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Summary. We define the following mappings: the characteristic function of a subset
of a set, the inclusion function (injection or embedding), the projections from a Cartesian
product onto its arguments and diagonal function (inclusion of a set into its Cartesian square).
Some operations on functions are also defined: the products of two functions (the complex
function and the more general product-function), the function induced on power sets by the
image and inverse-image. Some simple propositions related to the introduced notions are
proved.

MML Identifier: FUNCT_3.

WWW: http://mizar.org/JFM/Voll/funct_3.html

The articlesl[4],[[3],15],16], 171, [1], and[2] provide the notation and terminology for this paper.
We use the following conventiory, y, z, z;, z» denote setsA, B, V, X, Xi, X2, Y, Y1, Y2, Z
denote sets, ard, Cy, Cy, D, D1, D, denote non empty sets.
One can prove the following propositions:

(1) IfACY,thenid =idy|A.

(2) For all functionsf, g such thaiX C dom(g- f) holds f°X C domg.

(3) For all functionsf, g such thatX C domf and f°X C domg holdsX C dom(g- f).

(4) For all functionsf, g such thaty C rng(g- f) andg is one-to-one holdg=1(Y) C rngf.

(5) For all functionsf, g such thaty C rngg andg=*(Y) C rngf holdsY C rng(g- f).

In this article we present several logical schemes. The sclemeEx 3deals with a sefd, a
setB, and a ternary predicat®, and states that:
There exists a functiofi such that donfi = [ 4, B and for allx, y such thax € 4
andy € B holdsP[x,y, f({x, y))]
provided the parameters satisfy the following conditions:
e Forallx,y, z1, z; such thak € 2 andy € B and?P[x,y, z;] and?|x,Y, ;] holdsz; =z,
and
e For allx, y such thaik € 4 andy € B there existz such thatP[x,y, Z].
The schemd.ambda 3deals with a sef, a setB, and a binary functoff yielding a set, and
states that:
There exists a functiofi such that donf = [ 4, B and for allx, y such thax € 4
andy € B holdsf ({x,y)) = F(X,y)
for all values of the parameters.
The following proposition is true
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Let f, g be functions. Suppose doim= [ X, Y] and dong = [: X, Y ] and for allx, y such

thatx € X andy € Y holds f ({x, y)) =9({x, y)). Thenf =g.

Let f be a function. The functdrf yields a function and is defined as follows:

(Def. 1)

donf f = 29°™f and for everyX such thatX C domf holds(° f)(X) = f°X.

Next we state a number of propositions:

(8ff

)
(10)
(12f]
(13)
(14)
(15)
(16)
17)
(18)
(19)
(20)
(21)
(22)

For every functionf such thaiX € dom°f holds(° f)(X) = f°X.

For every functiorf holds(°f)(0) = 0.

For every functiorf holds rng f € 2M9F,

For every functionf holds(° f)°A C 2M9F,

For every functiorf holds(° f)~1(B) C 2domf,

For every functiorf from X into D holds(°f)~%(B) C 2X.

For every functiorf holds{J((°f)°A) C f°UA.

For every functiorf such that C 29°™f holds f°|JA = [J((° f)°A).

For every functiorf from X into D such thatA C 2X holdsf°(JA = [J((° f)°A).
For every functiorf holdsU((°f)~%(B)) C f-1(UB).

For every functiorf such thaB C 29" holds f~1(UB) = J((°f)"1(B)).
For all functionsf, g holds°(g- f) =°g-°f.

For every functiorf holds® f is a function from 8°™ into 2M9f,

For every functiorf from X into Y such that ifY = 0, thenX = 0 holds°f is a function

from 2X into 2".

Let us consideK, D and letf be a function fromX into D. Then®f is a function from % into

2D

Let f be a function. The functor! f yields a function and is defined as follows:

(Def. 2)

don1f = 2M9 and for everyy such thaty C rngf holds(~1f)(Y) = f~1(Y).

One can prove the following propositions:

(24§
(25)
@7}
(28)
(29)
(30)
(31)

For every functionf such thaty € dom=1f holds(~1f)(Y) = f~1(Y).
For every functiorf holds rng1f C 2domf,

For every functionf holds(~1f)°B C 2domf,

For every functiorf holds(~1f)~1(A) C 2M9f,

For every functiorf holds{J((~f)°B) C f~3(UB).

For every functiorf such thaB C 29" holds|J((~*f)°B) = f~%(UB).
For every functiorf holds{J((~1f)~%(A)) C f°UA.

