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Summary. Inthe article following functors are introduced: the projections of subsets
of the Cartesian product, the functor which for every functfariX x Y — Z gives some cur-
ried function X — (Y — Z)), and the functor which from curried functions makes uncurried
functions. Some of their properties and some properties of the set of all functions from a set
into a set are also shown.

MML Identifier: FUNCT_5.

WWW: http://mizar.org/JFM/Vol2/funct_5.html

The articles|[9], [[6], [[11], [[1R], [13], [[2], [14], [[10], [[1], 5], [[8], and[l7] provide the notation and
terminology for this paper.
We follow the rulesX, Y, Z, X3, X2, Y1, Y2, X, ¥, Z, t are sets and, g, f;, f are functions.
The scheméambdaFSleals with a sef and a unary functoft yielding a set, and states that:
There existsf such that donfi = 2 and for everyg such thatg € 4 holds f(g) =

F(9)
for all values of the parameters.

We now state the proposition
1) ~o0=0.
Let us consideK. The functorm (X) yields a set and is defined by:
(Def. 1) xe m(X) iff there existsy such that(x, y) € X.
The functormp(X) yielding a set is defined as follows:
(Def. 2) ye m(X) iff there existsx such that(x, y) € X.
The following propositions are true:
@ 1f (x,y) € X, thenx € Ty (X) andy € T(X).
(5) IfXCY, thenm(X) Cm(Y)andm(X) C m(Y).
(6)

m(XUY) =1 (X)Uty(Y) andme(X UY) = te(X) UTn(Y).
(@) T(XNY) Cm(X)Nm(Y) ande(XNY) C re(X) Na(Y).
(8) m(X)\mu(Y) S m(X\Y)andm(X)\m(Y) C m(X\Y).
©) T (X)=Ta(Y) C e (X-Y) andre(X)~Tu(Y) C To(X-Y).

1 The propositions (2) and (3) have been removed.
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(10) ™ (0) = 0 and(0) = 0.
(11) Y #OQor[X,Y]#0orlY,X]#0,thenty([X,Y])=Xandm(LY, X]) =X.
(12) m([X,Y]) S Xandm(X,Y]) CY.
(13) IfZC[X,Y], thenty(Z) C X andmp(Z) CY.
(15F] m({{xy)}) = {x} andre({(x y)}) = {y}.
(16) mu({(xy),(z1)}) = {xz} andTR({(X,y),(z 1)}) = {y;t}.
(17) Ifitis not true that there exist y such thafx, y) € X, thenty (X) = 0 andmp(X) = 0.
(18) If m(X)=0o0rm(X)=0,thenitis not true that there existy such thafx, y) € X.
(19) m(X)=0iff T(X) =0.
(20) m(domf) =m(dom~f) andmp(domf) = m(domnf).
(21) For every binary relatiofi holds (f) = domf andm(f) =rngf.
Let us considerf. The functor curnf yielding a function is defined by the conditions (Def. 3).

(Def. 3)()) domecurryf =14 (domf), and

(i) for everyx such thai € T (domf) there existg such that curryf)(x) = g and dormg =
(domf N[ {x}, ix(domf) ]) and for every such thaty € domg holdsg(y) = f({x, y}).

The functor uncurry yields a function and is defined by the conditions (Def. 4).

(Def. 4)(i) For everyt holdst € domuncurryf iff there existx, g, y such that = (x, y) andx €
domf andg = f(x) andy € domg, and

(i) forall x, g such thatk € domuncurryf andg = f(x1) holds(uncurryf)(x) = g(x2).
Let us consideff. The functor curryf yielding a function is defined as follows:
(Def. 5) curry f = curry~f.
The functor uncurryf yielding a function is defined as follows:
(Def. 6) uncurryf = . ~uncurryf.

One can prove the following propositions:

(26 If {X,y) € domf, thenx € domcurryf and(curryf)(x) is a function.

(27) If {(x,y) € domf andg = (curryf)(x), theny € domg andg(y) = f({x, y}).

(28) If (x,y) € domf, theny € domcurry f and(curry f)(y) is a function.

(29) If (x,y) € domf andg = (curry f)(y), thenx € domg andg(x) = f({x, y}).

(30) domcurryf = mp(domf).

(31) If[X,Y]##0and domf = [X,Y ], then domcurrf = X and domcurryf =Y.
(32) Ifdomf C [ X,Y], then domcurnf C X and domcurryf CY.

(33) Ifrngf C YX, then domuncurry = domf, X ] and domuncurryf = [ X, domf .

(34) Ifitis not true that there exist y such thatx, y) € domf, then curryf =0and curryf =
0.

