The Sequential Closure Operator in Sequential and Frechet Spaces

Bartłomiej Skorulski University of Białystok

MML Identifier: FRECHET2.

WWW: http://mizar.org/JFM/Vol11/frechet2.html

The articles [19], [23], [21], [2], [3], [15], [9], [24], [6], [7], [17], [8], [4], [1], [14], [13], [12], [5], [10], [16], [22], [11], [20], and [18] provide the notation and terminology for this paper.

1. THE PROPERTIES OF SEQUENCES AND SUBSEQUENCES

Let T be a non empty 1-sorted structure, let f be a function from \mathbb{N} into \mathbb{N} , and let S be a sequence of T. Then $S \cdot f$ is a sequence of T.

Next we state two propositions:

- (1) Let T be a non empty 1-sorted structure, S be a sequence of T, and N_1 be an increasing sequence of naturals. Then $S \cdot N_1$ is a sequence of T.
- (2) For every sequence R_1 of real numbers such that $R_1 = id_{\mathbb{N}}$ holds R_1 is an increasing sequence of naturals.

Let *T* be a non empty 1-sorted structure and let *S* be a sequence of *T*. A sequence of *T* is called a subsequence of *S* if:

(Def. 1) There exists an increasing sequence N_1 of naturals such that it $= S \cdot N_1$.

The following propositions are true:

- (3) For every non empty 1-sorted structure *T* holds every sequence *S* of *T* is a subsequence of *S*.
- (4) For every non empty 1-sorted structure T and for every sequence S of T and for every subsequence S_1 of S holds rng $S_1 \subseteq \operatorname{rng} S$.

Let T be a non empty 1-sorted structure, let N_1 be an increasing sequence of naturals, and let S be a sequence of T. Then $S \cdot N_1$ is a subsequence of S.

One can prove the following proposition

(5) Let T be a non empty 1-sorted structure, S_1 be a sequence of T, and S_2 be a subsequence of S_1 . Then every subsequence of S_2 is a subsequence of S_1 .

In this article we present several logical schemes. The scheme SubSeqChoice deals with a non empty 1-sorted structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number n holds $\mathcal{P}[S_1(n)]$

provided the parameters satisfy the following condition:

• For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \le m$ and $x = \mathcal{B}(m)$ and $\mathcal{P}[x]$.

The scheme SubSeqChoice1 deals with a non empty topological structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number n holds $\mathcal{P}[S_1(n)]$

provided the parameters meet the following requirement:

• For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \le m$ and $x = \mathcal{B}(m)$ and $\mathcal{P}[x]$.

We now state several propositions:

- (6) Let T be a non empty 1-sorted structure, S be a sequence of T, and A be a subset of T. Suppose that for every subsequence S_1 of S holds $\operatorname{rng} S_1 \not\subseteq A$. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $S(m) \notin A$.
- (7) Let T be a non empty 1-sorted structure, S be a sequence of T, and A, B be subsets of T. If rng $S \subseteq A \cup B$, then there exists a subsequence S_1 of S such that rng $S_1 \subseteq A$ or rng $S_1 \subseteq B$.
- (8) Let T be a non empty topological space. Suppose that for every sequence S of T and for all points x_1, x_2 of T such that $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$ holds $x_1 = x_2$. Then T is a T_1 space.
- (9) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T and x_1, x_2 be points of T. If $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$, then $x_1 = x_2$.
- (10) Let T be a non empty topological space. Suppose T is first-countable. Then T is a T_2 space if and only if for every sequence S of T and for all points x_1, x_2 of T such that $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$ holds $x_1 = x_2$.
- (11) For every non empty topological structure T and for every sequence S of T such that S is not convergent holds $\text{Lim } S = \emptyset$.
- (12) Let T be a non empty topological space and A be a subset of T. If A is closed, then for every sequence S of T such that $\operatorname{rng} S \subseteq A$ holds $\operatorname{Lim} S \subseteq A$.
- (13) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. Suppose S is not convergent to x. Then there exists a subsequence S_1 of S such that for every subsequence S_2 of S_1 holds S_2 is not convergent to x.

2. The Continuous Maps

Next we state two propositions:

- (14) Let T_1 , T_2 be non empty topological spaces and f be a map from T_1 into T_2 . Suppose f is continuous. Let S_1 be a sequence of T_1 and S_2 be a sequence of T_2 . If $S_2 = f \cdot S_1$, then $f^{\circ} \operatorname{Lim} S_1 \subseteq \operatorname{Lim} S_2$.
- (15) Let T_1 , T_2 be non empty topological spaces and f be a map from T_1 into T_2 . Suppose T_1 is sequential. Then f is continuous if and only if for every sequence S_1 of T_1 and for every sequence S_2 of T_2 such that $S_2 = f \cdot S_1$ holds $f^{\circ} \operatorname{Lim} S_1 \subseteq \operatorname{Lim} S_2$.

