Curried and Uncurried Functions

Grzegorz Bancerek Warsaw University Białystok

Summary. In the article following functors are introduced: the projections of subsets of the Cartesian product, the functor which for every function $f: X \times Y \to Z$ gives some curried function $(X \to (Y \to Z))$, and the functor which from curried functions makes uncurried functions. Some of their properties and some properties of the set of all functions from a set into a set are also shown.

MML Identifier: FUNCT_5.
WWW: http://mizar.org/JFM/Vol2/funct_5.html

The articles [9], [6], [11], [12], [3], [2], [4], [10], [1], [5], [8], and [7] provide the notation and terminology for this paper.

We follow the rules: $X, Y, Z, X_1, X_2, Y_1, Y_2, x, y, z, t$ are sets and f, g, f_1, f_2 are functions.

The scheme *LambdaFS* deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that: There exists f such that dom $f = \mathcal{A}$ and for every g such that $g \in \mathcal{A}$ holds $f(g) = \mathcal{F}(g)$

 $\mathcal{F}(g)$

for all values of the parameters.

We now state the proposition

Let us consider *X*. The functor $\pi_1(X)$ yields a set and is defined by:

(Def. 1) $x \in \pi_1(X)$ iff there exists y such that $\langle x, y \rangle \in X$.

The functor $\pi_2(X)$ yielding a set is defined as follows:

(Def. 2) $y \in \pi_2(X)$ iff there exists x such that $\langle x, y \rangle \in X$.

The following propositions are true:

- (4)¹ If $\langle x, y \rangle \in X$, then $x \in \pi_1(X)$ and $y \in \pi_2(X)$.
- (5) If $X \subseteq Y$, then $\pi_1(X) \subseteq \pi_1(Y)$ and $\pi_2(X) \subseteq \pi_2(Y)$.
- (6) $\pi_1(X \cup Y) = \pi_1(X) \cup \pi_1(Y)$ and $\pi_2(X \cup Y) = \pi_2(X) \cup \pi_2(Y)$.
- (7) $\pi_1(X \cap Y) \subseteq \pi_1(X) \cap \pi_1(Y)$ and $\pi_2(X \cap Y) \subseteq \pi_2(X) \cap \pi_2(Y)$.
- (8) $\pi_1(X) \setminus \pi_1(Y) \subseteq \pi_1(X \setminus Y)$ and $\pi_2(X) \setminus \pi_2(Y) \subseteq \pi_2(X \setminus Y)$.
- (9) $\pi_1(X) \doteq \pi_1(Y) \subseteq \pi_1(X \doteq Y)$ and $\pi_2(X) \doteq \pi_2(Y) \subseteq \pi_2(X \doteq Y)$.

¹ The propositions (2) and (3) have been removed.

- (10) $\pi_1(\emptyset) = \emptyset$ and $\pi_2(\emptyset) = \emptyset$.
- (11) If $Y \neq \emptyset$ or $[:X, Y:] \neq \emptyset$ or $[:Y, X:] \neq \emptyset$, then $\pi_1([:X, Y:]) = X$ and $\pi_2([:Y, X:]) = X$.
- (12) $\pi_1([:X, Y:]) \subseteq X$ and $\pi_2([:X, Y:]) \subseteq Y$.
- (13) If $Z \subseteq [:X, Y:]$, then $\pi_1(Z) \subseteq X$ and $\pi_2(Z) \subseteq Y$.
- $(15)^2 \quad \pi_1(\{\langle x, y \rangle\}) = \{x\} \text{ and } \pi_2(\{\langle x, y \rangle\}) = \{y\}.$
- (16) $\pi_1(\{\langle x, y \rangle, \langle z, t \rangle\}) = \{x, z\} \text{ and } \pi_2(\{\langle x, y \rangle, \langle z, t \rangle\}) = \{y, t\}.$
- (17) If it is not true that there exist x, y such that $\langle x, y \rangle \in X$, then $\pi_1(X) = \emptyset$ and $\pi_2(X) = \emptyset$.
- (18) If $\pi_1(X) = \emptyset$ or $\pi_2(X) = \emptyset$, then it is not true that there exist x, y such that $\langle x, y \rangle \in X$.
- (19) $\pi_1(X) = \emptyset$ iff $\pi_2(X) = \emptyset$.
- (20) $\pi_1(\operatorname{dom} f) = \pi_2(\operatorname{dom} f) \text{ and } \pi_2(\operatorname{dom} f) = \pi_1(\operatorname{dom} f).$
- (21) For every binary relation f holds $\pi_1(f) = \text{dom } f$ and $\pi_2(f) = \text{rng } f$.

