cdot g \cdot f) \subseteq X$, then compose_X $\langle f, g, h \rangle = h \cdot g \cdot f$.
- (58) apply($\langle f, g, h \rangle, x$) = $\langle x \rangle \cap \langle f(x), g(f(x)), h(g(f(x))) \rangle$.
 - Let *F* be a finite sequence. The functor firstdom(F) is defined by:
- (Def. 6)(i) firstdom(F) is empty if F is empty,
 - (ii) firstdom(F) = $\pi_1(F(1))$, otherwise.

The functor lastrng(F) is defined as follows:

- (Def. 7)(i) lastrng(F) is empty if F is empty,
 - (ii) lastrng(F) = $\pi_2(F(\text{len }F))$, otherwise.

The following three propositions are true:

- (59) firstdom(\emptyset) = \emptyset and lastrng(\emptyset) = \emptyset .
- (60) For every finite sequence p holds firstdom $(\langle f \rangle \cap p) = \text{dom } f$ and $\text{lastrng}(p \cap \langle f \rangle) = \text{rng } f$.
- (61) For every function yielding finite sequence p such that $p \neq \emptyset$ holds $\operatorname{rng\,compose}_X p \subseteq \operatorname{lastrng}(p)$.

Let I_1 be a finite sequence. We say that I_1 is composable if and only if:

(Def. 8) There exists a finite sequence p such that $\text{len } p = \text{len } I_1 + 1$ and for every natural number i such that $i \in \text{dom } I_1$ holds $I_1(i) \in p(i+1)^{p(i)}$.

One can prove the following proposition

(62) For all finite sequences p, q such that $p \cap q$ is composable holds p is composable and q is composable.

One can check that every finite sequence which is composable is also function yielding. Let us observe that every finite sequence which is empty is also composable. Let f be a function. Observe that $\langle f \rangle$ is composable.

Let us note that there exists a finite sequence which is composable, non empty, and non-empty. A composable sequence is a composable finite sequence. Next we state several propositions:

- (63) For every composable sequence p such that $p \neq \emptyset$ holds dom compose_x $p = \text{firstdom}(p) \cap X$.
- (64) For every composable sequence p holds dom compose_{firstdom(p)} p = firstdom(p).
- (65) For every composable sequence p and for every function f such that $\operatorname{rng} f \subseteq \operatorname{firstdom}(p)$ holds $\langle f \rangle \cap p$ is a composable sequence.
- (66) For every composable sequence p and for every function f such that $\text{lastrng}(p) \subseteq \text{dom } f$ holds $p \cap \langle f \rangle$ is a composable sequence.
- (67) For every composable sequence p such that $x \in \text{firstdom}(p)$ and $x \in X$ holds $(\operatorname{apply}(p, x))(\operatorname{len} p + 1) = (\operatorname{compose}_X p)(x).$

Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A composable sequence is said to be a composable sequence from X into Y if:

(Def. 9) firstdom(it) = X and lastrng(it) $\subseteq Y$.

Let Y be a non empty set, let X be a set, and let F be a composable sequence from X into Y. Then $compose_X F$ is a function from X into Y.

Let q be a non-empty non empty finite sequence. A finite sequence is called a composable sequence along q if:

(Def. 10) len it +1 = len q and for every natural number i such that $i \in \text{dom it holds it}(i) \in q(i+1)^{q(i)}$.

Let q be a non-empty non empty finite sequence. Note that every composable sequence along q is composable and non-empty.

One can prove the following two propositions:

- (68) Let q be a non-empty non empty finite sequence and p be a composable sequence along q. If $p \neq \emptyset$, then firstdom(p) = q(1) and lastrng $(p) \subseteq q(\ln q)$.
- (69) Let q be a non-empty non empty finite sequence and p be a composable sequence along q. Then dom compose_{q(1)} p = q(1) and $\operatorname{rng\,compose}_{q(1)} p \subseteq q(\operatorname{len} q)$.

Let *f* be a function and let *n* be an element of \mathbb{N} . The functor f^n yielding a function is defined by the condition (Def. 11).

(Def. 11) There exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \rightarrow (\operatorname{dom} f \cup \operatorname{rng} f)$ such that $f^n = p(n)$ and $p(0) = \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}$ and for every element k of \mathbb{N} there exists a function g such that g = p(k) and $p(k+1) = g \cdot f$.

In the sequel *m*, *n* are natural numbers. We now state a number of propositions:

- (70) $f^0 = \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}$.
- $(71) \quad f^{n+1} = f^n \cdot f.$
- (72) $f^1 = f$.

- $(73) \quad f^{n+1} = f \cdot f^n.$
- (74) $\operatorname{dom}(f^n) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$ and $\operatorname{rng}(f^n) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$.
- (75) If $n \neq 0$, then dom $(f^n) \subseteq \text{dom } f$ and $\text{rng}(f^n) \subseteq \text{rng } f$.
- (76) If rng $f \subseteq \text{dom } f$, then $\text{dom}(f^n) = \text{dom } f$ and rng $(f^n) \subseteq \text{dom } f$.
- (77) $f^n \cdot \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f} = f^n$.
- (78) $\operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f} \cdot f^n = f^n.$
- $(79) \quad f^n \cdot f^m = f^{n+m}.$
- (80) If $n \neq 0$, then $(f^m)^n = f^{m \cdot n}$.
- (81) If rng $f \subseteq \text{dom } f$, then $(f^m)^n = f^{m \cdot n}$.
- $(82) \quad \emptyset^n = \emptyset.$
- $(83) \quad (\mathrm{id}_X)^n = \mathrm{id}_X.$
- (84) If rng f misses dom f, then $f^2 = \emptyset$.
- (85) For every function f from X into X holds f^n is a function from X into X.
- (86) For every function f from X into X holds $f^0 = id_X$.
- (87) For every function f from X into X holds $(f^m)^n = f^{m \cdot n}$.
- (88) For every partial function f from X to X holds f^n is a partial function from X to X.
- (89) If $n \neq 0$ and $a \in X$ and $f = X \mapsto a$, then $f^n = f$.
- (90) For every function f and for every natural number n holds $f^n = \text{compose}_{\text{dom } f \cup \text{rng } f}(n \mapsto f)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html.
- [4] Grzegorz Bancerek. Reduction relations. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/rewrite1. html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [6] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/binop_1.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [11] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.

- [14] Czesław Byliński. Cartesian categories. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/cat_4.html.
- [15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [16] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_l.html.
- [17] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [18] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar. org/JFM/Vol3/gr_cy_l.html.
- [19] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/funcop_1.html.
- [20] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/domain_1.html.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [22] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [25] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [26] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [27] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received January 12, 1996

Published January 2, 2004