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Summary. In the article following functors are introduced: the projections of subsets
of the Cartesian product, the functor which for every functionf : X×Y → Z gives some cur-
ried function (X → (Y → Z)), and the functor which from curried functions makes uncurried
functions. Some of their properties and some properties of the set of all functions from a set
into a set are also shown.

MML Identifier: FUNCT_5.

WWW: http://mizar.org/JFM/Vol2/funct_5.html

The articles [9], [6], [11], [12], [3], [2], [4], [10], [1], [5], [8], and [7] provide the notation and
terminology for this paper.

We follow the rules:X, Y, Z, X1, X2, Y1, Y2, x, y, z, t are sets andf , g, f1, f2 are functions.
The schemeLambdaFSdeals with a setA and a unary functorF yielding a set, and states that:

There existsf such that domf = A and for everyg such thatg ∈ A holds f (g) =
F (g)

for all values of the parameters.
We now state the proposition

(1) x /0 = /0.

Let us considerX. The functorπ1(X) yields a set and is defined by:

(Def. 1) x∈ π1(X) iff there existsy such that〈〈x, y〉〉 ∈ X.

The functorπ2(X) yielding a set is defined as follows:

(Def. 2) y∈ π2(X) iff there existsx such that〈〈x, y〉〉 ∈ X.

The following propositions are true:

(4)1 If 〈〈x, y〉〉 ∈ X, thenx∈ π1(X) andy∈ π2(X).

(5) If X ⊆Y, thenπ1(X)⊆ π1(Y) andπ2(X)⊆ π2(Y).

(6) π1(X∪Y) = π1(X)∪π1(Y) andπ2(X∪Y) = π2(X)∪π2(Y).

(7) π1(X∩Y)⊆ π1(X)∩π1(Y) andπ2(X∩Y)⊆ π2(X)∩π2(Y).

(8) π1(X)\π1(Y)⊆ π1(X \Y) andπ2(X)\π2(Y)⊆ π2(X \Y).

(9) π1(X)−. π1(Y)⊆ π1(X−. Y) andπ2(X)−. π2(Y)⊆ π2(X−. Y).

1 The propositions (2) and (3) have been removed.
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(10) π1( /0) = /0 andπ2( /0) = /0.

(11) If Y 6= /0 or [:X, Y :] 6= /0 or [:Y, X :] 6= /0, thenπ1([:X, Y :]) = X andπ2([:Y, X :]) = X.

(12) π1([:X, Y :])⊆ X andπ2([:X, Y :])⊆Y.

(13) If Z⊆ [:X, Y :], thenπ1(Z)⊆ X andπ2(Z)⊆Y.

(15)2 π1({〈〈x, y〉〉}) = {x} andπ2({〈〈x, y〉〉}) = {y}.

(16) π1({〈〈x, y〉〉,〈〈z, t〉〉}) = {x,z} andπ2({〈〈x, y〉〉,〈〈z, t〉〉}) = {y, t}.

(17) If it is not true that there existx, y such that〈〈x, y〉〉 ∈ X, thenπ1(X) = /0 andπ2(X) = /0.

(18) If π1(X) = /0 or π2(X) = /0, then it is not true that there existx, y such that〈〈x, y〉〉 ∈ X.

(19) π1(X) = /0 iff π2(X) = /0.

(20) π1(dom f ) = π2(domx f ) andπ2(dom f ) = π1(domx f ).

(21) For every binary relationf holdsπ1( f ) = dom f andπ2( f ) = rng f .

Let us considerf . The functor curryf yielding a function is defined by the conditions (Def. 3).

(Def. 3)(i) domcurryf = π1(dom f ), and

(ii) for every x such thatx∈ π1(dom f ) there existsg such that(curry f )(x) = g and domg =
π2(dom f ∩ [:{x}, π2(dom f ) :]) and for everyy such thaty∈ domg holdsg(y) = f (〈〈x, y〉〉).

