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Summary. We have formalized deterministic finite state machines closely following
the textbook([10], pp. 88—119 up to the minimization theorem. In places, we have changed the
approach presented in the book as it turned out to be too specific and inconvenient. Our work
also revealed several minor mistakes in the book. After defining a structure for an outputless
finite state machine, we have derived the structures for the transition assigned output machine
(Mealy) and state assigned output machine (Moore). The machines are then proved similar, in
the sense that for any Mealy (Moore) machine there exists a Moore (Mealy) machine produc-
ing essentially the same response for the same input. The rest of work is then done for Mealy
machines. Next, we define equivalence of machines, equivalendeequivalence of states,
and characterize a process of constructing for a given Mealy machine, the machine equivalent
to it in which no two states are equivalent. The final, minimization theorem states:

Theorem 4.5:Let M1 andM» be reduced, connected finite-state machines. Then

the state graphs dfl; and M, are isomorphic if and only iM; and M, are

equivalent.

and it is the last theorem in this article.

MML Identifier: FsM_1.

WWW: http://mizar.org/JFM/Vol6/fsm_1.html

The articlesl|[15],[[7],[[18],[[2],[[17],[[12],[[0].[[18],[[16],114] [20] [ [4] [ 16]..5].[18].[[B].[[1], 18],
and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papem, n, i, k denote natural numbers.
One can prove the following propositions:

(1) For all natural numberm, n such thatm < n there exists a natural numbgrsuch that
n=m+ pand 1< p.

(2) Ifie Sem,theni+me Sedn+m).
(3) Ifi>0andi+me Segn+m),theni € Segnandi € Segn+m).
(4) Ifk<i,then there exists a natural numbesuch that =i —kand 1< j.

(5) LetD be a non empty set artij be a finite sequence of elementsaf Supposel; is non
empty. Then there exists an elemdraf D and there exists a finite sequerteof elements
of D such thad = d;(1) andd; = (d) " d,.

1This work was partially supported by NSERC Grant OGP9207.
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(6) For every finite sequenal and for every setl such thaf € domd; holds ({d) ~d1)(i +
1) =di(i).

(7) LetSbe a setD1, D, be non empty setsf; be a function fronSinto D1, and f, be a
function fromD1 into D». If f4 is bijective andfs is bijective, thenf, - f; is bijective.

(8) For every setY and for all equivalence relations;, E, of Y such that Classég =
Classe&; holdsE; = E.

(9) For every non empty sét holds every partition ofV is non empty.
(10) For every finite seX holds every partition oZ is finite.

LetW be a non empty set. Note that every partitioWofs non empty.

Let Z be a finite set. Note that every partitionofs finite.

Let X be a non empty finite set. Note that there exists a partitiod which is non empty and
finite.

We follow the rulesX, A are non empty finite setB is a partition ofX, andP,, Ps are partitions
of A.

We now state several propositions:

(11) LetX be a non empty seB; be a partition ofX, andP, be a set. I, € Py, then there
exists an elementof X such thaix € Py.

(12) cardP;, < cardX.
(13) If Pyis finer thanPs, then cardP; < cardP,.

(14) If Py is finer thanPs, then for every element; of P; there exists an elemepi of P, such
thatp; C pe.

(15) If Py is finer thanP; and cardP, = cardPs, thenP, = Ps.

2. DEFINITIONS AND TERMINOLOGY

Letl; be a set. We introduce FSM ovgwhich are extensions of 1-sorted structure and are systems

( a carrier, a transition, an initial state
where the carrier is a set, the transition is a function ffdghe carrierl; ] into the carrier, and the
initial state is an element of the carrier.

Letl; be a set and lefs be a FSM ovel;. A state offs is an element ofs.

Let X be a set. Observe that there exists a FSM &varhich is non empty and finite.

Let us note that there exists a 1-sorted structure which is finite and non empty.

Let She a finite 1-sorted structure. One can check that the carrigrsdinite.

