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Summary. We define the following mappings: the characteristic function of a subset
of a set, the inclusion function (injection or embedding), the projections from a Cartesian
product onto its arguments and diagonal function (inclusion of a set into its Cartesian square).
Some operations on functions are also defined: the products of two functions (the complex
function and the more general product-function), the function induced on power sets by the
image and inverse-image. Some simple propositions related to the introduced notions are
proved.

MML Identifier: FUNCT_3.

WWW: http://mizar.org/JFM/Vol1/funct_3.html

The articles [4], [3], [5], [6], [7], [1], and [2] provide the notation and terminology for this paper.
We use the following convention:x, y, z, z1, z2 denote sets,A, B, V, X, X1, X2, Y, Y1, Y2, Z

denote sets, andC, C1, C2, D, D1, D2 denote non empty sets.
One can prove the following propositions:

(1) If A⊆Y, then idA = idY�A.

(2) For all functionsf , g such thatX ⊆ dom(g· f ) holds f ◦X ⊆ domg.

(3) For all functionsf , g such thatX ⊆ dom f and f ◦X ⊆ domg holdsX ⊆ dom(g· f ).

(4) For all functionsf , g such thatY ⊆ rng(g· f ) andg is one-to-one holdsg−1(Y)⊆ rng f .

(5) For all functionsf , g such thatY ⊆ rngg andg−1(Y)⊆ rng f holdsY ⊆ rng(g· f ).

In this article we present several logical schemes. The schemeFuncEx 3deals with a setA , a
setB, and a ternary predicateP , and states that:

There exists a functionf such that domf = [:A , B :] and for allx, y such thatx∈ A
andy∈ B holdsP [x,y, f (〈〈x, y〉〉)]

provided the parameters satisfy the following conditions:
• For allx, y, z1, z2 such thatx∈A andy∈B andP [x,y,z1] andP [x,y,z2] holdsz1 = z2,

and
• For allx, y such thatx∈ A andy∈ B there existsz such thatP [x,y,z].

The schemeLambda 3deals with a setA , a setB, and a binary functorF yielding a set, and
states that:

There exists a functionf such that domf = [:A , B :] and for allx, y such thatx∈ A
andy∈ B holds f (〈〈x, y〉〉) = F (x,y)

for all values of the parameters.
The following proposition is true
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(6) Let f , g be functions. Suppose domf = [:X, Y :] and domg = [:X, Y :] and for allx, y such
thatx∈ X andy∈Y holds f (〈〈x, y〉〉) = g(〈〈x, y〉〉). Then f = g.

Let f be a function. The functor◦ f yields a function and is defined as follows:

(Def. 1) dom◦ f = 2dom f and for everyX such thatX ⊆ dom f holds(◦ f )(X) = f ◦X.

Next we state a number of propositions:

(8)1 For every functionf such thatX ∈ dom◦ f holds(◦ f )(X) = f ◦X.

(9) For every functionf holds(◦ f )( /0) = /0.

(10) For every functionf holds rng◦ f ⊆ 2rng f .

(12)2 For every functionf holds(◦ f )◦A⊆ 2rng f .

(13) For every functionf holds(◦ f )−1(B)⊆ 2dom f .

(14) For every functionf from X into D holds(◦ f )−1(B)⊆ 2X.

(15) For every functionf holds
⋃

((◦ f )◦A)⊆ f ◦
⋃

A.

(16) For every functionf such thatA⊆ 2dom f holds f ◦
⋃

A =
⋃

((◦ f )◦A).

(17) For every functionf from X into D such thatA⊆ 2X holds f ◦
⋃

A =
⋃

((◦ f )◦A).

(18) For every functionf holds
⋃

((◦ f )−1(B))⊆ f−1(
⋃

B).

(19) For every functionf such thatB⊆ 2rng f holds f−1(
⋃

B) =
⋃

((◦ f )−1(B)).

(20) For all functionsf , g holds◦(g· f ) = ◦g· ◦ f .