Let us consider f. The functor curry f yielding a function is defined by the conditions (Def. 3).

(Def. 3)(i) dom curry $f = \pi_1(\text{dom } f)$, and

(ii) for every x such that $x \in \pi_1(\operatorname{dom} f)$ there exists g such that $(\operatorname{curry} f)(x) = g$ and $\operatorname{dom} g = \pi_2(\operatorname{dom} f \cap [: \{x\}, \pi_2(\operatorname{dom} f):])$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y) = f(\langle x, y \rangle)$.

The functor uncurry f yields a function and is defined by the conditions (Def. 4).

- (Def. 4)(i) For every t holds $t \in \text{dom uncurry } f$ iff there exist x, g, y such that $t = \langle x, y \rangle$ and $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, and
 - (ii) for all x, g such that $x \in \text{dom uncurry } f$ and $g = f(x_1)$ holds $(\text{uncurry } f)(x) = g(x_2)$.

Let us consider f. The functor curry' f yielding a function is defined as follows:

(Def. 5) curry' $f = \text{curry} \frown f$.

The functor uncurry' f yielding a function is defined as follows:

(Def. 6) uncurry $f = \frown$ uncurry f.

One can prove the following propositions:

- (26)³ If $\langle x, y \rangle \in \text{dom } f$, then $x \in \text{dom curry } f$ and (curry f)(x) is a function.
- (27) If $\langle x, y \rangle \in \text{dom } f$ and g = (curry f)(x), then $y \in \text{dom } g$ and $g(y) = f(\langle x, y \rangle)$.
- (28) If $\langle x, y \rangle \in \text{dom } f$, then $y \in \text{dom curry'} f$ and (curry' f)(y) is a function.
- (29) If $\langle x, y \rangle \in \text{dom } f$ and g = (curry' f)(y), then $x \in \text{dom } g$ and $g(x) = f(\langle x, y \rangle)$.
- (30) dom curry' $f = \pi_2(\operatorname{dom} f)$.
- (31) If $[:X, Y:] \neq \emptyset$ and dom f = [:X, Y:], then dom curry f = X and dom curry' f = Y.
- (32) If dom $f \subseteq [:X, Y:]$, then dom curry $f \subseteq X$ and dom curry' $f \subseteq Y$.
- (33) If rng $f \subseteq Y^X$, then domuncurry f = [: dom f, X:] and domuncurry' f = [:X, dom f:].
- (34) If it is not true that there exist x, y such that $\langle x, y \rangle \in \text{dom } f$, then curry $f = \emptyset$ and curry' $f = \emptyset$.

 $^{^{2}}$ The proposition (14) has been removed.

³ The propositions (22)–(25) have been removed.