For simplicity, we adopt the following conventioh;, O; are non empty setd$z is a non empty
FSM overlq, sis an element ofy, w, wy, w, are finite sequences of elementd gfanddq, o, g1, o
are states ofs.

Letl; be a non empty set, Idg be a non empty FSM ovéy, letsbe an element df;, and letq
be a state ofz. The functors-sucdq) yielding a state off3 is defined as follows:

(Def. 1) s-sucdq) = (the transition off3)({q, s}).

Letl1 be a non empty set, ldt be a non empty FSM ovéy, letq be a state ofs, and letw be a
finite sequence of elementslaf The functor(q, w)-admissible yields a finite sequence of elements
of the carrier offz and is defined by the conditions (Def. 2).

(Def. 2)(i) (g,w)-admissiblél) = q,
(i) len((g,w)-admissiblg¢ = lenw+ 1, and

(iii)  for everyi such that K i andi < lenwthere exists an elemewg of |1 and there exist states
03, 0a of f3 such thatvs = w(i) andgs = (g, w)-admissibléi) andgs = (g, w)-admissibléi +
1) andws-succqz) = qa.
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We now state the proposition
(16) (a,g(,))-admissible= (q).

Let I; be a non empty set, Idg be a non empty FSM ovdi, let w be a finite sequence of
elements ofy, and letqs, gz be states of3. The predicate); w, 02 is defined by:

(Def. 3) (g1, w)-admissibl¢lenw+ 1) = dp.
The following proposition is true

€
a7n q ), g.
Let I1 be a non empty set, Idi be a non empty FSM ovdi, let w be a finite sequence of
elements ol1, and letgs be a finite sequence of elements of the carrief0fWe say thats is
admissible fow if and only if:

(Def. 4) There exists a statg of f3 such thaty; = gs(1) and(qi, w)-admissible= gs.

Next we state the proposition
(18) (q) is admissible fog,).
Let us considel, f3, g, w. The functomw-sucdq) yields a state of3 and is defined by:

(Def.5) q— w-sucdq).

Next we state several propositions:
(19) (g,w)-admissiblélen((q,w)-admissiblg) = q iff q — qf.

(20) For everyk such that 1< k and k < lenwy holds (g, w; ~ wy)-admissiblgk) =
(qu,w1)-admissiblgk).

21) g M, Oz, then(qz, w1 ~ wy)-admissiblélenw; + 1) = qp.

22) If g1 M, gz, then for everyk such that 1< k and k < lenwz + 1 holds (g1, wy ~
w,)-admissiblélenw; + k) = (g2, wz)-admissiblé¢k).

(23) Ifqp W, o, then(qy, wy ™ wo)-admissible= (01, wi)-admissiblgenw, +1) ~ (02, W2)-admissible

3. MEALY AND MOOREMACHINES

Letl; be a set and léD1 be a non empty set. We consider Mealy-FSM dyef; as extensions of
FSM overl; as systems

( a carrier, a transition, an output function, an initial state
where the carrier is a set, the transition is a function ffdahe carrier |1 ] into the carrier, the output
function is a function front the carrier 1 ] into O1, and the initial state is an element of the carrier.
We consider Moore-FSM oveéy, O; as extensions of FSM ovér as systems

( a carrier, a transition, an output function, an initial state
where the carrier is a set, the transition is a function ffahe carrier | ] into the carrier, the output
function is a function from the carrier int01, and the initial state is an element of the carrier.

Letl; be a set, leX be a finite non empty set, [& be a function fron{. X, 11 ] into X, and letl
be an element oX. Observe thatX, T, 1) is finite and non empty.

LetI; be a set, leD; be a non empty set, |&€ be a finite non empty set, I&t be a function
from [ X, 11] into X, let O be a function fronf: X, I1 ] into O1, and letl be an element oX. Note
that Mealy-FSMX, T, O, 1) is finite and non empty.