(21) For every functionf holds◦ f is a function from 2dom f into 2rng f .

(22) For every functionf from X into Y such that ifY = /0, thenX = /0 holds◦ f is a function
from 2X into 2Y.

Let us considerX, D and let f be a function fromX into D. Then◦ f is a function from 2X into
2D.

Let f be a function. The functor−1 f yields a function and is defined as follows:

(Def. 2) dom−1 f = 2rng f and for everyY such thatY ⊆ rng f holds(−1 f )(Y) = f−1(Y).

One can prove the following propositions:

(24)3 For every functionf such thatY ∈ dom−1 f holds(−1 f )(Y) = f−1(Y).

(25) For every functionf holds rng−1 f ⊆ 2dom f .

(27)4 For every functionf holds(−1 f )◦B⊆ 2dom f .

(28) For every functionf holds(−1 f )−1(A)⊆ 2rng f .

(29) For every functionf holds
⋃

((−1 f )◦B)⊆ f−1(
⋃

B).

(30) For every functionf such thatB⊆ 2rng f holds
⋃

((−1 f )◦B) = f−1(
⋃

B).

(31) For every functionf holds
⋃

((−1 f )−1(A))⊆ f ◦
⋃

A.

1 The proposition (7) has been removed.
2 The proposition (11) has been removed.
3 The proposition (23) has been removed.
4 The proposition (26) has been removed.
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(32) For every functionf such thatA ⊆ 2dom f and f is one-to-one holds
⋃

((−1 f )−1(A)) =
f ◦

⋃
A.

(33) For every functionf holds(−1 f )◦B⊆ (◦ f )−1(B).

(34) For every functionf such thatf is one-to-one holds(−1 f )◦B = (◦ f )−1(B).

(35) For every functionf and for every setA such thatA⊆ 2dom f holds(−1 f )−1(A)⊆ (◦ f )◦A.

(36) For every functionf and for every setA such that f is one-to-one holds(◦ f )◦A ⊆
(−1 f )−1(A).

(37) For every functionf and for every setA such thatf is one-to-one andA⊆ 2dom f holds
(−1 f )−1(A) = (◦ f )◦A.

(38) For all functionsf , g such thatg is one-to-one holds−1(g· f ) = −1 f ·−1g.

(39) For every functionf holds−1 f is a function from 2rng f into 2dom f .

Let us considerA, X. The functorχA,X yields a function and is defined as follows:

(Def. 3) dom(χA,X) = X and for everyx such thatx∈X holds ifx∈A, thenχA,X(x) = 1 and ifx /∈A,
thenχA,X(x) = 0.

We now state several propositions:

(42)5 If χA,X(x) = 1, thenx∈ A.

(43) If x∈ X \A, thenχA,X(x) = 0.

(47)6 If A⊆ X andB⊆ X andχA,X = χB,X, thenA = B.

(48) rng(χA,X)⊆ {0,1}.

(49) For every functionf from X into {0,1} holds f = χ
f−1({1}),X.

Let us considerA, X. ThenχA,X is a function fromX into {0,1}.
Let us considerY and letA be a subset ofY. The functor A

↪→ yields a function fromA intoY and
is defined by:

(Def. 4) A
↪→ = idA.

The following four propositions are true:

(53)7 For every subsetA of Y holds A
↪→ = idY�A.

(54) For every subsetA of Y holds dom( A
↪→ ) = A and rng( A

↪→ ) = A.

(55) For every subsetA of Y such thatx∈ A holds( A
↪→ )(x) = x.

(56) For every subsetA of Y such thatx∈ A holds( A
↪→ )(x) ∈Y.

Let us considerX, Y. The functorπ1(X×Y) yields a function and is defined as follows:

(Def. 5) domπ1(X×Y) = [:X, Y :] and for allx, y such thatx ∈ X andy ∈ Y holdsπ1(X×Y)(〈〈x,
y〉〉) = x.

