Basic Functions and Operations on Functions

Czesław Byliński Warsaw University Białystok

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a Cartesian product onto its arguments and diagonal function (inclusion of a set into its Cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.

MML Identifier: FUNCT_3.

WWW: http://mizar.org/JFM/Vol1/funct_3.html

The articles [4], [3], [5], [6], [7], [1], and [2] provide the notation and terminology for this paper. We use the following convention: x, y, z, z_1 , z_2 denote sets, A, B, V, X, X_1 , X_2 , Y, Y_1 , Y_2 , Z

denote sets, and C, C_1 , C_2 , D, D_1 , D_2 denote non empty sets. One can prove the following propositions:

- (1) If $A \subseteq Y$, then $id_A = id_Y \upharpoonright A$.
- (2) For all functions f, g such that $X \subseteq \text{dom}(g \cdot f)$ holds $f^{\circ}X \subseteq \text{dom}g$.
- (3) For all functions f, g such that $X \subseteq \text{dom } f$ and $f^{\circ}X \subseteq \text{dom } g$ holds $X \subseteq \text{dom}(g \cdot f)$.
- (4) For all functions f, g such that $Y \subseteq \operatorname{rng}(g \cdot f)$ and g is one-to-one holds $g^{-1}(Y) \subseteq \operatorname{rng} f$.
- (5) For all functions f, g such that $Y \subseteq \operatorname{rng} g$ and $g^{-1}(Y) \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng}(g \cdot f)$.

In this article we present several logical schemes. The scheme *FuncEx 3* deals with a set \mathcal{A} , a set \mathcal{B} , and a ternary predicate \mathcal{P} , and states that:

There exists a function f such that dom $f = [:\mathcal{A}, \mathcal{B}:]$ and for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathcal{P}[x, y, f(\langle x, y \rangle)]$

provided the parameters satisfy the following conditions:

• For all x, y, z_1, z_2 such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y, z_1]$ and $\mathcal{P}[x, y, z_2]$ holds $z_1 = z_2$, and

• For all *x*, *y* such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ there exists *z* such that $\mathcal{P}[x, y, z]$.

The scheme Lambda 3 deals with a set \mathcal{A} , a set \mathcal{B} , and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = [:\mathcal{A}, \mathcal{B}:]$ and for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $f(\langle x, y \rangle) = \mathcal{F}(x, y)$

for all values of the parameters.

The following proposition is true

(6) Let f, g be functions. Suppose dom f = [:X, Y:] and dom g = [:X, Y:] and for all x, y such that $x \in X$ and $y \in Y$ holds $f(\langle x, y \rangle) = g(\langle x, y \rangle)$. Then f = g.

Let f be a function. The functor $\circ f$ yields a function and is defined as follows:

(Def. 1) dom ${}^{\circ}f = 2^{\text{dom }f}$ and for every *X* such that $X \subseteq \text{dom }f$ holds $({}^{\circ}f)(X) = f^{\circ}X$.

Next we state a number of propositions:

- (8)¹ For every function f such that $X \in \text{dom}^{\circ} f$ holds $({}^{\circ} f)(X) = f^{\circ} X$.
- (9) For every function f holds $(^{\circ}f)(\emptyset) = \emptyset$.
- (10) For every function f holds $\operatorname{rng}^{\circ} f \subseteq 2^{\operatorname{rng} f}$.
- (12)² For every function f holds $({}^{\circ}f){}^{\circ}A \subseteq 2^{\operatorname{rng} f}$.
- (13) For every function *f* holds $(^{\circ}f)^{-1}(B) \subseteq 2^{\text{dom}f}$.
- (14) For every function *f* from *X* into *D* holds $({}^{\circ}f)^{-1}(B) \subseteq 2^X$.
- (15) For every function f holds $\bigcup (({}^{\circ}f){}^{\circ}A) \subseteq f^{\circ} \bigcup A$.
- (16) For every function f such that $A \subseteq 2^{\text{dom } f}$ holds $f^{\circ} \bigcup A = \bigcup (({}^{\circ} f){}^{\circ} A)$.
- (17) For every function f from X into D such that $A \subseteq 2^X$ holds $f^{\circ} \bigcup A = \bigcup ((^{\circ}f)^{\circ}A)$.
- (18) For every function f holds $\bigcup ((^{\circ}f)^{-1}(B)) \subseteq f^{-1}(\bigcup B)$.
- (19) For every function f such that $B \subseteq 2^{\operatorname{rng} f}$ holds $f^{-1}(\bigcup B) = \bigcup ((^{\circ}f)^{-1}(B))$.
- (20) For all functions f, g holds $^{\circ}(g \cdot f) = ^{\circ}g \cdot ^{\circ}f$.
- (21) For every function f holds $^{\circ}f$ is a function from $2^{\text{dom}f}$ into $2^{\text{rng}f}$.
- (22) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $\circ f$ is a function from 2^X into 2^Y .

