Basic Functions and Operations on Functions

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a Cartesian product onto its arguments and diagonal function (inclusion of a set into its Cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.

MML Identifier: FUNCT_3.
WWW: http://mizar.org/JFM/Vol1/funct_3.html

The articles [4], [3], [5], [6], [7], [1], and [2] provide the notation and terminology for this paper.
We use the following convention: x, y, z, z_{1}, z_{2} denote sets, $A, B, V, X, X_{1}, X_{2}, Y, Y_{1}, Y_{2}, Z$ denote sets, and $C, C_{1}, C_{2}, D, D_{1}, D_{2}$ denote non empty sets.

One can prove the following propositions:
(1) If $A \subseteq Y$, then $\operatorname{id}_{A}=\operatorname{id}_{Y} \upharpoonright A$.
(2) For all functions f, g such that $X \subseteq \operatorname{dom}(g \cdot f)$ holds $f^{\circ} X \subseteq \operatorname{dom} g$.
(3) For all functions f, g such that $X \subseteq \operatorname{dom} f$ and $f^{\circ} X \subseteq \operatorname{dom} g$ holds $X \subseteq \operatorname{dom}(g \cdot f)$.
(4) For all functions f, g such that $Y \subseteq \operatorname{rng}(g \cdot f)$ and g is one-to-one holds $g^{-1}(Y) \subseteq \operatorname{rng} f$.
(5) For all functions f, g such that $Y \subseteq \operatorname{rng} g$ and $g^{-1}(Y) \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng}(g \cdot f)$.

In this article we present several logical schemes. The scheme FuncEx 3 deals with a set \mathcal{A}, a set \mathcal{B}, and a ternary predicate \mathcal{P}, and states that:

There exists a function f such that $\operatorname{dom} f=[: \mathcal{A}, \mathcal{B}:]$ and for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathscr{P}[x, y, f(\langle x, y\rangle)]$
provided the parameters satisfy the following conditions:

- For all x, y, z_{1}, z_{2} such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}\left[x, y, z_{1}\right]$ and $\mathcal{P}\left[x, y, z_{2}\right]$ holds $z_{1}=z_{2}$, and
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ there exists z such that $\mathcal{P}[x, y, z]$.

The scheme Lambda 3 deals with a set \mathcal{A}, a set \mathcal{B}, and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that $\operatorname{dom} f=[: \mathcal{A}, \mathcal{B}:]$ and for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
for all values of the parameters.
The following proposition is true
(6) Let f, g be functions. Suppose $\operatorname{dom} f=[: X, Y:]$ and $\operatorname{dom} g=[: X, Y:]$ and for all x, y such that $x \in X$ and $y \in Y$ holds $f(\langle x, y\rangle)=g(\langle x, y\rangle)$. Then $f=g$.

Let f be a function. The functor ${ }^{\circ} f$ yields a function and is defined as follows:
(Def. 1) $\quad \operatorname{dom}^{\circ} f=2^{\operatorname{dom} f}$ and for every X such that $X \subseteq \operatorname{dom} f$ holds $\left({ }^{\circ} f\right)(X)=f^{\circ} X$.
Next we state a number of propositions:
$(8)^{1}$ For every function f such that $X \in \operatorname{dom}^{\circ} f$ holds $\left({ }^{\circ} f\right)(X)=f^{\circ} X$.
(9) For every function f holds $\left({ }^{\circ} f\right)(\emptyset)=\emptyset$.
(10) For every function f holds $\mathrm{rng}^{\circ} f \subseteq 2^{\text {rng } f}$.
(12) For every function f holds $\left({ }^{\circ} f\right)^{\circ} A \subseteq 2^{\text {rng } f}$.
(13) For every function f holds $\left({ }^{\circ} f\right)^{-1}(B) \subseteq 2^{\operatorname{dom} f}$.
(14) For every function f from X into D holds $\left({ }^{\circ} f\right)^{-1}(B) \subseteq 2^{X}$.
(15) For every function f holds $\cup\left(\left({ }^{\circ} f\right)^{\circ} A\right) \subseteq f^{\circ} \cup A$.
(16) For every function f such that $A \subseteq 2^{\operatorname{dom} f}$ holds $f^{\circ} \cup A=\bigcup\left(\left({ }^{\circ} f\right)^{\circ} A\right)$.
(17) For every function f from X into D such that $A \subseteq 2^{X}$ holds $f^{\circ} \cup A=\bigcup\left(\left({ }^{\circ} f\right)^{\circ} A\right)$.
(18) For every function f holds $\bigcup\left(\left(^{\circ} f\right)^{-1}(B)\right) \subseteq f^{-1}(\cup B)$.
(19) For every function f such that $B \subseteq 2^{\text {rng } f}$ holds $f^{-1}(\cup B)=\bigcup\left(\left({ }^{\circ} f\right)^{-1}(B)\right)$.
(20) For all functions f, g holds ${ }^{\circ}(g \cdot f)={ }^{\circ} g \cdot{ }^{\circ} f$.
(21) For every function f holds ${ }^{\circ} f$ is a function from $2^{\operatorname{dom} f}$ into $2^{\text {rng } f}$.
(22) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds ${ }^{\circ} f$ is a function from 2^{X} into 2^{Y}.

