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The articles [19], [23], [21], [2], [3], [15], [9], [24], [6], [7], [17], [8], [4], [1], [14], [13], [12], [5],
[10], [16], [22], [11], [20], and [18] provide the notation and terminology for this paper.

1. THE PROPERTIES OFSEQUENCES ANDSUBSEQUENCES

Let T be a non empty 1-sorted structure, letf be a function fromN into N, and letSbe a sequence
of T. ThenS· f is a sequence ofT.

Next we state two propositions:

(1) Let T be a non empty 1-sorted structure,S be a sequence ofT, andN1 be an increasing
sequence of naturals. ThenS·N1 is a sequence ofT.

(2) For every sequenceR1 of real numbers such thatR1 = idN holdsR1 is an increasing se-
quence of naturals.

Let T be a non empty 1-sorted structure and letSbe a sequence ofT. A sequence ofT is called
a subsequence ofS if:

(Def. 1) There exists an increasing sequenceN1 of naturals such that it= S·N1.

The following propositions are true:

(3) For every non empty 1-sorted structureT holds every sequenceSof T is a subsequence of
S.

(4) For every non empty 1-sorted structureT and for every sequenceS of T and for every
subsequenceS1 of Sholds rngS1 ⊆ rngS.

Let T be a non empty 1-sorted structure, letN1 be an increasing sequence of naturals, and letS
be a sequence ofT. ThenS·N1 is a subsequence ofS.

One can prove the following proposition

(5) Let T be a non empty 1-sorted structure,S1 be a sequence ofT, andS2 be a subsequence
of S1. Then every subsequence ofS2 is a subsequence ofS1.

In this article we present several logical schemes. The schemeSubSeqChoicedeals with a non
empty 1-sorted structureA , a sequenceB of A , and a unary predicateP , and states that:
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There exists a subsequenceS1 of B such that for every natural numbern holds
P [S1(n)]

provided the parameters satisfy the following condition:
• For every natural numbern there exists a natural numbermand there exists a pointx

of A such thatn≤m andx = B(m) andP [x].
The schemeSubSeqChoice1deals with a non empty topological structureA , a sequenceB of

A , and a unary predicateP , and states that:
There exists a subsequenceS1 of B such that for every natural numbern holds
P [S1(n)]

provided the parameters meet the following requirement:
• For every natural numbern there exists a natural numbermand there exists a pointx

of A such thatn≤m andx = B(m) andP [x].
We now state several propositions:

(6) Let T be a non empty 1-sorted structure,S be a sequence ofT, andA be a subset ofT.
Suppose that for every subsequenceS1 of S holds rngS1 6⊆ A. Then there exists a natural
numbern such that for every natural numberm such thatn≤m holdsS(m) /∈ A.

(7) LetT be a non empty 1-sorted structure,Sbe a sequence ofT, andA, B be subsets ofT. If
rngS⊆ A∪B, then there exists a subsequenceS1 of Ssuch that rngS1 ⊆ A or rngS1 ⊆ B.

(8) Let T be a non empty topological space. Suppose that for every sequenceSof T and for
all pointsx1, x2 of T such thatx1 ∈ Lim Sandx2 ∈ Lim Sholdsx1 = x2. ThenT is aT1 space.

(9) Let T be a non empty topological space. SupposeT is aT2 space. LetSbe a sequence of
T andx1, x2 be points ofT. If x1 ∈ Lim Sandx2 ∈ Lim S, thenx1 = x2.

(10) LetT be a non empty topological space. SupposeT is first-countable. ThenT is aT2 space
if and only if for every sequenceSof T and for all pointsx1, x2 of T such thatx1 ∈ Lim Sand
x2 ∈ Lim Sholdsx1 = x2.

(11) For every non empty topological structureT and for every sequenceSof T such thatS is
not convergent holds LimS= /0.

(12) Let T be a non empty topological space andA be a subset ofT. If A is closed, then for
every sequenceSof T such that rngS⊆ A holds LimS⊆ A.

(13) LetT be a non empty topological structure,S be a sequence ofT, andx be a point ofT.
SupposeS is not convergent tox. Then there exists a subsequenceS1 of Ssuch that for every
subsequenceS2 of S1 holdsS2 is not convergent tox.

2. THE CONTINUOUS MAPS

Next we state two propositions:

(14) Let T1, T2 be non empty topological spaces andf be a map fromT1 into T2. Supposef
is continuous. LetS1 be a sequence ofT1 andS2 be a sequence ofT2. If S2 = f ·S1, then
f ◦Lim S1 ⊆ Lim S2.