Let |1 be a set, leD; be a non empty set, 1& be a finite non empty set, 18t be a function
from [ X, 11] into X, let O be a function fromX into Oy, and letl be an element oX. Note that
(X,T,0,l) is finite and non empty.
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Letl; be a set and leD; be a non empty set. Note that there exists a Mealy-FSM lay&);
which is finite and non empty and there exists a Moore-FSM tveD; which is finite and non
empty.

For simplicity, we adopt the following rules;, to, t3, t4 denote non empty Mealy-FSM ovEr,
01, s1 denotes a non empty Moore-FSM over O1, gs denotes a state &, ¢, 1, 92, 07, ds, do,
dio, 07, 011, G12, Q13 denote states df, gi4, g15 denote states @f, andagy1, g2 denote states af.

Let us considet;, Oy, t1, q11, W. The functor(qgi1, w)-response yields a finite sequence of
elements ofD; and is defined as follows:

(Def. 6) len((qi1,w)-responsg=lenwand for every such that € domw holds(q; 1, w)-responsé) =
(the output function ofy) ({(g11, w)-admissibl¢i), w(i))).

We now state the proposition
(24) (qu1,£0,))-response=g(g,).

Let us considets, O1, s1, s, W. The functor(gs, w)-response yields a finite sequence of ele-
ments ofO; and is defined by:

(Def. 7) ler((ge,w)-responsg = lenw+ 1 and for everyi such thati € Sedlenw+ 1) holds
(s, w)-responsg@) = (the output function o§;)((gs, w)-admissibléi)).

One can prove the following three propositions:
(25) (gs,wW)-responsgl) = (the output function o$;)(gs).
(26) If g2 M, 13, then(qiz, Wi ~ Wp)-response= (Qi2, Wi )-response (giz, W )-response

(27) If qua —= qus andgp1 — gz and(Qis, Wa)-responset (Cpa, W)-responsethen(da, wy ™
Wy)-responset (g1, W1 ~ Wy)-response

In the sequeD, denotes a finite non empty sét,denotes a finite non empty Mealy-FSM over
I1, Oz, ands, denotes a finite non empty Moore-FSM overO,.

Let us considety, Oy, lett; be a non empty Mealy-FSM ovér, O1, and lets; be a non empty

Moore-FSM overl;, O;. We say that; is similar tos; if and only if the condition (Def. 8) is
satisfied.

(Def. 8) Lettg be a finite sequence of elementslof Then{((the output function of;)(the initial
state ofs;)) ~ (the initial state ofy, tg)-response= (the initial state o, tg)-response

The following two propositions are true:

(28) For every non empty finite Moore-FS& overly, O; holds there exists a non empty finite
Mealy-FSM ovei, O; which is similar tos;.

(29) There exists, such thats is similar tos,.

4. EQUIVALENCE OF STATES AND MACHINES

Letly, O1 be non empty sets and let tz be non empty Mealy-FSM ovéy, O1. We say that, and
t3 are equivalent if and only if:

(Def. 9) For every finite sequeneeof elements of; holds(the initial state of;, w)-response- (the
initial state ofts, w)-response

Let us notice that the predicateandts are equivalent is reflexive and symmetric.
Next we state the proposition

(30) Iftp, andts are equivalent antd andt, are equivalent, thera andt, are equivalent.

Let us considely, O, t1, gs, gg. We say thatljg andqg are equivalent if and only if:
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(Def. 10) For everw holds(qgs, w)-response= (qg, w)-response

Let us notice that the predicatg andqg are equivalent is reflexive and symmetric.
Next we state several propositions:

(SSE] If q1 andqy are equivalent and, andgy are equivalent, theg; andqgy are equivalent.

(34) If g; = (the transition oft1)({gg, S)), then for everyi such thati € Seqlenw+ 1) holds
(g8, () ~ w)-admissibléi + 1) = (dy, w)-admissibléi).