Let us consider X, D and let f be a function from X into D. Then ${ }^{\circ} f$ is a function from 2^{X} into 2^{D}.

Let f be a function. The functor ${ }^{-1} f$ yields a function and is defined as follows:
(Def. 2) $\quad \operatorname{dom}^{-1} f=2^{\operatorname{rng} f}$ and for every Y such that $Y \subseteq \operatorname{rng} f$ holds $\left({ }^{-1} f\right)(Y)=f^{-1}(Y)$.
One can prove the following propositions:
$\left(24 \sqrt{3}\right.$ For every function f such that $Y \in \operatorname{dom}^{-1} f$ holds $\left({ }^{-1} f\right)(Y)=f^{-1}(Y)$.
(25) For every function f holds $\mathrm{rng}^{-1} f \subseteq 2^{\operatorname{dom} f}$.
(27) For every function f holds $\left({ }^{-1} f\right)^{\circ} B \subseteq 2^{\operatorname{dom} f}$.
(28) For every function f holds $\left({ }^{-1} f\right)^{-1}(A) \subseteq 2^{\mathrm{rng} f}$.
(29) For every function f holds $\bigcup\left(\left({ }^{-1} f\right)^{\circ} B\right) \subseteq f^{-1}(\bigcup B)$.
(30) For every function f such that $B \subseteq 2^{\operatorname{rng} f}$ holds $\bigcup\left(\left({ }^{-1} f\right)^{\circ} B\right)=f^{-1}(\cup B)$.
(31) For every function f holds $\bigcup\left(\left({ }^{-1} f\right)^{-1}(A)\right) \subseteq f^{\circ} \cup A$.

[^0](32) For every function f such that $A \subseteq 2^{\operatorname{dom} f}$ and f is one-to-one holds $\bigcup\left(\left({ }^{-1} f\right)^{-1}(A)\right)=$ $f^{\circ} \cup A$.
(33) For every function f holds $\left({ }^{-1} f\right)^{\circ} B \subseteq\left({ }^{\circ} f\right)^{-1}(B)$.
(34) For every function f such that f is one-to-one holds $\left({ }^{-1} f\right)^{\circ} B=\left({ }^{\circ} f\right)^{-1}(B)$.
(35) For every function f and for every set A such that $A \subseteq 2^{\operatorname{dom} f}$ holds $\left({ }^{-1} f\right)^{-1}(A) \subseteq\left({ }^{\circ} f\right)^{\circ} A$.
(36) For every function f and for every set A such that f is one-to-one holds $\left({ }^{\circ} f\right)^{\circ} A \subseteq$ $\left({ }^{-1} f\right)^{-1}(A)$.
(37) For every function f and for every set A such that f is one-to-one and $A \subseteq 2^{\operatorname{dom} f}$ holds $\left({ }^{-1} f\right)^{-1}(A)=\left({ }^{\circ} f\right)^{\circ} A$.
(38) For all functions f, g such that g is one-to-one holds ${ }^{-1}(g \cdot f)==^{-1} f \cdot{ }^{-1} g$.
(39) For every function f holds ${ }^{-1} f$ is a function from $2^{\operatorname{rng} f}$ into $2^{\operatorname{dom} f}$.

Let us consider A, X. The functor $\chi_{A, X}$ yields a function and is defined as follows:
(Def. 3) $\quad \operatorname{dom}\left(\chi_{A, X}\right)=X$ and for every x such that $x \in X$ holds if $x \in A$, then $\chi_{A, X}(x)=1$ and if $x \notin A$, then $\chi_{A, X}(x)=0$.

