Free Universal Algebra Construction

Beata Perkowska Warsaw University Białystok

Summary. A construction of the free universal algebra with fixed signature and a given set of generators.

MML Identifier: FREEALG.
WWW: http://mizar.org/JFM/Vol5/freealg.html

The articles [15], [18], [16], [19], [7], [9], [4], [8], [14], [10], [1], [2], [3], [17], [13], [6], [11], [5], and [12] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper *n* denotes a natural number. Let I_1 be a set. We say that I_1 is missing \mathbb{N} if and only if:

(Def. 1) I_1 misses \mathbb{N} .

One can check that there exists a set which is non empty and missing \mathbb{N} . Let I_1 be a finite sequence. We say that I_1 has zero if and only if:

(Def. 2) $0 \in \operatorname{rng} I_1$.

We introduce I_1 is without zero as an antonym of I_1 has zero.

Let us note that there exists a finite sequence of elements of \mathbb{N} which is non empty and has zero and there exists a finite sequence of elements of \mathbb{N} which is non empty and without zero.

2. FREE UNIVERSAL ALGEBRA — GENERAL NOTIONS

Let U_1 be a universal algebra and let *n* be a natural number. Let us assume that $n \in \text{dom}$ (the characteristic of U_1). The functor oper (n, U_1) yields an operation of U_1 and is defined by:

(Def. 4)¹ oper (n, U_1) = (the characteristic of U_1)(n).

Let U_0 be a universal algebra. A subset of U_0 is called a generator set of U_0 if:

(Def. 5) The carrier of $\text{Gen}^{\text{UA}}(\text{it}) = \text{the carrier of } U_0$.

Let U_0 be a universal algebra and let I_1 be a generator set of U_0 . We say that I_1 is free if and only if the condition (Def. 6) is satisfied.

¹ The definition (Def. 3) has been removed.

(Def. 6) Let U_1 be a universal algebra. Suppose U_0 and U_1 are similar. Let f be a function from I_1 into the carrier of U_1 . Then there exists a function h from U_0 into U_1 such that h is a homomorphism of U_0 into U_1 and $h|I_1 = f$.

Let I_1 be a universal algebra. We say that I_1 is free if and only if:

(Def. 7) There exists a generator set of I_1 which is free.

Let us observe that there exists a universal algebra which is free and strict. Let U_0 be a free universal algebra. Observe that there exists a generator set of U_0 which is free. We now state the proposition

- (1) Let U_0 be a strict universal algebra and A be a subset of U_0 . Then A is a generator set of U_0 if and only if $\text{Gen}^{\text{UA}}(A) = U_0$.
- 3. CONSTRUCTION OF DECORATED TREE STRUCTURE FOR FREE UNIVERSAL ALGEBRA

Let *f* be a non empty finite sequence of elements of \mathbb{N} and let *X* be a set. The functor $\operatorname{REL}(f, X)$ yielding a relation between dom $f \cup X$ and $(\operatorname{dom} f \cup X)^*$ is defined by:

(Def. 8) For every element *a* of dom $f \cup X$ and for every element *b* of $(\text{dom} f \cup X)^*$ holds $\langle a, b \rangle \in \text{REL}(f, X)$ iff $a \in \text{dom} f$ and f(a) = len b.

Let *f* be a non empty finite sequence of elements of \mathbb{N} and let *X* be a set. The functor DTConUA(*f*,*X*) yielding a strict tree construction structure is defined as follows:

(Def. 9) DTConUA $(f, X) = \langle \operatorname{dom} f \cup X, \operatorname{REL}(f, X) \rangle$.

Let *f* be a non empty finite sequence of elements of \mathbb{N} and let *X* be a set. One can check that DTConUA(*f*,*X*) is non empty.

The following propositions are true:

- (2) Let f be a non empty finite sequence of elements of \mathbb{N} and X be a set. Then the terminals of DTConUA $(f, X) \subseteq X$ and the nonterminals of DTConUA(f, X) = dom f.
- (3) Let *f* be a non empty finite sequence of elements of \mathbb{N} and *X* be a missing \mathbb{N} set. Then the terminals of DTConUA(*f*,*X*) = *X*.