Let us consider X, D and let f be a function from X into D. Then ${}^{\circ}f$ is a function from 2^{X} into 2^{D} .

Let f be a function. The functor ^{-1}f yields a function and is defined as follows:

(Def. 2) dom⁻¹ $f = 2^{\operatorname{rng} f}$ and for every *Y* such that $Y \subseteq \operatorname{rng} f$ holds $(^{-1}f)(Y) = f^{-1}(Y)$.

One can prove the following propositions:

- (24)³ For every function f such that $Y \in \text{dom}^{-1}f$ holds $({}^{-1}f)(Y) = f^{-1}(Y)$.
- (25) For every function f holds rng⁻¹ $f \subseteq 2^{\text{dom} f}$.
- (27)⁴ For every function f holds $(^{-1}f)^{\circ}B \subseteq 2^{\text{dom}f}$.
- (28) For every function f holds $(^{-1}f)^{-1}(A) \subseteq 2^{\operatorname{rng} f}$.
- (29) For every function f holds $\bigcup ((^{-1}f)^{\circ}B) \subseteq f^{-1}(\bigcup B)$.
- (30) For every function f such that $B \subseteq 2^{\operatorname{rng} f}$ holds $\bigcup ((^{-1}f)^{\circ}B) = f^{-1}(\bigcup B)$.
- (31) For every function f holds $\bigcup ((^{-1}f)^{-1}(A)) \subseteq f^{\circ} \bigcup A$.

¹ The proposition (7) has been removed.

² The proposition (11) has been removed.

³ The proposition (23) has been removed.

⁴ The proposition (26) has been removed.

- (32) For every function f such that $A \subseteq 2^{\text{dom } f}$ and f is one-to-one holds $\bigcup ((^{-1}f)^{-1}(A)) = f^{\circ} \bigcup A$.
- (33) For every function f holds $({}^{-1}f){}^{\circ}B \subseteq ({}^{\circ}f){}^{-1}(B)$.
- (34) For every function f such that f is one-to-one holds $({}^{-1}f)^{\circ}B = ({}^{\circ}f)^{-1}(B)$.
- (35) For every function f and for every set A such that $A \subseteq 2^{\text{dom}f}$ holds $({}^{-1}f)^{-1}(A) \subseteq ({}^{\circ}f){}^{\circ}A$.
- (36) For every function f and for every set A such that f is one-to-one holds $({}^{\circ}f){}^{\circ}A \subseteq ({}^{-1}f){}^{-1}(A)$.
- (37) For every function f and for every set A such that f is one-to-one and $A \subseteq 2^{\text{dom}f}$ holds $({}^{-1}f)^{-1}(A) = ({}^{\circ}f){}^{\circ}A.$
- (38) For all functions f, g such that g is one-to-one holds ${}^{-1}(g \cdot f) = {}^{-1}f \cdot {}^{-1}g$.
- (39) For every function f holds ^{-1}f is a function from $2^{\operatorname{rng} f}$ into $2^{\operatorname{dom} f}$.