1 The proposition (7) has been removed.

2 The proposition (11) has been removed.
3 The proposition (23) has been removed.
4 The proposition (26) has been removed.
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(32) For every functionf such thatA C 29°Mf and f is one-to-one holds)((~1f)~1(A)) =
feUA

(33) For every functiorf holds(~1f)°B C (°f)~%(B).
(34) For every functiorf such thatf is one-to-one hold§ 1 f)°B = (°f)~1(B).
(35) For every functiorf and for every sef such that C 29°™f holds(~1f)~1(A) C (°f)°A.

(36) For every functionf and for every sefA such thatf is one-to-one holdg°f)°A C
(M)A

(37) For every functiorf and for every sef such thatf is one-to-one ané C 29°™f holds
(1) 7HA) = (Cf)°A

(38) For all functionsf, g such thag is one-to-one holds!(g- f) = 1. ~1g.

(39) For every functiorf holds~1f is a function from 297 into 2domf,

Let us consideA, X. The functofXa x yields a function and is defined as follows:

(Def. 3) dom{Xa x) =X and for every such thak € X holds ifx € A, thenXa x (x) = 1 and ifx ¢ A,
thenXa x(x) =0.

We now state several propositions:
(42f] If Xax(x) =1, thenx € A,
(43) Ifxe X\ A, thenXax(x)=0.
@a7f] 1f AC X andB C X andXax = Xgx, thenA=B.
(48) rgXax) < {0,1}.
(49) For every functiorf from X into {0,1} holdsf = Xf,l({l})x.

Let us consideA, X. ThenXax is a function fromX into {0,1}.
Let us consideY and letA be a subset of. The functor” yields a function fromAinto Y and
is defined by:

(Def. 4) 2 =ida.
The following four propositions are true:
(53[] For every subseA of Y holds = idy|A.
(54) For every subse of Y holds donf” ) = Aand rnd ) = A.
(55) For every subs@tof Y such thak € A holds( 2 )(x) = x.
(56) For every subseX of Y such tha € A holds( 2 )(x) €Y.

Let us consideK, Y. The functorm (X x Y) yields a function and is defined as follows:
(Def.5) donmmy (X xY) = [X,Y] and for allx, y such thatx € X andy € Y holdsm (X x Y)({X,
) =x
The functormp (X x Y) yields a function and is defined as follows:
(Def. 6) ))domrtz(X xY) =[X,Y]and for allx, y such thatx € X andy € Y holdstn(X x Y)((X,
Y1) =Y.

5 The propositions (40) and (41) have been removed.
6 The propositions (44)-(46) have been removed.
" The propositions (50)—(52) have been removed.
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We now state four propositions:
(59 rmgm (X xY) C X.
(60) IfY #£0,thenrngu(XxY)=X.
(61) rngm(XxY)CY.
(62) IfX#£0 thenrngn(XxY)=Y.

Let us consideK, Y. Thenty (X x Y) is a function from[: X, Y ] into X. Thenmp(X xY) is a
function from[: X, Y ] into.
Let us consideK. The functordy yielding a function is defined as follows:

(Def. 7) domdx) = X and for everyx such thak € X holdsdx (x) = {x, x).

The following proposition is true
66f] mg(dx) C [ X, X].

Let us consideK. Thendy is a function fromX into [: X, X .
Let f, g be functions. The functaff,g) yielding a function is defined as follows:

(Def. 8) don{f,g) =domfndomgand for every such thak € dom f,g) holds(f,g)(x) = (f(x),
9(x))-

One can prove the following propositions:
(68@ For all functionsf, g such thak € domf ndomg holds(f,g)(x) = {f(x), g(x)}.

(69) Forallfunctiond, g such that donfi = X and dong = X andx € X holds(f,g)(x) = {f(x),
9(x))-

(70) For all functionsf, g such that donf = X and donmg = X holds don{f,g) = X.
(71) For all functionsf, g holds rnd f,g) C [:rngf, rnggi.

(72) For all functionsf, g such that donfi = domg and rngf C Y and rngg C Z holds (Y x
Z)-(f,g)=fandm(Y x2Z)-(f,g) = 0.

(73) (X xY),TR(X xY)) =id;x yj-

(74) For all functionsf, g, h, k such that donfi = domg and donk = domh and(f,g) = (k, h)
holdsf =k andg=h.