We now state several propositions:
$(42)^{5}$ If $\chi_{A, X}(x)=1$, then $x \in A$.
(43) If $x \in X \backslash A$, then $\chi_{A, X}(x)=0$.
(47) If $A \subseteq X$ and $B \subseteq X$ and $\chi_{A, X}=\chi_{B, X}$, then $A=B$.
(48) $\quad \operatorname{rng}\left(\chi_{A, X}\right) \subseteq\{0,1\}$.
(49) For every function f from X into $\{0,1\}$ holds $f=\chi_{f^{-1}(\{1\}), X}$.

Let us consider A, X. Then $\chi_{A, X}$ is a function from X into $\{0,1\}$.
Let us consider Y and let A be a subset of Y. The functor ${ }^{A}$ yields a function from A into Y and is defined by:
(Def. 4) $\stackrel{A}{\hookrightarrow}=\mathrm{id}_{A}$.
The following four propositions are true:
(53 \rangle^{7} For every subset A of Y holds $\stackrel{A}{\hookrightarrow}=\mathrm{id}_{Y} \upharpoonright A$.
(54) For every subset A of Y holds $\operatorname{dom}\binom{A}{\hookrightarrow}=A$ and $\operatorname{rng}\binom{A}{\hookrightarrow}=A$.
(55) For every subset A of Y such that $x \in A$ holds $\binom{A}{\hookrightarrow}(x)=x$.
(56) For every subset A of Y such that $x \in A$ holds $\binom{A}{\hookrightarrow}(x) \in Y$.

Let us consider X, Y. The functor $\pi_{1}(X \times Y)$ yields a function and is defined as follows:
(Def. 5) $\operatorname{dom} \pi_{1}(X \times Y)=[: X, Y:]$ and for all x, y such that $x \in X$ and $y \in Y$ holds $\pi_{1}(X \times Y)(\langle x$, $y\rangle)=x$.

The functor $\pi_{2}(X \times Y)$ yields a function and is defined as follows:
(Def. 6) $\quad \operatorname{dom} \pi_{2}(X \times Y)=[: X, Y:]$ and for all x, y such that $x \in X$ and $y \in Y$ holds $\pi_{2}(X \times Y)(\langle x$, $y\rangle)=y$.

[^1]We now state four propositions:
(59) ${ }^{8} \quad \operatorname{rng} \pi_{1}(X \times Y) \subseteq X$.
(60) If $Y \neq \emptyset$, then $\mathrm{rng} \pi_{1}(X \times Y)=X$.
(61) $\quad \operatorname{rng} \pi_{2}(X \times Y) \subseteq Y$.
(62) If $X \neq \emptyset$, then $\operatorname{rng} \pi_{2}(X \times Y)=Y$.

Let us consider X, Y. Then $\pi_{1}(X \times Y)$ is a function from $[: X, Y:]$ into X. Then $\pi_{2}(X \times Y)$ is a function from $[: X, Y:]$ into Y.

Let us consider X. The functor δ_{X} yielding a function is defined as follows:
(Def. 7) $\quad \operatorname{dom}\left(\delta_{X}\right)=X$ and for every x such that $x \in X$ holds $\delta_{X}(x)=\langle x, x\rangle$.
The following proposition is true
$(66)^{9} \operatorname{rng}\left(\delta_{X}\right) \subseteq[: X, X:]$.
Let us consider X. Then δ_{X} is a function from X into [: X, X :].
Let f, g be functions. The functor $\langle f, g\rangle$ yielding a function is defined as follows:
(Def. 8) $\quad \operatorname{dom}\langle f, g\rangle=\operatorname{dom} f \cap \operatorname{dom} g$ and for every x such that $x \in \operatorname{dom}\langle f, g\rangle$ holds $\langle f, g\rangle(x)=\langle f(x)$, $g(x)\rangle$.