Let us consider A, X. The functor $\chi_{A,X}$ yields a function and is defined as follows:

(Def. 3) dom $(\chi_{A,X}) = X$ and for every *x* such that $x \in X$ holds if $x \in A$, then $\chi_{A,X}(x) = 1$ and if $x \notin A$, then $\chi_{A,X}(x) = 0$.

We now state several propositions:

- (42)⁵ If $\chi_{A,X}(x) = 1$, then $x \in A$.
- (43) If $x \in X \setminus A$, then $\chi_{A,X}(x) = 0$.
- (47)⁶ If $A \subseteq X$ and $B \subseteq X$ and $\chi_{A,X} = \chi_{B,X}$, then A = B.
- (48) $\operatorname{rng}(\chi_{A,X}) \subseteq \{0,1\}.$
- (49) For every function f from X into $\{0,1\}$ holds $f = \chi_{f^{-1}(\{1\}),X}$.

Let us consider *A*, *X*. Then $\chi_{A,X}$ is a function from *X* into $\{0,1\}$.

Let us consider Y and let A be a subset of Y. The functor $\stackrel{A}{\hookrightarrow}$ yields a function from A into Y and is defined by:

(Def. 4) $\overset{A}{\hookrightarrow} = \mathrm{id}_A.$

The following four propositions are true:

- (53)⁷ For every subset A of Y holds $\stackrel{A}{\hookrightarrow} = \operatorname{id}_Y \upharpoonright A$.
- (54) For every subset A of Y holds dom $\begin{pmatrix} A \\ \Box \end{pmatrix} = A$ and rng $\begin{pmatrix} A \\ \Box \end{pmatrix} = A$.
- (55) For every subset *A* of *Y* such that $x \in A$ holds $\binom{A}{\hookrightarrow}(x) = x$.
- (56) For every subset A of Y such that $x \in A$ holds $\binom{A}{\hookrightarrow}(x) \in Y$.

Let us consider *X*, *Y*. The functor $\pi_1(X \times Y)$ yields a function and is defined as follows:

(Def. 5) dom $\pi_1(X \times Y) = [:X, Y:]$ and for all x, y such that $x \in X$ and $y \in Y$ holds $\pi_1(X \times Y)(\langle x, y \rangle) = x$.

The functor $\pi_2(X \times Y)$ yields a function and is defined as follows:

(Def. 6) dom $\pi_2(X \times Y) = [:X, Y:]$ and for all x, y such that $x \in X$ and $y \in Y$ holds $\pi_2(X \times Y)(\langle x, y \rangle) = y$.

⁵ The propositions (40) and (41) have been removed.

⁶ The propositions (44)–(46) have been removed.

⁷ The propositions (50)–(52) have been removed.

We now state four propositions:

- (59)⁸ rng $\pi_1(X \times Y) \subseteq X$.
- (60) If $Y \neq \emptyset$, then $\operatorname{rng} \pi_1(X \times Y) = X$.
- (61) $\operatorname{rng} \pi_2(X \times Y) \subseteq Y$.
- (62) If $X \neq \emptyset$, then rng $\pi_2(X \times Y) = Y$.

Let us consider X, Y. Then $\pi_1(X \times Y)$ is a function from [:X, Y:] into X. Then $\pi_2(X \times Y)$ is a function from [:X, Y:] into Y.

Let us consider *X*. The functor δ_X yielding a function is defined as follows:

(Def. 7) dom(δ_X) = X and for every x such that $x \in X$ holds $\delta_X(x) = \langle x, x \rangle$.

The following proposition is true

(66)⁹ rng $(\delta_X) \subseteq [:X, X:].$

Let us consider *X*. Then δ_X is a function from *X* into [:X, X:]. Let *f*, *g* be functions. The functor $\langle f, g \rangle$ yielding a function is defined as follows:

(Def. 8) $\operatorname{dom}\langle f,g\rangle = \operatorname{dom} f \cap \operatorname{dom} g$ and for every *x* such that $x \in \operatorname{dom}\langle f,g\rangle$ holds $\langle f,g\rangle(x) = \langle f(x), g(x) \rangle$.