(75) For all functionsf, g, h holds(f -h,g-h) = (f,g) - h.
(76) For all functionsf, g holds(f,g)°AC [ f°A, g°A].
(77) For all functionsf, g holds(f,g)~*([B,C]) = f~%(B)ng~(C).

(78) Letf be a function fromX into Y andg be a function fromX into Z. Suppose iff =0,
thenX =0and ifZ =0, thenX = 0. Then(f,g) is a function fromX into [Y, Z].

Let us consideK, Dy, Do, let f; be a function fronX into D, and letf, be a function fromX
into D,. Then(fy, f,) is a function fromX into [ D1, D2 .
Next we state several propositions:

(79) Letf; be afunction fronC into D4, f, be a function fronC into D, andc be an element
of C. Then(fy, f2)(c) = (fi(c), f2(c)).

8 The propositions (57) and (58) have been removed.
9 The propositions (63)—(65) have been removed.
10 The proposition (67) has been removed.
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(80) For every functiorf from X intoY and for every functioig from X into Z holds rndg f,g) C
LY, Z1.

(81) Letf be a function fromX into Y andg be a function fromX into Z. Suppose ifY = 0,
thenX =0and ifZ=0,thenX = 0. Thenmy (Y x 2)- (f,g) = f andm(Y x Z) - (f,g) = 0.

(82) For every functiorf from X into D1 and for every functioig from X into D, holdsty (D1 x
Dz) . <f,g> =f andnz(Dl X Dz) . <f,g> =0

(83) Letfy, fz be functions fromX into Y andgs, g2 be functions fromX into Z. Suppose if
Y =0,thenX =0and ifZ =0, thenX =0and(f1,01) = (f2,92). Thenf; = f, andg; = gy.

(84) Letfq, fy be functions fronX into D1 andgs, g2 be functions fronX into D,. If (f1,g1) =
(f2,02), thenfy = f2 andgr = ge.

Let f, g be functions. The functdrf, g] yielding a function is defined by:

(Def.9) donf f, g] =[domf, domg] and for allx, y such thai € domf andy € domg holds|: f,
g]((x y)) = (f(x), 9(y)).

We now state a number of propositions:

(BGE For all functionsf, g and for allx, y such that(x, y) € [:domf, domg: holds[. f, g]((x,
) = {f(x), 9(y))-

(87) For all functionsf, g holds[: f, g = (f - (domf x domg),g- Te(domf x domg)).
(88) For all functionsf, g holds rng f, g] = [rngf, rngg].

(89) For all functionsf, g such that donf = X and dormg = X holds(f,g) = [ f, g] - dx.
(90) [idx, idy ] =id;x v-

(91) For all functionsf, g, h, kholds[: f, h]-(g,k) = (f -g,h-k).

(92) For all functionsf, g, h, kholds|: f,h]-[g, k]=[f-g, h-k].

(93) For all functionsf, g holds|: f, g]°[[B, A] = [ f°B, g°Al.

(94) For all functionsf, g holds]: f,g] (B, A]) = f~%(B), g *(A)].

(95) Letf be a function fromX into Y andg be a function fronV into Z. Then[. f,g]is a
function from[ X,V ] into [Y, Z].

Let us consideKy, Xz, Y1, Yo, let f; be a function fronX; into Yy, and letf, be a function from
Xz into Y. Then[: f1, 2] is a function from[: X3, Xp] into [V, Y2 .
Next we state several propositions:

(96) Letfq be a function fronC; into D1, f2 be a function fronC; into Do, ¢; be an element of
Ci, andcp be an element dE,. Then[. f1, fo]({c1, c2)) = (f1(c1), f2(c2)).

(97) Letf; be a function fromX; into Y; and f, be a function fromX; into Y,. If if Y3 = 0, then
Xy =0and ifY, =0, thenX, = 0, then[: f1, fo] = (f1- T (Xy X X2), f2- TR(X1 X X2)).

(98) For every functiorf1 from Xz into D1 and for every functiorf, from X, into D2 holds]: f1,
fz Z} = <f1 . T[l(xl X Xz), f2 . T[2(X1 X X2)>.

(99) Letf; be a function fronX into Y; and f; be a function fronX into Y. If if Y1 = 0, then
X =0andifY, =0, thenX =0, then(fy, f2) = [ f1, f2] - Ox.

(100) For every functionf; from X into D; and for every functionf, from X into D, holds
<1:17 f2> = [Z f1, f2 Z] '5)(.

11 The proposition (85) has been removed.
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