One can prove the following propositions:
(68 $\underline{10}_{10}$ For all functions f, g such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $\langle f, g\rangle(x)=\langle f(x), g(x)\rangle$.
(69) For all functions f, g such that $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ and $x \in X$ holds $\langle f, g\rangle(x)=\langle f(x)$, $g(x)\rangle$.
(70) For all functions f, g such that $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ holds $\operatorname{dom}\langle f, g\rangle=X$.
(71) For all functions f, g holds $\operatorname{rng}\langle f, g\rangle \subseteq[: \operatorname{rng} f, \operatorname{rng} g:]$.
(72) For all functions f, g such that $\operatorname{dom} f=\operatorname{dom} g$ and $\operatorname{rng} f \subseteq Y$ and $\operatorname{rng} g \subseteq Z$ holds $\pi_{1}(Y \times$ $Z) \cdot\langle f, g\rangle=f$ and $\pi_{2}(Y \times Z) \cdot\langle f, g\rangle=g$.
(73) $\left\langle\pi_{1}(X \times Y), \pi_{2}(X \times Y)\right\rangle=\mathrm{id}_{[X, Y:]}$.
(74) For all functions f, g, h, k such that $\operatorname{dom} f=\operatorname{dom} g$ and $\operatorname{dom} k=\operatorname{dom} h$ and $\langle f, g\rangle=\langle k, h\rangle$ holds $f=k$ and $g=h$.
(75) For all functions f, g, h holds $\langle f \cdot h, g \cdot h\rangle=\langle f, g\rangle \cdot h$.
(76) For all functions f, g holds $\langle f, g\rangle^{\circ} A \subseteq\left[: f^{\circ} A, g^{\circ} A:\right]$.
(77) For all functions f, g holds $\langle f, g\rangle^{-1}([: B, C:])=f^{-1}(B) \cap g^{-1}(C)$.
(78) Let f be a function from X into Y and g be a function from X into Z. Suppose if $Y=\emptyset$, then $X=\emptyset$ and if $Z=\emptyset$, then $X=\emptyset$. Then $\langle f, g\rangle$ is a function from X into $[: Y, Z:]$.

Let us consider X, D_{1}, D_{2}, let f_{1} be a function from X into D_{1}, and let f_{2} be a function from X into D_{2}. Then $\left\langle f_{1}, f_{2}\right\rangle$ is a function from X into $\left[: D_{1}, D_{2}\right.$:].

Next we state several propositions:
(79) Let f_{1} be a function from C into D_{1}, f_{2} be a function from C into D_{2}, and c be an element of C. Then $\left\langle f_{1}, f_{2}\right\rangle(c)=\left\langle f_{1}(c), f_{2}(c)\right\rangle$.

[^2](80) For every function f from X into Y and for every function g from X into Z holds $\operatorname{rng}\langle f, g\rangle \subseteq$ [: $Y, Z:]$.
(81) Let f be a function from X into Y and g be a function from X into Z. Suppose if $Y=\emptyset$, then $X=\emptyset$ and if $Z=\emptyset$, then $X=\emptyset$. Then $\pi_{1}(Y \times Z) \cdot\langle f, g\rangle=f$ and $\pi_{2}(Y \times Z) \cdot\langle f, g\rangle=g$.
(82) For every function f from X into D_{1} and for every function g from X into D_{2} holds $\pi_{1}\left(D_{1} \times\right.$ $\left.D_{2}\right) \cdot\langle f, g\rangle=f$ and $\pi_{2}\left(D_{1} \times D_{2}\right) \cdot\langle f, g\rangle=g$.
(83) Let f_{1}, f_{2} be functions from X into Y and g_{1}, g_{2} be functions from X into Z. Suppose if $Y=\emptyset$, then $X=\emptyset$ and if $Z=\emptyset$, then $X=\emptyset$ and $\left\langle f_{1}, g_{1}\right\rangle=\left\langle f_{2}, g_{2}\right\rangle$. Then $f_{1}=f_{2}$ and $g_{1}=g_{2}$.
(84) Let f_{1}, f_{2} be functions from X into D_{1} and g_{1}, g_{2} be functions from X into D_{2}. If $\left\langle f_{1}, g_{1}\right\rangle=$ $\left\langle f_{2}, g_{2}\right\rangle$, then $f_{1}=f_{2}$ and $g_{1}=g_{2}$.

Let f, g be functions. The functor $[: f, g:]$ yielding a function is defined by:
(Def. 9) $\operatorname{dom}[: f, g:]=[: \operatorname{dom} f, \operatorname{dom} g:]$ and for all x, y such that $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} g$ holds $[: f$, $g:](\langle x, y\rangle)=\langle f(x), g(y)\rangle$.

