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Summary. This abstract contains a construction of the domain of functions defined
in an arbitrary nonempty set, with values being real numbers. In every such set of functions
we introduce several algebraic operations, which yield in this set the structures of a real linear
space, of a ring, and of a real algebra. Formal definitions of such concepts are given.

MML Identifier: FUNCSDOM.

WWW: http://mizar.org/JFM/Vol2/funcsdom.html

The articles [9], [4], [13], [11], [14], [2], [3], [1], [8], [7], [12], [5], [6], and [10] provide the notation
and terminology for this paper.

We adopt the following convention:x1, x2, z are sets andA, B are non empty sets.
Let us considerA, B, let F be a binary operation onBA, and let f , g be elements ofBA. Then

F( f , g) is an element ofBA.
Let A, B, C, D be non empty sets, letF be a function from[:C, D :] into BA, and letc1 be an

element of[:C, D :]. ThenF(c1) is an element ofBA.
Let A, B be non empty sets and letf be a function fromA into B. The functor@ f yielding an

element ofBA is defined as follows:

(Def. 1) @ f = f .

In the sequelf , g, h are elements ofRA.
Let X, Z be non empty sets, letF be a binary operation onX, and let f , g be functions fromZ

into X. ThenF◦( f , g) is an element ofXZ.
Let X, Z be non empty sets, letF be a binary operation onX, let a be an element ofX, and letf

be a function fromZ into X. ThenF◦(a, f ) is an element ofXZ.
Let us considerA. The functor+RA yielding a binary operation onRA is defined as follows:

(Def. 2) For all elementsf , g of RA holds+RA( f , g) = (+R)◦( f , g).

Let us considerA. The functor·RA yields a binary operation onRA and is defined as follows:

(Def. 3) For all elementsf , g of RA holds·RA( f , g) = (·R)◦( f , g).

Let us considerA. The functor·RRA yielding a function from[:R, RA :] into RA is defined by:

(Def. 4) For every real numbera and for every elementf of RA and for every elementx of A holds
·RRA(〈〈a, f 〉〉)(x) = a· f (x).

Let us considerA. The functor0RA yielding an element ofRA is defined as follows:

(Def. 5) 0RA = A 7−→ 0.
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Let us considerA. The functor1RA yields an element ofRA and is defined by:

(Def. 6) 1RA = A 7−→ 1.

The following propositions are true:

(10)1 h = +RA( f , g) iff for every elementx of A holdsh(x) = f (x)+g(x).

(11) h = ·RA( f , g) iff for every elementx of A holdsh(x) = f (x) ·g(x).

(12) For every elementx of A holds1RA(x) = 1.

(13) For every elementx of A holds0RA(x) = 0.

(14) 0RA 6= 1RA.

In the sequela, b are real numbers.
We now state the proposition

(15) h = ·RRA(〈〈a, f 〉〉) iff for every elementx of A holdsh(x) = a· f (x).

In the sequelu, v, w denote vectors of〈RA,0RA,+RA, ·RRA〉.
Next we state a number of propositions:

(16) +RA( f , g) = +RA(g, f ).

(17) +RA( f , +RA(g, h)) = +RA(+RA( f , g), h).

(18) ·RA( f , g) = ·RA(g, f ).

(19) ·RA( f , ·RA(g, h)) = ·RA(·RA( f , g), h).

(20) ·RA(1RA, f ) = f .

(21) +RA(0RA, f ) = f .

(22) +RA( f , ·RRA(〈〈−1, f 〉〉)) = 0RA.

(23) ·RRA(〈〈1, f 〉〉) = f .

(24) ·RRA(〈〈a, ·RRA(〈〈b, f 〉〉)〉〉) = ·RRA(〈〈a·b, f 〉〉).

(25) +RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, f 〉〉)) = ·RRA(〈〈a+b, f 〉〉).

(26) ·RA( f , +RA(g, h)) = +RA(·RA( f , g), ·RA( f , h)).

(27) ·RA(·RRA(〈〈a, f 〉〉), g) = ·RRA(〈〈a, ·RA( f , g)〉〉).

(28) There existf , g such that

(i) for everyz such thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0, and

(ii) for everyz such thatz∈ A holds ifz= x1, theng(z) = 0 and ifz 6= x1, theng(z) = 1.

(29) Suppose that

(i) x1 ∈ A,

(ii) x2 ∈ A,

(iii) x1 6= x2,

(iv) for everyz such thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0, and

(v) for everyz such thatz∈ A holds ifz= x1, theng(z) = 0 and ifz 6= x1, theng(z) = 1.

Let givena, b. If +RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)) = 0RA, thena = 0 andb = 0.