(15) LetT1, T2 be non empty topological spaces andf be a map fromT1 into T2. SupposeT1

is sequential. Thenf is continuous if and only if for every sequenceS1 of T1 and for every
sequenceS2 of T2 such thatS2 = f ·S1 holds f ◦Lim S1 ⊆ Lim S2.

3. THE SEQUENTIAL CLOSUREOPERATOR

Let T be a non empty topological structure and letA be a subset ofT. The functor ClSeqA yields a
subset ofT and is defined by:
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(Def. 2) For every pointx of T holdsx∈ClSeqA iff there exists a sequenceSof T such that rngS⊆A
andx∈ Lim S.

One can prove the following propositions:

(16) LetT be a non empty topological structure,A be a subset ofT, Sbe a sequence ofT, and
x be a point ofT. If rngS⊆ A andx∈ Lim S, thenx∈ A.

(17) For every non empty topological structureT and for every subsetA of T holds ClSeqA⊆A.

(18) LetT be a non empty topological structure,Sbe a sequence ofT, S1 be a subsequence of
S, andx be a point ofT. If S is convergent tox, thenS1 is convergent tox.

(19) LetT be a non empty topological structure,Sbe a sequence ofT, andS1 be a subsequence
of S. Then LimS⊆ Lim S1.

(20) For every non empty topological structureT holds ClSeq( /0T) = /0.

(21) For every non empty topological structureT and for every subsetA of T holdsA⊆ClSeqA.

(22) For every non empty topological structureT and for all subsetsA, B of T holds ClSeqA∪
ClSeqB = ClSeq(A∪B).

(23) For every non empty topological structureT holdsT is Frechet iff for every subsetA of T
holdsA = ClSeqA.

(24) LetT be a non empty topological space. SupposeT is Frechet. LetA, B be subsets ofT.
Then ClSeq( /0T) = /0 andA⊆ClSeqA and ClSeq(A∪B) = ClSeqA∪ClSeqB and ClSeqClSeqA=
ClSeqA.

(25) LetT be a non empty topological space. SupposeT is sequential. If for every subsetA of
T holds ClSeqClSeqA = ClSeqA, thenT is Frechet.

(26) Let T be a non empty topological space. SupposeT is sequential. ThenT is Frechet if
and only if for all subsetsA, B of T holds ClSeq( /0T) = /0 andA⊆ ClSeqA and ClSeq(A∪B) =
ClSeqA∪ClSeqB and ClSeqClSeqA = ClSeqA.

4. THE L IMIT

Let T be a non empty topological space and letSbe a sequence ofT. Let us assume that there exists
a pointx of T such that LimS= {x}. The functor limSyielding a point ofT is defined by:

(Def. 3) S is convergent to limS.

The following propositions are true:

(27) LetT be a non empty topological space. SupposeT is aT2 space. LetSbe a sequence of
T. If S is convergent, then there exists a pointx of T such that LimS= {x}.

(28) LetT be a non empty topological space. SupposeT is aT2 space. LetSbe a sequence of
T andx be a point ofT. ThenS is convergent tox if and only if S is convergent andx = lim S.

(29) For every metric structureM holds every sequence ofM is a sequence ofMtop.

(30) For every non empty metric structureM holds every sequence ofMtop is a sequence ofM.

(31) Let M be a non empty metric space,S be a sequence ofM, x be a point ofM, S′ be a
sequence ofMtop, andx′ be a point ofMtop. SupposeS= S′ andx = x′. ThenS is convergent
to x if and only if S′ is convergent tox′.

(32) LetM be a non empty metric space,S3 be a sequence ofM, andS4 be a sequence ofMtop.
If S3 = S4, thenS3 is convergent iffS4 is convergent.

(33) LetM be a non empty metric space,S3 be a sequence ofM, andS4 be a sequence ofMtop.
If S3 = S4 andS3 is convergent, then limS3 = lim S4.
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5. THE CLUSTER POINTS

Let T be a topological structure, letSbe a sequence ofT, and letx be a point ofT. We say thatx is
a cluster point ofS if and only if the condition (Def. 4) is satisfied.

(Def. 4) LetO be a subset ofT andn be a natural number. SupposeO is open andx∈O. Then there
exists a natural numbermsuch thatn≤mandS(m) ∈O.