2 The proposition (14) has been removed.
3 The propositions (22)—(25) have been removed.
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(35) Ifitis nottrue that there exiskssuch thak € domf andf(x) is a function, then uncurry=
0 and uncurryf = 0.

(36) Supposd:X,Y] # 0 and dont = [ X,Y] and x € X. Then there existgy such that
(curryf)(x) = g and dong =Y and rng C rngf and for everyy such thaty € Y holds

9(y) = f((x¥))-

(37) Ifxedomecurryf, then(curryf)(x) is a function.

(38) Supposex € domcurryf and g = (curryf)(x). Then dong = m(domf N [ {x},
Tp(domf) ) and donmy C Tp(domf) and rngy C rngf and for everyy such thaty € domg
holdsg(y) = f({x, y)) and{x, y) € domf.

(39) Suppose:X,Y] # 0 and domf = [X,Y] andy € Y. Then there existg such that
(curry f)(y) = g and dong = X and rng C rngf and for everyx such thatx € X holds

g(x) = fF({x. y)).-
(40) If x e domcurry f, then(curry f)(x) is a function.

(41) Suppose € domcurry f andg = (curry f)(x). Then domg = m(domf N [y (domf),
{x}1]) and dong C m (domf) and rngg C rngf and for everyy such thaty € domg holds

g(y) = f({y, x}) and(y, x} € domf.
(42) Ifdomf = [X,Y], then rngcurnf C (rgf)Y and rgcurryf C (rngf)*.
(43) rngcurryf C mp(domf)—-rngf and rngcurryf C m(domf)-rngf.
(44) Ifrngf C XY, then domuncurry C [[domf, X] and domuncurryf C [: X, domf ].

(45) Ifxe domf andg = f(x) andy € domg, then(x, y) € domuncurryf and(uncurryf)({x,
y)) = 9(y) andg(y) € rnguncurryf.

(46) If xe domf andg= f(x) andy € domg, then(y, x) € domuncurryf and(uncurry f)({y,
X)) = g(y) andg(y) € rnguncurryf.

(47) Ifrngf C XY, then rnguncurry CY and rnguncurryf C .

(48) Ifrngf C YX, then rnguncurry C Y and rnguncurryf C Y.

(49) curryd =0 and curry® = 0.

(50) uncurryd = 0 and uncurryd = 0.

(51) Ifdomfy=[X,Y]anddomf, =[X,Y]and curryf; = curryfy, thenf; = f,.
(52) Ifdomf; =[X,Y]anddomf, =[X,Y]and curryf; = curry f,, thenf; = f,.
(53) Ifrngfy C YX and rngf, € YX andX # 0 and uncurryf; = uncurryf,, then fy = f5.
(54) Ifrngfy C YX and rngf, C YX andX = 0 and uncurryf, = uncurry fo, then fy = fa.
(55) Ifrngf C YX andX # 0, then curryuncurry = f and curryuncurry f = f.

(56) Ifdomf = [ X, Y], then uncurrycurr§ = f and uncurrycurry f = f.

(57) Ifdomf C [:X, Y], then uncurrycurr§ = f and uncurrycurry f = f.

(58) Ifrngf C XY and0 ¢ rngf, then curryuncurry = f and curryuncurry f = f.
(59) Ifdomfy C [X,Y]anddomf, C [ X, Y] and curryfy = curryfy, thenf; = f,.
(60) Ifdomf; C [:X,Y]and domf, C [:X,Y]and curryf; = curry f,, thenfy = f,.

(61) If rngf; € XY and rngf, € X=Y and 0 ¢ rngf; and 0 ¢ rngf, and uncurryf; =
uncurryfy, thenfy = fo.
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(62) If rngfy € XY and rngf, € XY and 0 ¢ rngf; and 0 ¢ rngf, and uncurryf; =

uncurry fp, thenf; = f,.

(63) 1fX CY,thenX? C YZ.
(64) X°={0}.

(65) X ~ X andX = X
(66) {x}X={X+— x}.

(67) 1f Xy~ Y andXo &~ Y, thenXoX ~ Yo" and XoXt = Yo",

(68) 1f X1 =Y: andX; = Ya, then XXt = Y,"1.

(69) If X3 missesXp, thenXX1W%2 ~ [ XX X*2 ] and XXX = [ XX, X% ].

(70) ZEX Y] (ZY)X andzXY] = (ZY)X.

(71) [X,Y]%~[XZ YZ]and[X,Y]* = [XZ, YZ].

(72) Ifx#y, then{x,y}* ~ 2X and {x,y}X = 2X.

(73) Ifx#£y, thenX™V =~ [ X, X ] and Xy} =X, X 7.
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