Let *f* be a non empty finite sequence of elements of \mathbb{N} and let *X* be a set. Note that DTConUA(*f*,*X*) has nonterminals.

Let *f* be a non empty finite sequence of elements of \mathbb{N} with zero and let *X* be a set. Note that DTConUA(*f*,*X*) has nonterminals and useful nonterminals.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing \mathbb{N} non empty set. Note that DTConUA(f, D) has terminals, nonterminals, and useful nonterminals.

Let *f* be a non empty finite sequence of elements of \mathbb{N} , let *X* be a set, and let *n* be a natural number. Let us assume that $n \in \text{dom } f$. The functor Sym(n, f, X) yields a symbol of DTConUA(f, X) and is defined as follows:

(Def. 10) Sym(n, f, X) = n.

4. CONSTRUCTION OF FREE UNIVERSAL ALGEBRA FOR NON-EMPTY SET OF GENERATORS AND GIVEN SIGNATURE

Let *f* be a non empty finite sequence of elements of \mathbb{N} **qua** non empty set, let *D* be a missing \mathbb{N} non empty set, and let *n* be a natural number. Let us assume that $n \in \text{dom } f$. The functor FreeOpNSG(*n*, *f*, *D*) yielding a homogeneous quasi total non empty partial function from TS(DTConUA(*f*, *D*))* to TS(DTConUA(*f*, *D*)) is defined by the conditions (Def. 11).

(Def. 11)(i) dom FreeOpNSG $(n, f, D) = TS(DTConUA(f, D))^{f_n}$, and

(ii) for every finite sequence p of elements of TS(DTConUA(f,D)) such that $p \in dom FreeOpNSG(n, f, D)$ holds (FreeOpNSG(n, f, D))(p) = Sym(n, f, D)-tree(p).

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing \mathbb{N} non empty set. The functor FreeOpSeqNSG(f, D) yields a finite sequence of operational functions of TS(DTConUA(f, D)) and is defined by:

(Def. 12) len FreeOpSeqNSG(f, D) = len f and for every n such that $n \in \text{dom FreeOpSeqNSG}(f, D)$ holds (FreeOpSeqNSG(f, D))(n) = FreeOpNSG(n, f, D).

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing \mathbb{N} non empty set. The functor FreeUnivAlgNSG(f, D) yields a strict universal algebra and is defined as follows:

(Def. 13) FreeUnivAlgNSG $(f, D) = \langle TS(DTConUA(f, D)), FreeOpSeqNSG(f, D) \rangle$.

The following proposition is true

(4) For every non empty finite sequence f of elements of \mathbb{N} and for every missing \mathbb{N} non empty set D holds signature FreeUnivAlgNSG(f, D) = f.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. The functor FreeGenSetNSG(f, D) yielding a subset of FreeUnivAlgNSG(f, D) is defined as follows:

(Def. 14) FreeGenSetNSG $(f,D) = \{$ the root tree of *s*; *s* ranges over symbols of DTConUA(f,D): $s \in$ the terminals of DTConUA $(f,D)\}.$

One can prove the following proposition

(5) Let f be a non empty finite sequence of elements of \mathbb{N} and D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG(f, D) is non empty.

Let f be a non empty finite sequence of elements of \mathbb{N} **qua** non empty set and let D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG(f, D) is a generator set of FreeUnivAlgNSG(f, D).

Let *f* be a non empty finite sequence of elements of \mathbb{N} , let *D* be a non empty missing \mathbb{N} set, let *C* be a non empty set, let *s* be a symbol of DTConUA(*f*,*D*), and let *F* be a function from FreeGenSetNSG(*f*,*D*) into *C*. Let us assume that *s* \in the terminals of DTConUA(*f*,*D*). The functor $\pi_s F$ yields an element of *C* and is defined as follows:

(Def. 15) $\pi_s F = F$ (the root tree of *s*).

Let *f* be a non empty finite sequence of elements of \mathbb{N} , let *D* be a set, and let *s* be a symbol of DTConUA(*f*,*D*). Let us assume that there exists a finite sequence *p* such that $s \Rightarrow p$. The functor [@]s yields a natural number and is defined by:

(Def. 16) $^{@}s = s$.