The functor uncurryf yields a function and is defined by the conditions (Def. 4).

(Def. 4)(i) For everyt holdst ∈ domuncurryf iff there existx, g, y such thatt = 〈〈x, y〉〉 andx ∈
dom f andg = f (x) andy∈ domg, and

(ii) for all x, g such thatx∈ domuncurryf andg = f (x1) holds(uncurryf )(x) = g(x2).

Let us considerf . The functor curry′ f yielding a function is defined as follows:

(Def. 5) curry′ f = curryx f .

The functor uncurry′ f yielding a function is defined as follows:

(Def. 6) uncurry′ f = xuncurryf .

One can prove the following propositions:

(26)3 If 〈〈x, y〉〉 ∈ dom f , thenx∈ domcurryf and(curry f )(x) is a function.

(27) If 〈〈x, y〉〉 ∈ dom f andg = (curry f )(x), theny∈ domg andg(y) = f (〈〈x, y〉〉).

(28) If 〈〈x, y〉〉 ∈ dom f , theny∈ domcurry′ f and(curry′ f )(y) is a function.

(29) If 〈〈x, y〉〉 ∈ dom f andg = (curry′ f )(y), thenx∈ domg andg(x) = f (〈〈x, y〉〉).

(30) domcurry′ f = π2(dom f ).

(31) If [:X, Y :] 6= /0 and domf = [:X, Y :], then domcurryf = X and domcurry′ f = Y.

(32) If dom f ⊆ [:X, Y :], then domcurryf ⊆ X and domcurry′ f ⊆Y.

(33) If rng f ⊆YX, then domuncurryf = [:dom f , X :] and domuncurry′ f = [:X, dom f :].

(34) If it is not true that there existx, y such that〈〈x, y〉〉 ∈ dom f , then curryf = /0 and curry′ f =
/0.

2 The proposition (14) has been removed.
3 The propositions (22)–(25) have been removed.
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(35) If it is not true that there existsx such thatx∈ dom f and f (x) is a function, then uncurryf =
/0 and uncurry′ f = /0.

(36) Suppose[:X, Y :] 6= /0 and domf = [:X, Y :] and x ∈ X. Then there existsg such that
(curry f )(x) = g and domg = Y and rngg ⊆ rng f and for everyy such thaty ∈ Y holds
g(y) = f (〈〈x, y〉〉).

(37) If x∈ domcurryf , then(curry f )(x) is a function.

(38) Supposex ∈ domcurryf and g = (curry f )(x). Then domg = π2(dom f ∩ [:{x},
π2(dom f ) :]) and domg⊆ π2(dom f ) and rngg⊆ rng f and for everyy such thaty∈ domg
holdsg(y) = f (〈〈x, y〉〉) and〈〈x, y〉〉 ∈ dom f .

(39) Suppose[:X, Y :] 6= /0 and domf = [:X, Y :] and y ∈ Y. Then there existsg such that
(curry′ f )(y) = g and domg = X and rngg ⊆ rng f and for everyx such thatx ∈ X holds
g(x) = f (〈〈x, y〉〉).

(40) If x∈ domcurry′ f , then(curry′ f )(x) is a function.

(41) Supposex ∈ domcurry′ f andg = (curry′ f )(x). Then domg = π1(dom f ∩ [:π1(dom f ),
{x} :]) and domg⊆ π1(dom f ) and rngg⊆ rng f and for everyy such thaty ∈ domg holds
g(y) = f (〈〈y, x〉〉) and〈〈y, x〉〉 ∈ dom f .

(42) If dom f = [:X, Y :], then rngcurryf ⊆ (rng f )Y and rngcurry′ f ⊆ (rng f )X.

(43) rngcurryf ⊆ π2(dom f )→̇ rng f and rngcurry′ f ⊆ π1(dom f )→̇ rng f .

