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Summary. We have formalized deterministic finite state machines closely following
the textbook [10], pp. 88–119 up to the minimization theorem. In places, we have changed the
approach presented in the book as it turned out to be too specific and inconvenient. Our work
also revealed several minor mistakes in the book. After defining a structure for an outputless
finite state machine, we have derived the structures for the transition assigned output machine
(Mealy) and state assigned output machine (Moore). The machines are then proved similar, in
the sense that for any Mealy (Moore) machine there exists a Moore (Mealy) machine produc-
ing essentially the same response for the same input. The rest of work is then done for Mealy
machines. Next, we define equivalence of machines, equivalence andk-equivalence of states,
and characterize a process of constructing for a given Mealy machine, the machine equivalent
to it in which no two states are equivalent. The final, minimization theorem states:

Theorem 4.5:Let M1 andM2 be reduced, connected finite-state machines. Then
the state graphs ofM1 and M2 are isomorphic if and only ifM1 and M2 are
equivalent.

and it is the last theorem in this article.

MML Identifier: FSM_1.

WWW: http://mizar.org/JFM/Vol6/fsm_1.html

The articles [15], [7], [19], [2], [17], [12], [9], [18], [16], [14], [20], [4], [6], [5], [8], [3], [1], [13],
and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperm, n, i, k denote natural numbers.
One can prove the following propositions:

(1) For all natural numbersm, n such thatm < n there exists a natural numberp such that
n = m+ p and 1≤ p.

(2) If i ∈ Segn, theni +m∈ Seg(n+m).

(3) If i > 0 andi +m∈ Seg(n+m), theni ∈ Segn andi ∈ Seg(n+m).

(4) If k < i, then there exists a natural numberj such thatj = i−k and 1≤ j.

(5) Let D be a non empty set andd1 be a finite sequence of elements ofD. Supposed1 is non
empty. Then there exists an elementd of D and there exists a finite sequenced2 of elements
of D such thatd = d1(1) andd1 = 〈d〉a d2.

1This work was partially supported by NSERC Grant OGP9207.
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(6) For every finite sequenced1 and for every setd such thati ∈ domd1 holds(〈d〉a d1)(i +
1) = d1(i).

(7) Let S be a set,D1, D2 be non empty sets,f1 be a function fromS into D1, and f2 be a
function fromD1 into D2. If f1 is bijective andf2 is bijective, thenf2 · f1 is bijective.

(8) For every setY and for all equivalence relationsE1, E2 of Y such that ClassesE1 =
ClassesE2 holdsE1 = E2.

(9) For every non empty setW holds every partition ofW is non empty.

(10) For every finite setZ holds every partition ofZ is finite.

Let W be a non empty set. Note that every partition ofW is non empty.
Let Z be a finite set. Note that every partition ofZ is finite.
Let X be a non empty finite set. Note that there exists a partition ofX which is non empty and

finite.
We follow the rules:X, A are non empty finite sets,P1 is a partition ofX, andP2, P3 are partitions

of A.
We now state several propositions:

(11) Let X be a non empty set,P1 be a partition ofX, andP4 be a set. IfP4 ∈ P1, then there
exists an elementx of X such thatx∈ P4.

(12) cardP1 ≤ cardX.

(13) If P2 is finer thanP3, then cardP3 ≤ cardP2.

(14) If P2 is finer thanP3, then for every elementp2 of P3 there exists an elementp1 of P2 such
that p1 ⊆ p2.

(15) If P2 is finer thanP3 and cardP2 = cardP3, thenP2 = P3.

2. DEFINITIONS AND TERMINOLOGY

Let I1 be a set. We introduce FSM overI1 which are extensions of 1-sorted structure and are systems
〈 a carrier, a transition, an initial state〉,

where the carrier is a set, the transition is a function from[: the carrier, I1 :] into the carrier, and the
initial state is an element of the carrier.

Let I1 be a set and letf3 be a FSM overI1. A state of f3 is an element off3.
Let X be a set. Observe that there exists a FSM overX which is non empty and finite.
Let us note that there exists a 1-sorted structure which is finite and non empty.
Let Sbe a finite 1-sorted structure. One can check that the carrier ofS is finite.
For simplicity, we adopt the following convention:I1, O1 are non empty sets,f3 is a non empty

FSM overI1, s is an element ofI1, w, w1, w2 are finite sequences of elements ofI1, andq, q′, q1, q2

are states off3.
Let I1 be a non empty set, letf3 be a non empty FSM overI1, let sbe an element ofI1, and letq

be a state off3. The functors-succ(q) yielding a state off3 is defined as follows:

(Def. 1) s-succ(q) = (the transition off3)(〈〈q, s〉〉).