3. THE SEQUENTIAL CLOSURE OPERATOR

Let T be a non empty topological structure and let A be a subset of T. The functor $Cl_{Seq}A$ yields a subset of T and is defined by:

(Def. 2) For every point x of T holds $x \in \text{Cl}_{\text{Seq}} A$ iff there exists a sequence S of T such that $\text{rng } S \subseteq A$ and $x \in \text{Lim } S$.

One can prove the following propositions:

- (16) Let T be a non empty topological structure, A be a subset of T, S be a sequence of T, and x be a point of T. If rng $S \subseteq A$ and $x \in \text{Lim } S$, then $x \in \overline{A}$.
- (17) For every non empty topological structure T and for every subset A of T holds $\text{Cl}_{\text{Seq}} A \subseteq \overline{A}$.
- (18) Let T be a non empty topological structure, S be a sequence of T, S_1 be a subsequence of S, and x be a point of T. If S is convergent to x, then S_1 is convergent to x.
- (19) Let T be a non empty topological structure, S be a sequence of T, and S_1 be a subsequence of S. Then $\text{Lim } S \subseteq \text{Lim } S_1$.
- (20) For every non empty topological structure T holds $Cl_{Seq}(\theta_T) = \emptyset$.
- (21) For every non empty topological structure T and for every subset A of T holds $A \subseteq \text{Cl}_{\text{Seq}}A$.
- (22) For every non empty topological structure T and for all subsets A, B of T holds $\operatorname{Cl}_{\operatorname{Seq}} A \cup \operatorname{Cl}_{\operatorname{Seq}} B = \operatorname{Cl}_{\operatorname{Seq}} (A \cup B)$.
- (23) For every non empty topological structure T holds T is Frechet iff for every subset A of T holds $\overline{A} = \text{Cl}_{\text{Seq}} A$.
- (24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B be subsets of T. Then $\text{Cl}_{\text{Seq}}(\emptyset_T) = \emptyset$ and $A \subseteq \text{Cl}_{\text{Seq}}A$ and $\text{Cl}_{\text{Seq}}(A \cup B) = \text{Cl}_{\text{Seq}}A \cup \text{Cl}_{\text{Seq}}B$ and $\text{Cl}_{\text{Seq}}A = \text{Cl}_{\text{Seq}}A$.
- (25) Let T be a non empty topological space. Suppose T is sequential. If for every subset A of T holds $\text{Cl}_{\text{Seq}}A = \text{Cl}_{\text{Seq}}A$, then T is Frechet.
- (26) Let T be a non empty topological space. Suppose T is sequential. Then T is Frechet if and only if for all subsets A, B of T holds $\operatorname{Cl}_{\operatorname{Seq}}(\emptyset_T) = \emptyset$ and $A \subseteq \operatorname{Cl}_{\operatorname{Seq}} A$ and $\operatorname{Cl}_{\operatorname{Seq}}(A \cup B) = \operatorname{Cl}_{\operatorname{Seq}} A \cup \operatorname{Cl}_{\operatorname{Seq}} B$ and $\operatorname{Cl}_{\operatorname{Seq}} A = \operatorname{Cl}_{\operatorname{Seq}} A$.

4. The Limit

Let T be a non empty topological space and let S be a sequence of T. Let us assume that there exists a point x of T such that $\text{Lim } S = \{x\}$. The functor lim S yielding a point of T is defined by:

(Def. 3) S is convergent to $\lim S$.

The following propositions are true:

- (27) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T. If S is convergent, then there exists a point x of T such that $\text{Lim } S = \{x\}$.
- (28) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T and x be a point of T. Then S is convergent to x if and only if S is convergent and $x = \lim S$.
- (29) For every metric structure M holds every sequence of M is a sequence of M_{top} .
- (30) For every non empty metric structure M holds every sequence of M_{top} is a sequence of M.
- (31) Let M be a non empty metric space, S be a sequence of M, x be a point of M, S' be a sequence of M_{top} , and x' be a point of M_{top} . Suppose S = S' and x = x'. Then S is convergent to x if and only if S' is convergent to x'.
- (32) Let M be a non empty metric space, S_3 be a sequence of M, and S_4 be a sequence of M_{top} . If $S_3 = S_4$, then S_3 is convergent iff S_4 is convergent.
- (33) Let M be a non empty metric space, S_3 be a sequence of M, and S_4 be a sequence of M_{top} . If $S_3 = S_4$ and S_3 is convergent, then $\lim S_3 = \lim S_4$.