The functorπ2(X×Y) yields a function and is defined as follows:

(Def. 6) domπ2(X×Y) = [:X, Y :] and for allx, y such thatx ∈ X andy ∈ Y holdsπ2(X×Y)(〈〈x,
y〉〉) = y.

5 The propositions (40) and (41) have been removed.
6 The propositions (44)–(46) have been removed.
7 The propositions (50)–(52) have been removed.
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We now state four propositions:

(59)8 rngπ1(X×Y)⊆ X.

(60) If Y 6= /0, then rngπ1(X×Y) = X.

(61) rngπ2(X×Y)⊆Y.

(62) If X 6= /0, then rngπ2(X×Y) = Y.

Let us considerX, Y. Thenπ1(X×Y) is a function from[:X, Y :] into X. Thenπ2(X×Y) is a
function from[:X, Y :] into Y.

Let us considerX. The functorδX yielding a function is defined as follows:

(Def. 7) dom(δX) = X and for everyx such thatx∈ X holdsδX(x) = 〈〈x, x〉〉.

The following proposition is true

(66)9 rng(δX)⊆ [:X, X :].

Let us considerX. ThenδX is a function fromX into [:X, X :].
Let f , g be functions. The functor〈 f ,g〉 yielding a function is defined as follows:

(Def. 8) dom〈 f ,g〉= dom f ∩domg and for everyx such thatx∈ dom〈 f ,g〉 holds〈 f ,g〉(x) = 〈〈 f (x),
g(x)〉〉.

One can prove the following propositions:

(68)10 For all functionsf , g such thatx∈ dom f ∩domg holds〈 f ,g〉(x) = 〈〈 f (x), g(x)〉〉.

(69) For all functionsf , g such that domf = X and domg= X andx∈X holds〈 f ,g〉(x) = 〈〈 f (x),
g(x)〉〉.

(70) For all functionsf , g such that domf = X and domg = X holds dom〈 f ,g〉= X.

(71) For all functionsf , g holds rng〈 f ,g〉 ⊆ [: rng f , rngg:].

(72) For all functionsf , g such that domf = domg and rngf ⊆Y and rngg⊆ Z holdsπ1(Y×
Z) · 〈 f ,g〉= f andπ2(Y×Z) · 〈 f ,g〉= g.

(73) 〈π1(X×Y),π2(X×Y)〉= id[:X,Y :].

(74) For all functionsf , g, h, k such that domf = domg and domk = domh and〈 f ,g〉= 〈k,h〉
holds f = k andg = h.

(75) For all functionsf , g, h holds〈 f ·h,g·h〉= 〈 f ,g〉 ·h.

(76) For all functionsf , g holds〈 f ,g〉◦A⊆ [: f ◦A, g◦A:].

(77) For all functionsf , g holds〈 f ,g〉−1([:B, C:]) = f−1(B)∩g−1(C).

(78) Let f be a function fromX into Y andg be a function fromX into Z. Suppose ifY = /0,
thenX = /0 and ifZ = /0, thenX = /0. Then〈 f ,g〉 is a function fromX into [:Y, Z :].

Let us considerX, D1, D2, let f1 be a function fromX into D1, and let f2 be a function fromX
into D2. Then〈 f1, f2〉 is a function fromX into [:D1, D2 :].

Next we state several propositions:

(79) Let f1 be a function fromC into D1, f2 be a function fromC into D2, andc be an element
of C. Then〈 f1, f2〉(c) = 〈〈 f1(c), f2(c)〉〉.

8 The propositions (57) and (58) have been removed.
9 The propositions (63)–(65) have been removed.

10 The proposition (67) has been removed.
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(80) For every functionf from X intoY and for every functiong from X into Z holds rng〈 f ,g〉 ⊆
[:Y, Z :].

(81) Let f be a function fromX into Y andg be a function fromX into Z. Suppose ifY = /0,
thenX = /0 and ifZ = /0, thenX = /0. Thenπ1(Y×Z) · 〈 f ,g〉= f andπ2(Y×Z) · 〈 f ,g〉= g.