One can prove the following propositions:

- (68)¹⁰ For all functions f, g such that $x \in \text{dom } f \cap \text{dom } g$ holds $\langle f, g \rangle(x) = \langle f(x), g(x) \rangle$.
- (69) For all functions f, g such that dom f = X and dom g = X and $x \in X$ holds $\langle f, g \rangle(x) = \langle f(x), g(x) \rangle$.
- (70) For all functions f, g such that dom f = X and dom g = X holds dom $\langle f, g \rangle = X$.
- (71) For all functions f, g holds $\operatorname{rng}\langle f, g \rangle \subseteq [\operatorname{rng} f, \operatorname{rng} g:]$.
- (72) For all functions f, g such that dom f = dom g and $\text{rng } f \subseteq Y$ and $\text{rng } g \subseteq Z$ holds $\pi_1(Y \times Z) \cdot \langle f, g \rangle = f$ and $\pi_2(Y \times Z) \cdot \langle f, g \rangle = g$.
- (73) $\langle \pi_1(X \times Y), \pi_2(X \times Y) \rangle = \mathrm{id}_{[X,Y]}.$
- (74) For all functions f, g, h, k such that dom f = dom g and dom k = dom h and $\langle f, g \rangle = \langle k, h \rangle$ holds f = k and g = h.
- (75) For all functions f, g, h holds $\langle f \cdot h, g \cdot h \rangle = \langle f, g \rangle \cdot h$.
- (76) For all functions f, g holds $\langle f, g \rangle^{\circ} A \subseteq [:f^{\circ}A, g^{\circ}A:]$.
- (77) For all functions f, g holds $(f, g)^{-1}([:B, C:]) = f^{-1}(B) \cap g^{-1}(C)$.
- (78) Let f be a function from X into Y and g be a function from X into Z. Suppose if $Y = \emptyset$, then $X = \emptyset$ and if $Z = \emptyset$, then $X = \emptyset$. Then $\langle f, g \rangle$ is a function from X into [:Y, Z:].

Let us consider X, D_1 , D_2 , let f_1 be a function from X into D_1 , and let f_2 be a function from X into D_2 . Then $\langle f_1, f_2 \rangle$ is a function from X into $[:D_1, D_2:]$.

Next we state several propositions:

(79) Let f_1 be a function from C into D_1 , f_2 be a function from C into D_2 , and c be an element of C. Then $\langle f_1, f_2 \rangle(c) = \langle f_1(c), f_2(c) \rangle$.

⁸ The propositions (57) and (58) have been removed.

⁹ The propositions (63)–(65) have been removed.

¹⁰ The proposition (67) has been removed.

- (80) For every function f from X into Y and for every function g from X into Z holds $\operatorname{rng}\langle f, g \rangle \subseteq [:Y, Z:]$.
- (81) Let *f* be a function from *X* into *Y* and *g* be a function from *X* into *Z*. Suppose if $Y = \emptyset$, then $X = \emptyset$ and if $Z = \emptyset$, then $X = \emptyset$. Then $\pi_1(Y \times Z) \cdot \langle f, g \rangle = f$ and $\pi_2(Y \times Z) \cdot \langle f, g \rangle = g$.
- (82) For every function f from X into D_1 and for every function g from X into D_2 holds $\pi_1(D_1 \times D_2) \cdot \langle f, g \rangle = f$ and $\pi_2(D_1 \times D_2) \cdot \langle f, g \rangle = g$.
- (83) Let f_1 , f_2 be functions from X into Y and g_1 , g_2 be functions from X into Z. Suppose if $Y = \emptyset$, then $X = \emptyset$ and if $Z = \emptyset$, then $X = \emptyset$ and $\langle f_1, g_1 \rangle = \langle f_2, g_2 \rangle$. Then $f_1 = f_2$ and $g_1 = g_2$.
- (84) Let f_1 , f_2 be functions from X into D_1 and g_1 , g_2 be functions from X into D_2 . If $\langle f_1, g_1 \rangle = \langle f_2, g_2 \rangle$, then $f_1 = f_2$ and $g_1 = g_2$.