The following proposition is true

(6) For every non empty finite sequence f of elements of \mathbb{N} and for every non empty missing \mathbb{N} set D holds FreeGenSetNSG(f, D) is free.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Note that FreeUnivAlgNSG(f, D) is free.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG(f, D) is a free generator set of FreeUnivAlgNSG(f, D).

5. CONSTRUCTION OF FREE UNIVERSAL ALGEBRA AND SET OF GENERATORS

Let f be a non empty finite sequence of elements of \mathbb{N} **qua** non empty set with zero, let D be a missing \mathbb{N} set, and let n be a natural number. Let us assume that $n \in \text{dom } f$. The functor FreeOpZAO(n, f, D) yields a homogeneous quasi total non empty partial function from TS(DTConUA(f, D))* to TS(DTConUA(f, D)) and is defined by the conditions (Def. 17).

- (Def. 17)(i) dom FreeOpZAO $(n, f, D) = TS(DTConUA(f, D))^{f_n}$, and
 - (ii) for every finite sequence p of elements of TS(DTConUA(f,D)) such that $p \in dom FreeOpZAO(n, f, D)$ holds (FreeOpZAO(n, f, D))(p) = Sym(n, f, D)-tree(p).

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeOpSeqZAO(f,D) yields a finite sequence of operational functions of TS(DTConUA(f,D)) and is defined by:

(Def. 18) len FreeOpSeqZAO(f, D) = len f and for every n such that $n \in \text{dom FreeOpSeqZAO}(f, D)$ holds (FreeOpSeqZAO(f, D))(n) = FreeOpZAO(n, f, D).

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeUnivAlgZAO(f, D) yields a strict universal algebra and is defined by:

(Def. 19) FreeUnivAlgZAO $(f, D) = \langle TS(DTConUA(f, D)), FreeOpSeqZAO(f, D) \rangle$.

Next we state three propositions:

- (7) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds signature FreeUnivAlgZAO(f, D) = f.
- (8) Let f be a non empty finite sequence of elements of \mathbb{N} with zero and D be a missing \mathbb{N} set. Then FreeUnivAlgZAO(f, D) has constants.
- (9) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds Constants(FreeUnivAlgZAO(f, D)) $\neq \emptyset$.

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeGenSetZAO(f,D) yielding a subset of FreeUnivAlgZAO(f,D) is defined by:

(Def. 20) FreeGenSetZAO(f,D) = {the root tree of *s*; *s* ranges over symbols of DTConUA(f,D): *s* \in the terminals of DTConUA(f,D)}.

Let f be a non empty finite sequence of elements of \mathbb{N} **qua** non empty set with zero and let D be a missing \mathbb{N} set. Then FreeGenSetZAO(f, D) is a generator set of FreeUnivAlgZAO(f, D).

Let *f* be a non empty finite sequence of elements of \mathbb{N} with zero, let *D* be a missing \mathbb{N} set, let *C* be a non empty set, let *s* be a symbol of DTConUA(*f*,*D*), and let *F* be a function from FreeGenSetZAO(*f*,*D*) into *C*. Let us assume that *s* \in the terminals of DTConUA(*f*,*D*). The functor $\pi_s F$ yields an element of *C* and is defined by:

(Def. 21) $\pi_s F = F$ (the root tree of *s*).

We now state the proposition

(10) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds FreeGenSetZAO(f, D) is free.

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. One can check that FreeUnivAlgZAO(f, D) is free.

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. Then FreeGenSetZAO(f,D) is a free generator set of FreeUnivAlgZAO(f,D).

Let us observe that there exists a universal algebra which is strict and free and has constants.

REFERENCES

- [1] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [2] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/trees_3.html.
- [3] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_ 4.html.

- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [5] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/dtconstr.html.
- [6] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Journal of Formalized Mathematics, 5, 1993. http: //mizar.org/JFM/Vol5/unialg_2.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [11] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part I. Journal of Formalized Mathematics, 4, 1992. http: //mizar.org/JFM/Vol4/langl.html.
- [12] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/alg_1.html.
- [13] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialg_1.html.
- [14] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/funcop_1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received October 20, 1993

Published January 2, 2004