Let I1 be a non empty set, letf3 be a non empty FSM overI1, let q be a state off3, and letw be a
finite sequence of elements ofI1. The functor(q,w)-admissible yields a finite sequence of elements
of the carrier off3 and is defined by the conditions (Def. 2).

(Def. 2)(i) (q,w)-admissible(1) = q,

(ii) len((q,w)-admissible) = lenw+1, and

(iii) for every i such that 1≤ i andi ≤ lenw there exists an elementw3 of I1 and there exist states
q3, q4 of f3 such thatw3 = w(i) andq3 = (q,w)-admissible(i) andq4 = (q,w)-admissible(i +
1) andw3-succ(q3) = q4.
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We now state the proposition

(16) (q,ε(I1))-admissible= 〈q〉.

Let I1 be a non empty set, letf3 be a non empty FSM overI1, let w be a finite sequence of
elements ofI1, and letq1, q2 be states off3. The predicateq1

w−→ q2 is defined by:

(Def. 3) (q1,w)-admissible(lenw+1) = q2.

The following proposition is true

(17) q
ε(I1)−→ q.

Let I1 be a non empty set, letf3 be a non empty FSM overI1, let w be a finite sequence of
elements ofI1, and letq5 be a finite sequence of elements of the carrier off3. We say thatq5 is
admissible forw if and only if:

(Def. 4) There exists a stateq1 of f3 such thatq1 = q5(1) and(q1,w)-admissible= q5.

Next we state the proposition

(18) 〈q〉 is admissible forε(I1).

Let us considerI1, f3, q, w. The functorw-succ(q) yields a state off3 and is defined by:

(Def. 5) q
w−→ w-succ(q).

Next we state several propositions:

(19) (q,w)-admissible(len((q,w)-admissible)) = q′ iff q
w−→ q′.

(20) For every k such that 1≤ k and k ≤ lenw1 holds (q1,w1
a w2)-admissible(k) =

(q1,w1)-admissible(k).

(21) If q1
w1−→ q2, then(q1,w1

a w2)-admissible(lenw1 +1) = q2.

(22) If q1
w1−→ q2, then for everyk such that 1≤ k and k ≤ lenw2 + 1 holds (q1,w1

a

w2)-admissible(lenw1 +k) = (q2,w2)-admissible(k).

(23) If q1
w1−→ q2, then(q1,w1

a w2)-admissible=((q1,w1)-admissible�lenw1+1)a (q2,w2)-admissible.

3. MEALY AND MOOREMACHINES

Let I1 be a set and letO1 be a non empty set. We consider Mealy-FSM overI1, O1 as extensions of
FSM overI1 as systems

〈 a carrier, a transition, an output function, an initial state〉,
where the carrier is a set, the transition is a function from[: the carrier, I1 :] into the carrier, the output
function is a function from[: the carrier, I1 :] into O1, and the initial state is an element of the carrier.
We consider Moore-FSM overI1, O1 as extensions of FSM overI1 as systems

〈 a carrier, a transition, an output function, an initial state〉,
where the carrier is a set, the transition is a function from[: the carrier, I1 :] into the carrier, the output
function is a function from the carrier intoO1, and the initial state is an element of the carrier.

Let I1 be a set, letX be a finite non empty set, letT be a function from[:X, I1 :] into X, and letI
be an element ofX. Observe that〈X,T, I〉 is finite and non empty.

Let I1 be a set, letO1 be a non empty set, letX be a finite non empty set, letT be a function
from [:X, I1 :] into X, let O be a function from[:X, I1 :] into O1, and letI be an element ofX. Note
that Mealy-FSM〈X,T,O, I〉 is finite and non empty.

Let I1 be a set, letO1 be a non empty set, letX be a finite non empty set, letT be a function
from [:X, I1 :] into X, let O be a function fromX into O1, and letI be an element ofX. Note that
〈X,T,O, I〉 is finite and non empty.
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Let I1 be a set and letO1 be a non empty set. Note that there exists a Mealy-FSM overI1, O1

which is finite and non empty and there exists a Moore-FSM overI1, O1 which is finite and non
empty.