(385) If gj = (the transition of1)((gg, S) ), then(dgs, (S) ~ w)-response= ((the output function of
t1)({gs, s))) ~ (cfp, w)-response

(36) gs andqy are equivalent if and only if for everg holds (the output function df)({gs,
s)) = (the output function ofy)({de, S)) and (the transition df;)({gs, S)) and (the transition
of t1)({qe, S)) are equivalent.

(37) Supposels andqgg are equivalent. Let givew, i. Supposé € domw. Then there exist
stateqyys, 017 Of t1 such thaie = (gg, w)-admissibléi) andqg;7 = (gg, w)-admissibléi) and
016 andg; 7 are equivalent.

Let us considel;, O, t1, gs, gg, k. We say thatig andqg arek-equivalent if and only if:
(Def. 11) For everw such that lew < k holds(qgs, w)-response= (qg, w)-response

The following propositions are true:

(38) gs andqgg arek-equivalent.
(39) If gg andqg arek-equivalent, themg andqs arek-equivalent.

(40) If gg and gy are k-equivalent andyg and gio are k-equivalent, thergg and g are k-
equivalent.

(41) If gg andqg are equivalent, thegs andqg arek-equivalent.
(42) gs andqg are 0-equivalent.
(43) If gg andgg arek+ m-equivalent, themjs andgg arek-equivalent.

(44) Suppose ¥ k. Thengs andqg arek-equivalent if and only if the following conditions are
satisfied:

(i) gsandqgg are 1-equivalent, and

(i) for every elemens of 1; and for every natural numbég such thak; = k— 1 holds (the
transition oft; ) ({ds, s)) and (the transition ofi) ({qo, S)) arek;-equivalent.

Let us considety, O, t1, i. The functori-EqS-Re(t;) yields an equivalence relation of the
carrier oft; and is defined by:

(Def. 12) For allgg, go holds(gs, o) € i-EqS-Relty) iff s andqg arei-equivalent.

Let us considels, Oy, lett; be a non empty Mealy-FSM ovér, Oy, and let us considér The
functori-EqS-Partt;) yielding a non empty partition of the carrier @fis defined as follows:

(Def. 13) i-EqS-Partt;) = Classe§-EqS-Re(t1)).
The following propositions are true:

(45) (k+1)-EgS-Partt;) is finer thark-EqS-Partty).

1 The propositions (31) and (32) have been removed.
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(46) If Classe&k-EqS-Reft;)) = Classe§k + 1)-EqS-Reft;)), then for every m holds
Classef(k+m)-EqS-Re(t1)) = Classe&k-EqS-Re(t)).

(47) If k-EqS-Partt;) = (k+ 1)-EqS-Part;), then for everym holds (k+ m)-EqS-Part;) =
k-EqS-Part; ).

(48) If (k+ 1)-EgS-Partt;) # k-EqS-Partt;), then for everyi such thati < k holds (i +
1)-EqS-Partt;) # i-EqS-Partts ).

(49) For every finite non empty Mealy-FSM over I, O; holds k-EgS-Part;) = (k+
1)-EqS-Partt;) or cardk-EqS-Part;)) < card (k+ 1)-EqS-Partt;)).

(50) [Q]O-Eqs-Rel(tl) = the carrier ot;.
(51) 0-EqS-Paft;) = {the carrier ot1}.

(52) For every finite non empty Mealy-FStyloverl1, O; such than+ 1 = card (the carrier of
t1) holds(n+ 1)-EqS-Partt;) = n-EqS-Party ).

Let us considely, Oy, lett; be a non empty Mealy-FSM ovér, O1, and letl; be a partition of
the carrier ot;. We say thats is final if and only if the condition (Def. 14) is satisfied.

(Def. 14) Letqgs, qo be states df;. Thengg andqg are equivalent if and only if there exists an element
X of I, such thatgg € X andqg € X.

Next we state three propositions:
(53) Ifk-EqS-Partty) is final, then(k+ 1)-EqS-Re(t1) = k-EqS-Relts).
(54) k-EqS-Parit;) = (k+ 1)-EqS-Partty) iff k-EqS-Partt;) is final.