- (35) If it is not true that there exists x such that $x \in \text{dom } f$ and f(x) is a function, then uncurry $f = \emptyset$ and uncurry $f = \emptyset$.
- (36) Suppose $[:X, Y:] \neq \emptyset$ and dom f = [:X, Y:] and $x \in X$. Then there exists g such that $(\operatorname{curry} f)(x) = g$ and dom g = Y and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every y such that $y \in Y$ holds $g(y) = f(\langle x, y \rangle)$.
- (37) If $x \in \text{dom curry } f$, then (curry f)(x) is a function.
- (38) Suppose $x \in \operatorname{dom}\operatorname{curry} f$ and $g = (\operatorname{curry} f)(x)$. Then $\operatorname{dom} g = \pi_2(\operatorname{dom} f \cap [: \{x\}, \pi_2(\operatorname{dom} f):])$ and $\operatorname{dom} g \subseteq \pi_2(\operatorname{dom} f)$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y) = f(\langle x, y \rangle)$ and $\langle x, y \rangle \in \operatorname{dom} f$.
- (39) Suppose $[:X, Y:] \neq \emptyset$ and dom f = [:X, Y:] and $y \in Y$. Then there exists g such that $(\operatorname{curry}' f)(y) = g$ and dom g = X and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every x such that $x \in X$ holds $g(x) = f(\langle x, y \rangle)$.
- (40) If $x \in \text{dom curry}' f$, then (curry' f)(x) is a function.
- (41) Suppose $x \in \operatorname{dom}\operatorname{curry}' f$ and $g = (\operatorname{curry}' f)(x)$. Then $\operatorname{dom} g = \pi_1(\operatorname{dom} f) \cap [:\pi_1(\operatorname{dom} f), \{x\}:]$ and $\operatorname{dom} g \subseteq \pi_1(\operatorname{dom} f)$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y) = f(\langle y, x \rangle)$ and $\langle y, x \rangle \in \operatorname{dom} f$.
- (42) If dom f = [X, Y], then rng curry $f \subseteq (\operatorname{rng} f)^Y$ and rng curry' $f \subseteq (\operatorname{rng} f)^X$.
- (43) rng curry $f \subseteq \pi_2(\operatorname{dom} f) \rightarrow \operatorname{rng} f$ and rng curry $f \subseteq \pi_1(\operatorname{dom} f) \rightarrow \operatorname{rng} f$.
- (44) If rng $f \subseteq X \rightarrow Y$, then dom uncurry $f \subseteq [: \text{dom } f, X:]$ and dom uncurry $f \subseteq [:X, \text{dom } f:]$.
- (45) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, then $\langle x, y \rangle \in \text{dom uncurry } f$ and $(\text{uncurry } f)(\langle x, y \rangle) = g(y)$ and $g(y) \in \text{rng uncurry } f$.
- (46) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, then $\langle y, x \rangle \in \text{dom uncurry' } f$ and $(\text{uncurry' } f)(\langle y, x \rangle) = g(y)$ and $g(y) \in \text{rng uncurry' } f$.
- (47) If rng $f \subseteq X \rightarrow Y$, then rng uncurry $f \subseteq Y$ and rng uncurry' $f \subseteq Y$.
- (48) If rng $f \subseteq Y^X$, then rng uncurry $f \subseteq Y$ and rng uncurry' $f \subseteq Y$.
- (49) curry $\emptyset = \emptyset$ and curry $\emptyset = \emptyset$.
- (50) uncurry $\emptyset = \emptyset$ and uncurry $'\emptyset = \emptyset$.
- (51) If dom $f_1 = [:X, Y:]$ and dom $f_2 = [:X, Y:]$ and curry $f_1 = \text{curry } f_2$, then $f_1 = f_2$.
- (52) If dom $f_1 = [:X, Y:]$ and dom $f_2 = [:X, Y:]$ and curry' $f_1 = \text{curry'} f_2$, then $f_1 = f_2$.
- (53) If rng $f_1 \subseteq Y^X$ and rng $f_2 \subseteq Y^X$ and $X \neq \emptyset$ and uncurry $f_1 =$ uncurry f_2 , then $f_1 = f_2$.
- (54) If rng $f_1 \subseteq Y^X$ and rng $f_2 \subseteq Y^X$ and $X \neq \emptyset$ and uncurry' $f_1 =$ uncurry' f_2 , then $f_1 = f_2$.
- (55) If rng $f \subseteq Y^X$ and $X \neq \emptyset$, then curry uncurry f = f and curry' uncurry' f = f.
- (56) If dom f = [:X, Y:], then uncurry curry f = f and uncurry' curry' f = f.
- (57) If dom $f \subseteq [:X, Y:]$, then uncurry curry f = f and uncurry' curry' f = f.
- (58) If rng $f \subseteq X \rightarrow Y$ and $\emptyset \notin$ rng f, then curry uncurry f = f and curry' uncurry' f = f.
- (59) If dom $f_1 \subseteq [:X, Y:]$ and dom $f_2 \subseteq [:X, Y:]$ and curry $f_1 = \text{curry } f_2$, then $f_1 = f_2$.
- (60) If dom $f_1 \subseteq [:X, Y:]$ and dom $f_2 \subseteq [:X, Y:]$ and curry' $f_1 = \operatorname{curry'} f_2$, then $f_1 = f_2$.
- (61) If $\operatorname{rng} f_1 \subseteq X \rightarrow Y$ and $\operatorname{rng} f_2 \subseteq X \rightarrow Y$ and $\emptyset \notin \operatorname{rng} f_1$ and $\emptyset \notin \operatorname{rng} f_2$ and uncurry $f_1 = \operatorname{uncurry} f_2$, then $f_1 = f_2$.