For simplicity, we adopt the following rules:t1, t2, t3, t4 denote non empty Mealy-FSM overI1,
O1, s1 denotes a non empty Moore-FSM overI1, O1, q6 denotes a state ofs1, q, q1, q2, q7, q8, q9,
q10, q′1, q11, q12, q13 denote states oft1, q14, q15 denote states oft2, andq21, q22 denote states oft3.

Let us considerI1, O1, t1, q11, w. The functor(q11,w)-response yields a finite sequence of
elements ofO1 and is defined as follows:

(Def. 6) len((q11,w)-response)= lenwand for everyi such thati ∈domwholds(q11,w)-response(i)=
(the output function oft1)(〈〈(q11,w)-admissible(i), w(i)〉〉).

We now state the proposition

(24) (q11,ε(I1))-response= ε(O1).

Let us considerI1, O1, s1, q6, w. The functor(q6,w)-response yields a finite sequence of ele-
ments ofO1 and is defined by:

(Def. 7) len((q6,w)-response) = lenw + 1 and for everyi such thati ∈ Seg(lenw + 1) holds
(q6,w)-response(i) = (the output function ofs1)((q6,w)-admissible(i)).

One can prove the following three propositions:

(25) (q6,w)-response(1) = (the output function ofs1)(q6).

(26) If q12
w1−→ q13, then(q12,w1

a w2)-response= (q12,w1)-responsea (q13,w2)-response.

(27) If q14
w1−→ q15 andq21

w1−→ q22 and(q15,w2)-response6= (q22,w2)-response, then(q14,w1
a

w2)-response6= (q21,w1
a w2)-response.

In the sequelO2 denotes a finite non empty set,t5 denotes a finite non empty Mealy-FSM over
I1, O2, ands2 denotes a finite non empty Moore-FSM overI1, O2.

Let us considerI1, O1, let t1 be a non empty Mealy-FSM overI1, O1, and lets1 be a non empty
Moore-FSM overI1, O1. We say thatt1 is similar to s1 if and only if the condition (Def. 8) is
satisfied.

(Def. 8) Lett6 be a finite sequence of elements ofI1. Then〈(the output function ofs1)(the initial
state ofs1)〉a (the initial state oft1, t6)-response= (the initial state ofs1, t6)-response.

The following two propositions are true:

(28) For every non empty finite Moore-FSMs1 overI1, O1 holds there exists a non empty finite
Mealy-FSM overI1, O1 which is similar tos1.

(29) There existss2 such thatt5 is similar tos2.

4. EQUIVALENCE OF STATES AND MACHINES

Let I1, O1 be non empty sets and lett2, t3 be non empty Mealy-FSM overI1, O1. We say thatt2 and
t3 are equivalent if and only if:

(Def. 9) For every finite sequencewof elements ofI1 holds(the initial state oft2, w)-response= (the
initial state oft3, w)-response.

Let us notice that the predicatet2 andt3 are equivalent is reflexive and symmetric.
Next we state the proposition

(30) If t2 andt3 are equivalent andt3 andt4 are equivalent, thent2 andt4 are equivalent.

Let us considerI1, O1, t1, q8, q9. We say thatq8 andq9 are equivalent if and only if:
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(Def. 10) For everyw holds(q8,w)-response= (q9,w)-response.

Let us notice that the predicateq8 andq9 are equivalent is reflexive and symmetric.
Next we state several propositions:

(33)1 If q1 andq2 are equivalent andq2 andq7 are equivalent, thenq1 andq7 are equivalent.

(34) If q′1 = (the transition oft1)(〈〈q8, s〉〉), then for everyi such thati ∈ Seg(lenw+ 1) holds
(q8,〈s〉a w)-admissible(i +1) = (q′1,w)-admissible(i).

(35) If q′1 = (the transition oft1)(〈〈q8, s〉〉), then(q8,〈s〉a w)-response= 〈(the output function of
t1)(〈〈q8, s〉〉)〉a (q′1,w)-response.

(36) q8 andq9 are equivalent if and only if for everys holds (the output function oft1)(〈〈q8,
s〉〉) = (the output function oft1)(〈〈q9, s〉〉) and (the transition oft1)(〈〈q8, s〉〉) and (the transition
of t1)(〈〈q9, s〉〉) are equivalent.