Let f, g be functions. The functor [: f, g:] yielding a function is defined by:

(Def. 9) dom[: f, g:] = [: dom f, dom g:] and for all x, y such that $x \in \text{dom } f$ and $y \in \text{dom } g$ holds [: f, g:] ($\langle x, y \rangle$) = $\langle f(x), g(y) \rangle$.

We now state a number of propositions:

- (86)¹¹ For all functions f, g and for all x, y such that $\langle x, y \rangle \in [: \text{dom } f, \text{dom } g:]$ holds $[: f, g:](\langle x, y \rangle) = \langle f(x), g(y) \rangle$.
- (87) For all functions f, g holds $[: f, g:] = \langle f \cdot \pi_1(\operatorname{dom} f \times \operatorname{dom} g), g \cdot \pi_2(\operatorname{dom} f \times \operatorname{dom} g) \rangle$.
- (88) For all functions f, g holds $\operatorname{rng}[: f, g:] = [:\operatorname{rng} f, \operatorname{rng} g:]$.
- (89) For all functions f, g such that dom f = X and dom g = X holds $\langle f, g \rangle = [:f, g:] \cdot \delta_X$.
- (90) $[: id_X, id_Y :] = id_{[:X,Y:]}.$
- (91) For all functions f, g, h, k holds $[:f, h:] \cdot \langle g, k \rangle = \langle f \cdot g, h \cdot k \rangle$.
- (92) For all functions f, g, h, k holds $[:f, h:] \cdot [:g, k:] = [:f \cdot g, h \cdot k:]$.
- (93) For all functions f, g holds $[:f, g:]^{\circ}[:B, A:] = [:f^{\circ}B, g^{\circ}A:]$.
- (94) For all functions f, g holds $[:f, g:]^{-1}([:B, A:]) = [:f^{-1}(B), g^{-1}(A):]$.
- (95) Let f be a function from X into Y and g be a function from V into Z. Then [:f,g:] is a function from [:X,V:] into [:Y,Z:].

Let us consider X_1, X_2, Y_1, Y_2 , let f_1 be a function from X_1 into Y_1 , and let f_2 be a function from X_2 into Y_2 . Then $[:f_1, f_2:]$ is a function from $[:X_1, X_2:]$ into $[:Y_1, Y_2:]$.

Next we state several propositions:

- (96) Let f_1 be a function from C_1 into D_1 , f_2 be a function from C_2 into D_2 , c_1 be an element of C_1 , and c_2 be an element of C_2 . Then $[:f_1, f_2:](\langle c_1, c_2 \rangle) = \langle f_1(c_1), f_2(c_2) \rangle$.
- (97) Let f_1 be a function from X_1 into Y_1 and f_2 be a function from X_2 into Y_2 . If if $Y_1 = \emptyset$, then $X_1 = \emptyset$ and if $Y_2 = \emptyset$, then $X_2 = \emptyset$, then $[:f_1, f_2:] = \langle f_1 \cdot \pi_1(X_1 \times X_2), f_2 \cdot \pi_2(X_1 \times X_2) \rangle$.
- (98) For every function f_1 from X_1 into D_1 and for every function f_2 from X_2 into D_2 holds $[:f_1, f_2:] = \langle f_1 \cdot \pi_1(X_1 \times X_2), f_2 \cdot \pi_2(X_1 \times X_2) \rangle$.
- (99) Let f_1 be a function from X into Y_1 and f_2 be a function from X into Y_2 . If if $Y_1 = \emptyset$, then $X = \emptyset$ and if $Y_2 = \emptyset$, then $X = \emptyset$, then $\langle f_1, f_2 \rangle = [:f_1, f_2:] \cdot \delta_X$.
- (100) For every function f_1 from X into D_1 and for every function f_2 from X into D_2 holds $\langle f_1, f_2 \rangle = [:f_1, f_2:] \cdot \delta_X$.

¹¹ The proposition (85) has been removed.

References

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_ 1.html.

Received May 9, 1989

Published January 2, 2004