(55) Lett; be a finite non empty Mealy-FSM ovér, O;. Supposea+ 1 = card (the carrier of
t1). Then there exists a natural numikesuch thak < n andk-EqS-Part; ) is final.

Let us considet;, O; and lett; be a finite non empty Mealy-FSM ovéy, O1. The functor
final-Partitior(t;) yields a partition of the carrier ¢f and is defined as follows:

(Def. 15) final-Partitioft,) is final.
Next we state the proposition

(56) For every finite non empty Mealy-FStWloverl1, O1 such thah+ 1 = card(the carrier of
t1) holds final-Partitioft; ) = n-EqS-Part; ).

5. THE REDUCTION OF AMEALY MACHINE

In the sequely, r1 denote finite non empty Mealy-FSM ovigr O1 andq denotes a state ¢f.

Letl1, O1 be non empty sets, I&t be a finite non empty Mealy-FSM ovér, O1, letgig be an
element of final-Partitioft; ), and lets be an element dfi. The functor(s, g15)-C-succ yielding an
element of final-Partitioft; ) is defined by the condition (Def. 16).

(Def. 16) There exists a statgof t; and there exists a natural numipesuch thag € qigandn+1=
card (the carrier of;) and(s, qug)-C-succ= [(the transition ot1)({(d, S))]n-gqsRely)-

Let us considely, O, t1, let g1g be an element of final-Partitidn ), and let us consides: The
functor (o1, S)-C-response yields an element®@f and is defined by:

(Def. 17) There existg such thaty € g18 and (d1s, S)-C-response= (the output function ofy)({q,
s)).

Let us considely, Oy, t1. The reduction of; yielding a strict Mealy-FSM ovelr, O; is defined
by the conditions (Def. 18).
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(Def. 18)(i) The carrier of the reduction tf = final-Partitior{ts ),

(i) for every stateQ of the reduction of; and for everys and for every statq of t; such that
g € Q holds (the transition dfi)({q, s)) € (the transition of the reduction ¢f)({Q, s)) and
(the output function ofy)({q, s)) = (the output function of the reduction tf)({Q, s)), and

(i) theinitial state oft; € the initial state of the reduction ¢f.

Let us considel;, Og, t;. One can check that the reductiontpfs non empty and finite.
We now state two propositions:

(57) Letqyg be a state of1. Suppose; = the reduction of; andq € gi9. Let k be a natural
number. Ifk € Seqlenw+ 1), then(q, w)-admissibl¢k) € (t19, w)-admissiblék).

(58) t; and the reduction df are equivalent.

6. MACHINE |SOMORPHISM

In the sequetypo, 0z3 are states ofy; andT; is a function from the carrier d$ into the carrier of3.
Let us considefs, O, to, t3. We say that, andts are isomorphic if and only if the condition
(Def. 19) is satisfied.
(Def. 19) There exist$; such that
(i) Tiis bijective,
(i)  Ti(the initial state ofy) = the initial state ofs, and
(iii)  for all gi4, sholdsT;((the transition of2)({q14, S))) = (the transition of3) ({T1(d14), S))
and (the output function d$)((qg14, S}) = (the output function of3)((T1(014), S}).

Let us notice that the predicateandts are isomorphic is reflexive and symmetric.
We now state four propositions:

(59) Ifty andts are isomorphic anty andt, are isomorphic, thet» andt, are isomorphic.

(60) Suppose that for every stateof t, and for everys holds Ti((the transition ofty)({q,
s))) = (the transition oft3)({T1(q), s)). Let givenk. If 1 <k andk < lenw+ 1, then
T1((014, w)-admissiblék)) = (T1(g14), w)-admissibl¢k).