(37) Supposeq8 andq9 are equivalent. Let givenw, i. Supposei ∈ domw. Then there exist
statesq16, q17 of t1 such thatq16 = (q8,w)-admissible(i) andq17 = (q9,w)-admissible(i) and
q16 andq17 are equivalent.

Let us considerI1, O1, t1, q8, q9, k. We say thatq8 andq9 arek-equivalent if and only if:

(Def. 11) For everyw such that lenw≤ k holds(q8,w)-response= (q9,w)-response.

The following propositions are true:

(38) q8 andq8 arek-equivalent.

(39) If q8 andq9 arek-equivalent, thenq9 andq8 arek-equivalent.

(40) If q8 and q9 are k-equivalent andq9 and q10 are k-equivalent, thenq8 and q10 are k-
equivalent.

(41) If q8 andq9 are equivalent, thenq8 andq9 arek-equivalent.

(42) q8 andq9 are 0-equivalent.

(43) If q8 andq9 arek+m-equivalent, thenq8 andq9 arek-equivalent.

(44) Suppose 1≤ k. Thenq8 andq9 arek-equivalent if and only if the following conditions are
satisfied:

(i) q8 andq9 are 1-equivalent, and

(ii) for every elements of I1 and for every natural numberk1 such thatk1 = k−1 holds (the
transition oft1)(〈〈q8, s〉〉) and (the transition oft1)(〈〈q9, s〉〉) arek1-equivalent.

Let us considerI1, O1, t1, i. The functori-EqS-Rel(t1) yields an equivalence relation of the
carrier oft1 and is defined by:

(Def. 12) For allq8, q9 holds〈〈q8, q9〉〉 ∈ i-EqS-Rel(t1) iff q8 andq9 arei-equivalent.

Let us considerI1, O1, let t1 be a non empty Mealy-FSM overI1, O1, and let us consideri. The
functor i-EqS-Part(t1) yielding a non empty partition of the carrier oft1 is defined as follows:

(Def. 13) i-EqS-Part(t1) = Classes(i-EqS-Rel(t1)).

The following propositions are true:

(45) (k+1)-EqS-Part(t1) is finer thank-EqS-Part(t1).

1 The propositions (31) and (32) have been removed.
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(46) If Classes(k-EqS-Rel(t1)) = Classes((k + 1)-EqS-Rel(t1)), then for every m holds
Classes((k+m)-EqS-Rel(t1)) = Classes(k-EqS-Rel(t1)).

(47) If k-EqS-Part(t1) = (k+ 1)-EqS-Part(t1), then for everym holds(k+ m)-EqS-Part(t1) =
k-EqS-Part(t1).

(48) If (k + 1)-EqS-Part(t1) 6= k-EqS-Part(t1), then for everyi such thati ≤ k holds (i +
1)-EqS-Part(t1) 6= i-EqS-Part(t1).

(49) For every finite non empty Mealy-FSMt1 over I1, O1 holds k-EqS-Part(t1) = (k +
1)-EqS-Part(t1) or card(k-EqS-Part(t1)) < card((k+1)-EqS-Part(t1)).

(50) [q]0-EqS-Rel(t1) = the carrier oft1.

(51) 0-EqS-Part(t1) = {the carrier oft1}.

(52) For every finite non empty Mealy-FSMt1 over I1, O1 such thatn+1 = card(the carrier of
t1) holds(n+1)-EqS-Part(t1) = n-EqS-Part(t1).

Let us considerI1, O1, let t1 be a non empty Mealy-FSM overI1, O1, and letI2 be a partition of
the carrier oft1. We say thatI2 is final if and only if the condition (Def. 14) is satisfied.

(Def. 14) Letq8, q9 be states oft1. Thenq8 andq9 are equivalent if and only if there exists an element
X of I2 such thatq8 ∈ X andq9 ∈ X.

Next we state three propositions:

(53) If k-EqS-Part(t1) is final, then(k+1)-EqS-Rel(t1) = k-EqS-Rel(t1).

(54) k-EqS-Part(t1) = (k+1)-EqS-Part(t1) iff k-EqS-Part(t1) is final.