We now state a number of propositions:
(86) For all functions f, g and for all x, y such that $\langle x, y\rangle \in[: \operatorname{dom} f, \operatorname{dom} g:]$ holds $[: f, g:](\langle x$, $y\rangle)=\langle f(x), g(y)\rangle$.
(87) For all functions f, g holds $:: f, g:]=\left\langle f \cdot \pi_{1}(\operatorname{dom} f \times \operatorname{dom} g), g \cdot \pi_{2}(\operatorname{dom} f \times \operatorname{dom} g)\right\rangle$.
(88) For all functions f, g holds $\operatorname{rng}[: f, g:]=[\operatorname{rng} f, \operatorname{rng} g:]$.
(89) For all functions f, g such that $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ holds $\langle f, g\rangle=[: f, g:] \cdot \delta_{X}$.
(90) $\quad\left[: \mathrm{id}_{X}, \mathrm{id}_{Y}:\right]=\mathrm{id}_{[X, Y:}$.
(91) For all functions f, g, h, k holds $[: f, h:] \cdot\langle g, k\rangle=\langle f \cdot g, h \cdot k\rangle$.
(92) For all functions f, g, h, k holds $[: f, h:] \cdot[: g, k:]=[: f \cdot g, h \cdot k:]$.
(93) For all functions f, g holds $[: f, g:]^{\circ}[: B, A:]=\left[: f^{\circ} B, g^{\circ} A:\right]$.
(94) For all functions f, g holds $[: f, g:]^{-1}([: B, A:])=\left[: f^{-1}(B), g^{-1}(A):\right]$.
(95) Let f be a function from X into Y and g be a function from V into Z. Then $[: f, g:$ is a function from $[: X, V:]$ into $[: Y, Z:]$.

Let us consider $X_{1}, X_{2}, Y_{1}, Y_{2}$, let f_{1} be a function from X_{1} into Y_{1}, and let f_{2} be a function from X_{2} into Y_{2}. Then [: f_{1}, f_{2} :] is a function from [: X_{1}, X_{2} :] into $\left[: Y_{1}, Y_{2}\right.$:].

Next we state several propositions:
(96) Let f_{1} be a function from C_{1} into D_{1}, f_{2} be a function from C_{2} into D_{2}, c_{1} be an element of C_{1}, and c_{2} be an element of C_{2}. Then $\left[: f_{1}, f_{2}:\right]\left(\left\langle c_{1}, c_{2}\right\rangle\right)=\left\langle f_{1}\left(c_{1}\right), f_{2}\left(c_{2}\right)\right\rangle$.
(97) Let f_{1} be a function from X_{1} into Y_{1} and f_{2} be a function from X_{2} into Y_{2}. If if $Y_{1}=\emptyset$, then $X_{1}=\emptyset$ and if $Y_{2}=\emptyset$, then $X_{2}=\emptyset$, then $\left[: f_{1}, f_{2}:\right]=\left\langle f_{1} \cdot \pi_{1}\left(X_{1} \times X_{2}\right), f_{2} \cdot \pi_{2}\left(X_{1} \times X_{2}\right)\right\rangle$.
(98) For every function f_{1} from X_{1} into D_{1} and for every function f_{2} from X_{2} into D_{2} holds $\left\lceil: f_{1}\right.$, $\left.f_{2}:\right]=\left\langle f_{1} \cdot \pi_{1}\left(X_{1} \times X_{2}\right), f_{2} \cdot \pi_{2}\left(X_{1} \times X_{2}\right)\right\rangle$.
(99) Let f_{1} be a function from X into Y_{1} and f_{2} be a function from X into Y_{2}. If if $Y_{1}=\emptyset$, then $X=\emptyset$ and if $Y_{2}=\emptyset$, then $X=\emptyset$, then $\left\langle f_{1}, f_{2}\right\rangle=\left[: f_{1}, f_{2}:\right] \cdot \delta_{X}$.
(100) For every function f_{1} from X into D_{1} and for every function f_{2} from X into D_{2} holds $\left\langle f_{1}, f_{2}\right\rangle=\left[: f_{1}, f_{2}:\right] \cdot \delta_{X}$.

[^3]
REFERENCES

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html

Received May 9, 1989
Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (7) has been removed.
 ${ }^{2}$ The proposition (11) has been removed.
 ${ }^{3}$ The proposition (23) has been removed.
 ${ }^{4}$ The proposition (26) has been removed.

[^1]: ${ }^{5}$ The propositions (40) and (41) have been removed.
 ${ }^{6}$ The propositions (44)-(46) have been removed.
 ${ }^{7}$ The propositions (50)-(52) have been removed.

[^2]: ${ }^{8}$ The propositions (57) and (58) have been removed.
 ${ }^{9}$ The propositions (63)-(65) have been removed.
 ${ }^{10}$ The proposition (67) has been removed.

[^3]: ${ }^{11}$ The proposition (85) has been removed.