One can prove the following propositions:

(34) LetT be a non empty topological structure,Sbe a sequence ofT, andx be a point ofT. If
there exists a subsequence ofSwhich is convergent tox, thenx is a cluster point ofS.

(35) LetT be a non empty topological structure,Sbe a sequence ofT, andx be a point ofT. If
S is convergent tox, thenx is a cluster point ofS.

(36) LetT be a non empty topological structure,S be a sequence ofT, x be a point ofT, and
Y be a subset ofT. If Y = {y;y ranges over points ofT: x ∈ {y}} and rngS⊆ Y, thenS is
convergent tox.

(37) Let T be a non empty topological structure,S be a sequence ofT, andx, y be points of
T. Suppose that for every natural numbern holdsS(n) = y andS is convergent tox. Then
x∈ {y}.

(38) LetT be a non empty topological structure,x be a point ofT, Y be a subset ofT, andSbe
a sequence ofT. SupposeY = {y;y ranges over points ofT: x∈ {y}} and rngSmissesY and
S is convergent tox. Then there exists a subsequence ofSwhich is one-to-one.

(39) LetT be a non empty topological structure andS1, S2 be sequences ofT. Suppose rngS2⊆
rngS1 and S2 is one-to-one. Then there exists a permutationP of N such thatS2 ·P is a
subsequence ofS1.

Now we present two schemes. The schemePermSeqdeals with a non empty 1-sorted structure
A , a sequenceB of A , a permutationC of N, and a unary predicateP , and states that:

There exists a natural numbern such that for every natural numbermsuch thatn≤m
holdsP [(B ·C )(m)]

provided the parameters meet the following requirement:
• There exists a natural numbern such that for every natural numberm and for every

pointx of A if n≤m andx = B(m), thenP [x].
The schemePermSeq2deals with a non empty topological structureA , a sequenceB of A , a

permutationC of N, and a unary predicateP , and states that:
There exists a natural numbern such that for every natural numbermsuch thatn≤m
holdsP [(B ·C )(m)]

provided the parameters satisfy the following condition:
• There exists a natural numbern such that for every natural numberm and for every

pointx of A if n≤m andx = B(m), thenP [x].
One can prove the following propositions:

(40) LetT be a non empty topological structure,Sbe a sequence ofT, P be a permutation ofN,
andx be a point ofT. If S is convergent tox, thenS·P is convergent tox.

(41) Letn0 be a natural number. Then there exists an increasing sequenceN1 of naturals such
that for every natural numbern holdsN1(n) = n+n0.

(42) LetT be a non empty 1-sorted structure,Sbe a sequence ofT, andn0 be a natural number.
Then there exists a subsequenceS1 of Ssuch that for every natural numbern holdsS1(n) =
S(n+n0).

(43) LetT be a non empty topological structure,Sbe a sequence ofT, x be a point ofT, andS1

be a subsequence ofS. Supposex is a cluster point ofSand there exists a natural numbern0

such that for every natural numbern holdsS1(n) = S(n+n0). Thenx is a cluster point ofS1.
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(44) LetT be a non empty topological structure,Sbe a sequence ofT, andx be a point ofT. If
x is a cluster point ofS, thenx∈ rngS.

(45) LetT be a non empty topological structure. SupposeT is Frechet. LetSbe a sequence of
T andx be a point ofT. If x is a cluster point ofS, then there exists a subsequence ofSwhich
is convergent tox.

6. AUXILIARY THEOREMS

We now state several propositions:

(46) Let T be a non empty topological space. SupposeT is first-countable. Letx be a point
of T. Then there exists a basisB of x and there exists a functionSsuch that domS= N and
rngS= B and for all natural numbersn, m such thatm≥ n holdsS(m)⊆ S(n).

(47) For every non empty topological spaceT holdsT is aT1 space iff for every pointp of T
holds{p}= {p}.

(48) For every non empty topological spaceT such thatT is aT2 space holdsT is aT1 space.

(49) Let T be a non empty topological space. SupposeT is not aT1 space. Then there exist
pointsx1, x2 of T and there exists a sequenceSof T such thatS= N 7−→ x1 andx1 6= x2 and
S is convergent tox2.

(50) For every functionf such that domf is infinite andf is one-to-one holds rngf is infinite.

(51) For every non empty finite subsetX of N and for every natural numberx such thatx∈ X
holdsx≤maxX.
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