(55) Let t1 be a finite non empty Mealy-FSM overI1, O1. Supposen+1 = card(the carrier of
t1). Then there exists a natural numberk such thatk≤ n andk-EqS-Part(t1) is final.

Let us considerI1, O1 and lett1 be a finite non empty Mealy-FSM overI1, O1. The functor
final-Partition(t1) yields a partition of the carrier oft1 and is defined as follows:

(Def. 15) final-Partition(t1) is final.

Next we state the proposition

(56) For every finite non empty Mealy-FSMt1 over I1, O1 such thatn+1 = card(the carrier of
t1) holds final-Partition(t1) = n-EqS-Part(t1).

5. THE REDUCTION OF A MEALY MACHINE

In the sequelt1, r1 denote finite non empty Mealy-FSM overI1, O1 andq denotes a state oft1.
Let I1, O1 be non empty sets, lett1 be a finite non empty Mealy-FSM overI1, O1, let q18 be an

element of final-Partition(t1), and lets be an element ofI1. The functor(s,q18)-C-succ yielding an
element of final-Partition(t1) is defined by the condition (Def. 16).

(Def. 16) There exists a stateq of t1 and there exists a natural numbern such thatq∈ q18 andn+1=
card(the carrier oft1) and(s,q18)-C-succ= [(the transition oft1)(〈〈q, s〉〉)]n-EqS-Rel(t1).

Let us considerI1, O1, t1, let q18 be an element of final-Partition(t1), and let us considers. The
functor(q18,s)-C-response yields an element ofO1 and is defined by:

(Def. 17) There existsq such thatq∈ q18 and(q18,s)-C-response= (the output function oft1)(〈〈q,
s〉〉).

Let us considerI1, O1, t1. The reduction oft1 yielding a strict Mealy-FSM overI1, O1 is defined
by the conditions (Def. 18).



MINIMIZATION OF FINITE STATE MACHINES 7

(Def. 18)(i) The carrier of the reduction oft1 = final-Partition(t1),

(ii) for every stateQ of the reduction oft1 and for everys and for every stateq of t1 such that
q∈ Q holds (the transition oft1)(〈〈q, s〉〉) ∈ (the transition of the reduction oft1)(〈〈Q, s〉〉) and
(the output function oft1)(〈〈q, s〉〉) = (the output function of the reduction oft1)(〈〈Q, s〉〉), and

(iii) the initial state oft1 ∈ the initial state of the reduction oft1.

Let us considerI1, O1, t1. One can check that the reduction oft1 is non empty and finite.
We now state two propositions:

(57) Letq19 be a state ofr1. Supposer1 = the reduction oft1 andq∈ q19. Let k be a natural
number. Ifk∈ Seg(lenw+1), then(q,w)-admissible(k) ∈ (q19,w)-admissible(k).

(58) t1 and the reduction oft1 are equivalent.

6. MACHINE ISOMORPHISM

In the sequelq20, q23 are states ofr1 andT1 is a function from the carrier oft2 into the carrier oft3.
Let us considerI1, O1, t2, t3. We say thatt2 andt3 are isomorphic if and only if the condition

(Def. 19) is satisfied.

(Def. 19) There existsT1 such that

(i) T1 is bijective,

(ii) T1(the initial state oft2) = the initial state oft3, and

(iii) for all q14, s holdsT1((the transition oft2)(〈〈q14, s〉〉)) = (the transition oft3)(〈〈T1(q14), s〉〉)
and (the output function oft2)(〈〈q14, s〉〉) = (the output function oft3)(〈〈T1(q14), s〉〉).

Let us notice that the predicatet2 andt3 are isomorphic is reflexive and symmetric.
We now state four propositions:

(59) If t2 andt3 are isomorphic andt3 andt4 are isomorphic, thent2 andt4 are isomorphic.

(60) Suppose that for every stateq of t2 and for everys holds T1((the transition oft2)(〈〈q,
s〉〉)) = (the transition oft3)(〈〈T1(q), s〉〉). Let given k. If 1 ≤ k and k ≤ lenw + 1, then
T1((q14,w)-admissible(k)) = (T1(q14),w)-admissible(k).