(82) For every functionf from X into D1 and for every functiong from X into D2 holdsπ1(D1×
D2) · 〈 f ,g〉= f andπ2(D1×D2) · 〈 f ,g〉= g.

(83) Let f1, f2 be functions fromX into Y andg1, g2 be functions fromX into Z. Suppose if
Y = /0, thenX = /0 and ifZ = /0, thenX = /0 and〈 f1,g1〉= 〈 f2,g2〉. Then f1 = f2 andg1 = g2.

(84) Let f1, f2 be functions fromX into D1 andg1, g2 be functions fromX into D2. If 〈 f1,g1〉=
〈 f2,g2〉, then f1 = f2 andg1 = g2.

Let f , g be functions. The functor[: f , g:] yielding a function is defined by:

(Def. 9) dom[: f , g:] = [:dom f , domg:] and for allx, y such thatx∈ dom f andy∈ domg holds[: f ,
g:](〈〈x, y〉〉) = 〈〈 f (x), g(y)〉〉.

We now state a number of propositions:

(86)11 For all functionsf , g and for allx, y such that〈〈x, y〉〉 ∈ [:dom f , domg:] holds[: f , g:](〈〈x,
y〉〉) = 〈〈 f (x), g(y)〉〉.

(87) For all functionsf , g holds[: f , g:] = 〈 f ·π1(dom f ×domg),g·π2(dom f ×domg)〉.

(88) For all functionsf , g holds rng[: f , g:] = [: rng f , rngg:].

(89) For all functionsf , g such that domf = X and domg = X holds〈 f ,g〉= [: f , g:] ·δX.

(90) [: idX, idY :] = id[:X,Y :].

(91) For all functionsf , g, h, k holds[: f , h:] · 〈g,k〉= 〈 f ·g,h·k〉.

(92) For all functionsf , g, h, k holds[: f , h:] · [:g, k:] = [: f ·g, h·k:].

(93) For all functionsf , g holds[: f , g:]◦[:B, A:] = [: f ◦B, g◦A:].

(94) For all functionsf , g holds[: f , g:]−1([:B, A:]) = [: f−1(B), g−1(A) :].

(95) Let f be a function fromX into Y andg be a function fromV into Z. Then[: f , g:] is a
function from[:X, V :] into [:Y, Z :].

Let us considerX1, X2, Y1, Y2, let f1 be a function fromX1 into Y1, and let f2 be a function from
X2 into Y2. Then[: f1, f2 :] is a function from[:X1, X2 :] into [:Y1, Y2 :].

Next we state several propositions:

(96) Let f1 be a function fromC1 into D1, f2 be a function fromC2 into D2, c1 be an element of
C1, andc2 be an element ofC2. Then[: f1, f2 :](〈〈c1, c2〉〉) = 〈〈 f1(c1), f2(c2)〉〉.

(97) Let f1 be a function fromX1 into Y1 and f2 be a function fromX2 into Y2. If if Y1 = /0, then
X1 = /0 and ifY2 = /0, thenX2 = /0, then[: f1, f2 :] = 〈 f1 ·π1(X1×X2), f2 ·π2(X1×X2)〉.

(98) For every functionf1 from X1 into D1 and for every functionf2 from X2 into D2 holds[: f1,
f2 :] = 〈 f1 ·π1(X1×X2), f2 ·π2(X1×X2)〉.

(99) Let f1 be a function fromX into Y1 and f2 be a function fromX into Y2. If if Y1 = /0, then
X = /0 and ifY2 = /0, thenX = /0, then〈 f1, f2〉= [: f1, f2 :] ·δX.

(100) For every functionf1 from X into D1 and for every functionf2 from X into D2 holds
〈 f1, f2〉= [: f1, f2 :] ·δX.

11 The proposition (85) has been removed.
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