(61) Suppose that
() Ti(the initial state ofy) = the initial state ots, and

(i) for every statey of t, and for everysholdsT; ((the transition of)({(q, s))) = (the transition
of t3)({T1(q), s)) and (the output function df)({q, s)) = (the output function ofz)({T1(q),

s)).

Thenqgi4 andqys are equivalent if and only if1(g14) andT;(q15) are equivalent.

(62) If ry =the reduction of; andgy # g3, thengyg andgys are not equivalent.

7. REDUCED AND CONNECTEDMACHINES

Let I3, O; be non empty sets and letbe a non empty Mealy-FSM ovér, O1. We say thats is
reduced if and only if:

(Def. 20) For all stategs, go Of 1> such thag # gy holdsgg andgg are not equivalent.

One can prove the following proposition

(63) The reduction of is reduced.
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Let us considet;, O;. Observe that there exists a non empty Mealy-FSM byaD; which is

reduced and finite.
In the sequeR; denotes a reduced finite non empty Mealy-FSM dyeD; .

We now state two propositions:

(64) Ry and the reduction dR; are isomorphic.
(65) t; is reduced if and only if there exists a finite non empty Mealy-H8Mverl,, O; such
thatt; and the reduction d¥1 are isomorphic.
Let us considely, O, lett; be a non empty Mealy-FSM ovér, O1, and letl, be a state of.
We say thats is accessible if and only if:

(Def. 21) There exista such that the initial state ¢f —— I5.
Let us considet1, O; and letl; be a non empty Mealy-FSM ovéf, O;. We say that, is
connected if and only if:
(Def. 22) Every state df, is accessible.
Let us considet;, O;. Observe that there exists a finite non empty Mealy-FSM bye®;

which is connected.
In the sequeC,, Cy, C3 are connected finite non empty Mealy-FSM olgrO;.

Next we state the proposition

(66) The reduction of; is connected.
Let us considefs, O;. Note that there exists a non empty Mealy-FSM oMerO; which is

connected, reduced, and finite.
Let us considel;, O1 and lett; be a non empty Mealy-FSM ovér, O;. The functor accessible-Statas

is defined by:
(Def. 23) accessible-Staigs) = {q; q ranges over states f g is accessiblp
Let us considels, Oy, t1. One can check that accessible-Stéigss finite and non empty.
One can prove the following propositions:
(67) accessible-Statgs) C the carrier ot; and for everyg holdsq € accessible-Statés) iff g
is accessible.
(68) (The transition ofy) [[: accessible-Statés), |1 ] is a function from|: accessible-Statés),
I1] into accessible-Statés).

(69) Let c; be a function from[accessible-Statéts), 1] into accessible-Statélg), ¢
be a function from [accessible-Statés), 1] into O;, and c3 be an element of
accessible-Statéts). Supposec; = (the transition oft;)[[ accessible-Statés), 11] and

c; = (the output function of;) || accessible-Statéts), 1] and cz = the initial state oft;.
Thent; and Mealy-FSMaccessible-Statés), 1, Cz, C3) are equivalent.

(70) There exist€; such that
(i) the transition ofC; = (the transition of;) [ accessible-Statés), 11 ],

(i) the output function ofC; = (the output function of;) [[: accessible-Statés), |1 ],
(i)  the initial state ofC; = the initial state of;, and

(iv) tp andC; are equivalent.
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8. MACHINE UNION

Let I1 be a set, leD; be a non empty set, and Igt t3 be non empty Mealy-FSM ovdg, O;.
The functor Mealy-Ut;, t3) yields a strict Mealy-FSM over, O; and is defined by the conditions
(Def. 24).
(Def. 24)()) The carrier of Mealy-U5,t3) = (the carrier ot,) U (the carrier otz),
(i) the transition of Mealy-Ut,,t3) = (the transition of,)+-(the transition of3),

(iii)  the output function of Mealy-W,, t3) = (the output function of,)+-(the output function
of t3), and

(iv) the initial state of Mealy-Wt,,t3) = the initial state of;.
Letl; be a set, IeO1 be a non empty set, and Igt t3 be non empty finite Mealy-FSM ovéy,