(61) Suppose that

(i) T1(the initial state oft2) = the initial state oft3, and

(ii) for every stateq of t2 and for everysholdsT1((the transition oft2)(〈〈q, s〉〉)) = (the transition
of t3)(〈〈T1(q), s〉〉) and (the output function oft2)(〈〈q, s〉〉) = (the output function oft3)(〈〈T1(q),
s〉〉).
Thenq14 andq15 are equivalent if and only ifT1(q14) andT1(q15) are equivalent.

(62) If r1 = the reduction oft1 andq20 6= q23, thenq20 andq23 are not equivalent.

7. REDUCED AND CONNECTEDMACHINES

Let I1, O1 be non empty sets and letI2 be a non empty Mealy-FSM overI1, O1. We say thatI2 is
reduced if and only if:

(Def. 20) For all statesq8, q9 of I2 such thatq8 6= q9 holdsq8 andq9 are not equivalent.

One can prove the following proposition

(63) The reduction oft1 is reduced.
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Let us considerI1, O1. Observe that there exists a non empty Mealy-FSM overI1, O1 which is
reduced and finite.

In the sequelR1 denotes a reduced finite non empty Mealy-FSM overI1, O1.
We now state two propositions:

(64) R1 and the reduction ofR1 are isomorphic.

(65) t1 is reduced if and only if there exists a finite non empty Mealy-FSMM over I1, O1 such
thatt1 and the reduction ofM are isomorphic.

Let us considerI1, O1, let t1 be a non empty Mealy-FSM overI1, O1, and letI2 be a state oft1.
We say thatI2 is accessible if and only if:

(Def. 21) There existsw such that the initial state oft1
w−→ I2.

Let us considerI1, O1 and letI2 be a non empty Mealy-FSM overI1, O1. We say thatI2 is
connected if and only if:

(Def. 22) Every state ofI2 is accessible.

Let us considerI1, O1. Observe that there exists a finite non empty Mealy-FSM overI1, O1

which is connected.
In the sequelC1, C2, C3 are connected finite non empty Mealy-FSM overI1, O1.
Next we state the proposition

(66) The reduction ofC1 is connected.

Let us considerI1, O1. Note that there exists a non empty Mealy-FSM overI1, O1 which is
connected, reduced, and finite.

Let us considerI1, O1 and lett1 be a non empty Mealy-FSM overI1, O1. The functor accessible-States(t1)
is defined by:

(Def. 23) accessible-States(t1) = {q;q ranges over states oft1: q is accessible}.

Let us considerI1, O1, t1. One can check that accessible-States(t1) is finite and non empty.
One can prove the following propositions:

(67) accessible-States(t1)⊆ the carrier oft1 and for everyq holdsq∈ accessible-States(t1) iff q
is accessible.

(68) (The transition oft1)�[:accessible-States(t1), I1 :] is a function from[:accessible-States(t1),
I1 :] into accessible-States(t1).

(69) Let c1 be a function from [:accessible-States(t1), I1 :] into accessible-States(t1), c2

be a function from [:accessible-States(t1), I1 :] into O1, and c3 be an element of
accessible-States(t1). Supposec1 = (the transition oft1)�[:accessible-States(t1), I1 :] and
c2 = (the output function oft1)�[:accessible-States(t1), I1 :] and c3 = the initial state oft1.
Thent1 and Mealy-FSM〈accessible-States(t1),c1,c2,c3〉 are equivalent.

(70) There existsC1 such that

(i) the transition ofC1 = (the transition oft1)�[:accessible-States(t1), I1 :],

(ii) the output function ofC1 = (the output function oft1)�[:accessible-States(t1), I1 :],

(iii) the initial state ofC1 = the initial state oft1, and

(iv) t1 andC1 are equivalent.
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8. MACHINE UNION

Let I1 be a set, letO1 be a non empty set, and lett2, t3 be non empty Mealy-FSM overI1, O1.
The functor Mealy-U(t2, t3) yields a strict Mealy-FSM overI1, O1 and is defined by the conditions
(Def. 24).

(Def. 24)(i) The carrier of Mealy-U(t2, t3) = (the carrier oft2)∪ (the carrier oft3),

(ii) the transition of Mealy-U(t2, t3) = (the transition oft2)+·(the transition oft3),

(iii) the output function of Mealy-U(t2, t3) = (the output function oft2)+·(the output function
of t3), and

(iv) the initial state of Mealy-U(t2, t3) = the initial state oft2.