- (62) If $\operatorname{rng} f_1 \subseteq X \to Y$ and $\operatorname{rng} f_2 \subseteq X \to Y$ and $\emptyset \notin \operatorname{rng} f_1$ and $\emptyset \notin \operatorname{rng} f_2$ and uncurry' $f_1 = \operatorname{uncurry'} f_2$, then $f_1 = f_2$.
- (63) If $X \subseteq Y$, then $X^Z \subseteq Y^Z$.
- $(64) \quad X^{\emptyset} = \{\emptyset\}.$
- (65) $X \approx X^{\{x\}}$ and $\overline{\overline{X}} = \overline{\overline{X^{\{x\}}}}$.
- $(66) \quad \{x\}^X = \{X \longmapsto x\}.$
- (67) If $X_1 \approx Y_1$ and $X_2 \approx Y_2$, then $X_2^{X_1} \approx Y_2^{Y_1}$ and $\overline{\overline{X_2^{X_1}}} = \overline{\overline{Y_2^{Y_1}}}$.
- (68) If $\overline{\overline{X_1}} = \overline{\overline{Y_1}}$ and $\overline{\overline{X_2}} = \overline{\overline{Y_2}}$, then $\overline{\overline{X_2^{X_1}}} = \overline{\overline{Y_2^{Y_1}}}$.
- (69) If X_1 misses X_2 , then $X^{X_1 \cup X_2} \approx [:X^{X_1}, X^{X_2}:]$ and $\overline{\overline{X^{X_1 \cup X_2}}} = \overline{\overline{[:X^{X_1}, X^{X_2}:]}}$.
- (70) $Z^{[X,Y]} \approx (Z^Y)^X$ and $\overline{\overline{Z^{[X,Y]}}} = \overline{(Z^Y)^X}$.
- (71) $[:X,Y:]^Z \approx [:X^Z,Y^Z:]$ and $\overline{\overline{[:X,Y:]^Z}} = \overline{\overline{[:X^Z,Y^Z:]}}$.
- (72) If $x \neq y$, then $\{x, y\}^X \approx 2^X$ and $\overline{\overline{\{x, y\}^X}} = \overline{\overline{2^X}}$.
- (73) If $x \neq y$, then $X^{\{x,y\}} \approx [:X, X:]$ and $\overline{\overline{X^{\{x,y\}}}} = \overline{\overline{[:X, X:]}}$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/wellord2.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/funcop_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/mcart_1.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received March 6, 1990

Published January 2, 2004