1 The propositions (1)–(9) have been removed.



REAL FUNCTIONS SPACES 3

(30) If x1 ∈ A and x2 ∈ A and x1 6= x2, then there existf , g such that for alla, b such that
+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)) = 0RA holdsa = 0 andb = 0.

(31) Suppose that

(i) A = {x1,x2},
(ii) x1 6= x2,

(iii) for every z such thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0, and

(iv) for everyz such thatz∈ A holds ifz= x1, theng(z) = 0 and ifz 6= x1, theng(z) = 1.

Let givenh. Then there exista, b such thath = +RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)).

(32) If A = {x1,x2} andx1 6= x2, then there existf , g such that for everyh there exista, b such
thath = +RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)).

(33) SupposeA = {x1,x2} andx1 6= x2. Then there existf , g such that for alla, b such that
+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)) = 0RA holdsa = 0 andb = 0 and for everyh there exista, b
such thath = +RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)).

(34) 〈RA,0RA,+RA, ·RRA〉 is a real linear space.

Let us considerA. The functorRA
R yields a strict real linear space and is defined as follows:

(Def. 7) RA
R = 〈RA,0RA,+RA, ·RRA〉.

We now state the proposition

(37)2 There exists a strict real linear spaceV and there exist vectorsu, v of V such that for alla,
b such thata·u+b·v = 0V holdsa = 0 andb = 0 and for every vectorw of V there exista, b
such thatw = a·u+b·v.

Let us considerA. The functor RRingA yields a strict double loop structure and is defined as
follows:

(Def. 12)3 RRingA = 〈RA,+RA, ·RA,1RA,0RA〉.

Let us considerA. Observe that RRingA is non empty.
We now state the proposition

(42)4 Let x, y, z be elements of RRingA. Thenx+ y = y+ x and(x+ y)+ z= x+(y+ z) and
x+0RRingA = x and there exists an elementt of RRingA such thatx+ t = 0RRingA andx ·y =
y ·x and(x ·y) ·z= x · (y ·z) andx ·1RRingA = x and1RRingA ·x = x andx · (y+z) = x ·y+x ·z
and(y+z) ·x = y·x+z·x.

Let us mention that there exists a non empty double loop structure which is strict, Abelian, add-
associative, right zeroed, right complementable, associative, commutative, right unital, and right
distributive.

A ring is an Abelian add-associative right zeroed right complementable associative left unital
right unital distributive non empty double loop structure.

We now state the proposition

(43) RRingA is a commutative ring.

2 The propositions (35) and (36) have been removed.
3 The definitions (Def. 8)–(Def. 11) have been removed.
4 The propositions (38)–(41) have been removed.
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We introduce algebra structures which are extensions of double loop structure and RLS structure
and are systems

〈 a carrier, a multiplication, an addition, an external multiplication, a unity, a zero〉,
where the carrier is a set, the multiplication and the addition are binary operations on the carrier,
the external multiplication is a function from[:R, the carrier :] into the carrier, and the unity and the
zero are elements of the carrier.

Let us note that there exists an algebra structure which is non empty.
Let us considerA. The functor RAlgebraA yielding a strict algebra structure is defined as fol-

lows:

(Def. 19)5 RAlgebraA = 〈RA, ·RA,+RA, ·RRA,1RA,0RA〉.

Let us considerA. One can verify that RAlgebraA is non empty.
One can prove the following proposition

(49)6 Let x, y, z be elements of RAlgebraA and givena, b. Thenx+ y = y+ x and(x+ y)+
z= x+(y+ z) andx+ 0RAlgebraA = x and there exists an elementt of RAlgebraA such that
x+ t = 0RAlgebraA andx·y= y·x and(x·y) ·z= x· (y·z) andx·1RAlgebraA = x andx· (y+z) =
x·y+x·zanda· (x·y) = (a·x) ·y anda· (x+y) = a·x+a·y and(a+b) ·x = a·x+b·x and
(a·b) ·x = a· (b·x).

Let I1 be a non empty algebra structure. We say thatI1 is algebra-like if and only if the condition
(Def. 20) is satisfied.

(Def. 20) Letx, y, zbe elements ofI1 and givena, b. Thenx·1(I1) = x andx· (y+z) = x·y+x·zand
a · (x · y) = (a · x) · y anda · (x+ y) = a · x+ a · y and(a+ b) · x = a · x+ b · x and(a ·b) · x =
a· (b·x).

One can verify that there exists a non empty algebra structure which is strict, Abelian, add-
associative, right zeroed, right complementable, commutative, associative, and algebra-like.

An algebra is an Abelian add-associative right zeroed right complementable commutative asso-
ciative algebra-like non empty algebra structure.

The following proposition is true

(50) RAlgebraA is an algebra.
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