Let I1 be a set, letO1 be a non empty set, and lett2, t3 be non empty finite Mealy-FSM overI1,
O1. One can check that Mealy-U(t2, t3) is non empty and finite.

We now state four propositions:

(71) If t1 = Mealy-U(t2, t3) and the carrier oft2 misses the carrier oft3 and q14 = q, then
(q14,w)-admissible= (q,w)-admissible.

(72) If t1 = Mealy-U(t2, t3) and the carrier oft2 misses the carrier oft3 and q14 = q, then
(q14,w)-response= (q,w)-response.

(73) If t1 = Mealy-U(t2, t3) and the carrier oft2 misses the carrier oft3 and q21 = q, then
(q21,w)-admissible= (q,w)-admissible.

(74) If t1 = Mealy-U(t2, t3) and the carrier oft2 misses the carrier oft3 and q21 = q, then
(q21,w)-response= (q,w)-response.

In the sequelR2, R3 denote reduced non empty Mealy-FSM overI1, O1.
We now state the proposition

(75) Supposet1 = Mealy-U(R2,R3) and the carrier ofR2 misses the carrier ofR3 andR2 andR3

are equivalent. Then there exists a stateQ of the reduction oft1 such that

(i) the initial state ofR2 ∈Q,

(ii) the initial state ofR3 ∈Q, and

(iii) Q = the initial state of the reduction oft1.

In the sequelC4, C5 are connected reduced non empty Mealy-FSM overI1, O1 andq24, q25 are
states oft1.

The following two propositions are true:

(76) Letc11, c12 be states ofC4. Suppose that

(i) c11 = q24,

(ii) c12 = q25,

(iii) the carrier ofC4 misses the carrier ofC5,

(iv) C4 andC5 are equivalent,

(v) t1 = Mealy-U(C4,C5), and

(vi) c11 andc12 are not equivalent.

Thenq24 andq25 are not equivalent.

(77) Letc21, c22 be states ofC5. Suppose that

(i) c21 = q24,

(ii) c22 = q25,

(iii) the carrier ofC4 misses the carrier ofC5,
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(iv) C4 andC5 are equivalent,

(v) t1 = Mealy-U(C4,C5), and

(vi) c21 andc22 are not equivalent.

Thenq24 andq25 are not equivalent.

In the sequelC4, C5 denote connected reduced finite non empty Mealy-FSM overI1, O1.
We now state three propositions:

(78) Suppose the carrier ofC4 misses the carrier ofC5 andC4 andC5 are equivalent andt1 =
Mealy-U(C4,C5). Let Q be a state of the reduction oft1. Then there do not exist elementsq1,
q2 of Q such thatq1 ∈ the carrier ofC4 andq2 ∈ the carrier ofC4 andq1 6= q2.

(79) Suppose the carrier ofC4 misses the carrier ofC5 andC4 andC5 are equivalent andt1 =
Mealy-U(C4,C5). Let Q be a state of the reduction oft1. Then there do not exist elementsq1,
q2 of Q such thatq1 ∈ the carrier ofC5 andq2 ∈ the carrier ofC5 andq1 6= q2.

(80) Suppose the carrier ofC4 misses the carrier ofC5 andC4 andC5 are equivalent andt1 =
Mealy-U(C4,C5). Let Q be a state of the reduction oft1. Then there exist elementsq1, q2 of Q
such thatq1 ∈ the carrier ofC4 andq2 ∈ the carrier ofC5 and for every elementq of Q holds
q = q1 or q = q2.

9. THE M INIMIZATION THEOREM

We now state several propositions:

(81) Let t2, t3 be finite non empty Mealy-FSM overI1, O1. Then there exist finite non empty
Mealy-FSM f4, f5 overI1, O1 such that the carrier off4 misses the carrier off5 and f4 andt2
are isomorphic andf5 andt3 are isomorphic.

(82) If t2 andt3 are isomorphic, thent2 andt3 are equivalent.

(83) Suppose the carrier ofC4 misses the carrier ofC5 andC4 andC5 are equivalent. ThenC4

andC5 are isomorphic.

(84) If C2 andC3 are equivalent, then the reduction ofC2 and the reduction ofC3 are isomorphic.

(85) LetM1, M2 be connected reduced finite non empty Mealy-FSM overI1, O1. ThenM1 and
M2 are isomorphic if and only ifM1 andM2 are equivalent.
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