(44) If rng f ⊆ X→̇Y, then domuncurryf ⊆ [:dom f , X :] and domuncurry′ f ⊆ [:X, dom f :].

(45) If x∈ dom f andg = f (x) andy∈ domg, then〈〈x, y〉〉 ∈ domuncurryf and(uncurryf )(〈〈x,
y〉〉) = g(y) andg(y) ∈ rnguncurryf .

(46) If x∈ dom f andg = f (x) andy∈ domg, then〈〈y, x〉〉 ∈ domuncurry′ f and(uncurry′ f )(〈〈y,
x〉〉) = g(y) andg(y) ∈ rnguncurry′ f .

(47) If rng f ⊆ X→̇Y, then rnguncurryf ⊆Y and rnguncurry′ f ⊆Y.

(48) If rng f ⊆YX, then rnguncurryf ⊆Y and rnguncurry′ f ⊆Y.

(49) curry/0 = /0 and curry′ /0 = /0.

(50) uncurry/0 = /0 and uncurry′ /0 = /0.

(51) If dom f1 = [:X, Y :] and domf2 = [:X, Y :] and curryf1 = curry f2, then f1 = f2.

(52) If dom f1 = [:X, Y :] and domf2 = [:X, Y :] and curry′ f1 = curry′ f2, then f1 = f2.

(53) If rng f1 ⊆YX and rngf2 ⊆YX andX 6= /0 and uncurryf1 = uncurryf2, then f1 = f2.

(54) If rng f1 ⊆YX and rngf2 ⊆YX andX 6= /0 and uncurry′ f1 = uncurry′ f2, then f1 = f2.

(55) If rng f ⊆YX andX 6= /0, then curryuncurryf = f and curry′uncurry′ f = f .

(56) If dom f = [:X, Y :], then uncurrycurryf = f and uncurry′ curry′ f = f .

(57) If dom f ⊆ [:X, Y :], then uncurrycurryf = f and uncurry′ curry′ f = f .

(58) If rng f ⊆ X→̇Y and /0 /∈ rng f , then curryuncurryf = f and curry′uncurry′ f = f .

(59) If dom f1 ⊆ [:X, Y :] and domf2 ⊆ [:X, Y :] and curryf1 = curry f2, then f1 = f2.

(60) If dom f1 ⊆ [:X, Y :] and domf2 ⊆ [:X, Y :] and curry′ f1 = curry′ f2, then f1 = f2.

(61) If rng f1 ⊆ X→̇Y and rngf2 ⊆ X→̇Y and /0 /∈ rng f1 and /0 /∈ rng f2 and uncurryf1 =
uncurryf2, then f1 = f2.
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(62) If rng f1 ⊆ X→̇Y and rngf2 ⊆ X→̇Y and /0 /∈ rng f1 and /0 /∈ rng f2 and uncurry′ f1 =
uncurry′ f2, then f1 = f2.

(63) If X ⊆Y, thenXZ ⊆YZ.

(64) X /0 = { /0}.

(65) X ≈ X{x} andX = X{x} .

(66) {x}X = {X 7−→ x}.

(67) If X1 ≈Y1 andX2 ≈Y2, thenX2
X1 ≈Y2

Y1 andX2
X1 = Y2

Y1 .

(68) If X1 = Y1 andX2 = Y2 , thenX2
X1 = Y2

Y1 .

(69) If X1 missesX2, thenXX1∪X2 ≈ [:XX1, XX2 :] andXX1∪X2 = [:XX1, XX2 :] .

(70) Z[:X,Y :] ≈ (ZY)X andZ[:X,Y :] = (ZY)X .

(71) [:X, Y :]Z ≈ [:XZ, YZ :] and [:X, Y :]Z = [:XZ, YZ :] .

(72) If x 6= y, then{x,y}X ≈ 2X and{x,y}X = 2X .

(73) If x 6= y, thenX{x,y} ≈ [:X, X :] andX{x,y} = [:X, X :] .
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[6] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.
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