0s. One can check that Mealy{t},t3) is non empty and finite.
We now state four propositions:

(71) If t1 = Mealy-U(to,t3) and the carrier of; misses the carrier o and gu4 = q, then
(014, w)-admissible= (g, w)-admissible

(72) If t1 = Mealy-U(to,t3) and the carrier of, misses the carrier a and gi4 = g, then
(04, W)-response= (g, w)-response

(73) If t1 = Mealy-U(tp,t3) and the carrier of, misses the carrier a and g1 = g, then
(021, W)-admissible= (g, w)-admissible

(74) If t1 = Mealy-U(t,t3) and the carrier of, misses the carrier a and g1 = q, then
(01, W)-response= (g, w)-response

In the sequeR,, R; denote reduced non empty Mealy-FSM olgrO;.
We now state the proposition

(75) Supposé = Mealy-U(Ry, R3) and the carrier oR, misses the carrier d®3 andR, andR3
are equivalent. Then there exists a statef the reduction of; such that
(i) theinitial state ofR; € Q,
(i) the initial state ofRz € Q, and
(i)  Q=the initial state of the reduction o¢f.

In the sequeCy, Cs are connected reduced non empty Mealy-FSM dve®; anddgps, 05 are
states of;.
The following two propositions are true:

(76) Letcyy, €12 be states o€4. Suppose that
() c11="0ps,
(i) c12=0ps,
(iii)  the carrier ofC4 misses the carrier @s,
(iv) C4andCs are equivalent,
(v) t3 =Mealy-U(Cq4,Cs), and
(vi) cq11 andcyo are not equivalent.
Thengy4 andgys are not equivalent.

(77) Letcyy, Co2 be states ofs. Suppose that
() Co1=0ps,

(i) Co2=Ops,
(iii)  the carrier ofC4 misses the carrier @s,
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(iv) C4andCs are equivalent,

(v) t3 =Mealy-U(Cq4,Cs), and

(vi) cp1 andcyy are not equivalent.
Thengy4 andgys are not equivalent.

In the sequeC,, Cs denote connected reduced finite non empty Mealy-FSM kyé; .
We now state three propositions:

(78) Suppose the carrier € misses the carrier &5 andC, andCs are equivalent anti =
Mealy-U(Cq4,Cs). Let Q be a state of the reduction @f Then there do not exist elemeigs
gz of Q such than; € the carrier ofC4 andq; € the carrier ofC4 anda; # Qp.

(79) Suppose the carrier @ misses the carrier d@@s andC, andCs are equivalent anty =
Mealy-U(C4,Cs). Let Q be a state of the reduction @f Then there do not exist elemets
gz of Q such than; € the carrier ofCs andq; € the carrier ofCs andq; # qp.

(80) Suppose the carrier € misses the carrier &5 andC, andCs are equivalent anti =
Mealy-U(C4,Cs). Let Q be a state of the reductionaf Then there exist elemerg, g of Q
such thaty; € the carrier ofC4 andq; € the carrier ofCs and for every elemerg of Q holds

q=0qorqg=ae.

9. THE MINIMIZATION THEOREM
We now state several propositions:

(81) Letty, t3 be finite non empty Mealy-FSM ovéy, O;. Then there exist finite non empty
Mealy-FSM {4, f5 overly, O; such that the carrier ofy misses the carrier o and f4 andt,
are isomorphic andis andtz are isomorphic.

(82) Iftp andts are isomorphic, thety andts are equivalent.

(83) Suppose the carrier @4 misses the carrier &35 andC, andCs are equivalent. The@,
andCs are isomorphic.

(84) IfC, andCs are equivalent, then the reduction@fand the reduction a3 are isomorphic.

(85) LetMj, M3 be connected reduced finite non empty Mealy-FSM ¢veD;. ThenM; and
M, are isomorphic if and only i, andM, are equivalent.
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