5. The Cluster Points

Let *T* be a topological structure, let *S* be a sequence of *T*, and let *x* be a point of *T*. We say that *x* is a cluster point of *S* if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let O be a subset of T and n be a natural number. Suppose O is open and $x \in O$. Then there exists a natural number m such that $n \le m$ and $S(m) \in O$.

One can prove the following propositions:

- (34) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If there exists a subsequence of S which is convergent to x, then x is a cluster point of S.
- (35) Let *T* be a non empty topological structure, *S* be a sequence of *T*, and *x* be a point of *T*. If *S* is convergent to *x*, then *x* is a cluster point of *S*.
- (36) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and Y be a subset of T. If $Y = \{y; y \text{ ranges over points of } T : x \in \overline{\{y\}}\}$ and $\operatorname{rng} S \subseteq Y$, then S is convergent to x.
- (37) Let T be a non empty topological structure, S be a sequence of T, and x, y be points of T. Suppose that for every natural number n holds S(n) = y and S is convergent to x. Then $x \in \{y\}$.
- (38) Let T be a non empty topological structure, x be a point of T, Y be a subset of T, and S be a sequence of T. Suppose $Y = \{y; y \text{ ranges over points of } T : x \in \{y\}\}$ and rng S misses Y and S is convergent to x. Then there exists a subsequence of S which is one-to-one.
- (39) Let T be a non empty topological structure and S_1 , S_2 be sequences of T. Suppose $\operatorname{rng} S_2 \subseteq \operatorname{rng} S_1$ and S_2 is one-to-one. Then there exists a permutation P of $\mathbb N$ such that $S_2 \cdot P$ is a subsequence of S_1 .

Now we present two schemes. The scheme *PermSeq* deals with a non empty 1-sorted structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , a permutation \mathcal{C} of \mathbb{N} , and a unary predicate \mathcal{P} , and states that:

There exists a natural number n such that for every natural number m such that $n \le m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$

provided the parameters meet the following requirement:

• There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \le m$ and $x = \mathcal{B}(m)$, then $\mathcal{P}[x]$.

The scheme PermSeq2 deals with a non empty topological structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , a permutation \mathcal{C} of \mathbb{N} , and a unary predicate \mathcal{P} , and states that:

There exists a natural number n such that for every natural number m such that $n \le m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$

provided the parameters satisfy the following condition:

• There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \le m$ and $x = \mathcal{B}(m)$, then $\mathcal{P}[x]$.

One can prove the following propositions:

- (40) Let T be a non empty topological structure, S be a sequence of T, P be a permutation of \mathbb{N} , and x be a point of T. If S is convergent to x, then $S \cdot P$ is convergent to x.
- (41) Let n_0 be a natural number. Then there exists an increasing sequence N_1 of naturals such that for every natural number n holds $N_1(n) = n + n_0$.
- (42) Let T be a non empty 1-sorted structure, S be a sequence of T, and n_0 be a natural number. Then there exists a subsequence S_1 of S such that for every natural number n holds $S_1(n) = S(n+n_0)$.
- (43) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and S_1 be a subsequence of S. Suppose x is a cluster point of S and there exists a natural number n_0 such that for every natural number n holds $S_1(n) = S(n+n_0)$. Then x is a cluster point of S_1 .

- (44) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If x is a cluster point of S, then $x \in \overline{\operatorname{rng} S}$.
- (45) Let *T* be a non empty topological structure. Suppose *T* is Frechet. Let *S* be a sequence of *T* and *x* be a point of *T*. If *x* is a cluster point of *S*, then there exists a subsequence of *S* which is convergent to *x*.

6. AUXILIARY THEOREMS

We now state several propositions:

- (46) Let T be a non empty topological space. Suppose T is first-countable. Let x be a point of T. Then there exists a basis B of x and there exists a function S such that dom $S = \mathbb{N}$ and rng S = B and for all natural numbers n, m such that $m \ge n$ holds $S(m) \subseteq S(n)$.
- (47) For every non empty topological space T holds T is a T_1 space iff for every point p of T holds $\overline{\{p\}} = \{p\}$.
- (48) For every non empty topological space T such that T is a T_2 space holds T is a T_1 space.
- (49) Let T be a non empty topological space. Suppose T is not a T_1 space. Then there exist points x_1, x_2 of T and there exists a sequence S of T such that $S = \mathbb{N} \longmapsto x_1$ and $x_1 \neq x_2$ and S is convergent to x_2 .
- (50) For every function f such that dom f is infinite and f is one-to-one holds rng f is infinite.
- (51) For every non empty finite subset X of \mathbb{N} and for every natural number x such that $x \in X$ holds $x \le \max X$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. *Journal of Formalized Mathematics*, 7, 1995. http://mizar.org/JFM/Vol7/urysohn1.html.
- [5] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/compts_1.html.
- $[9] \quad Agata \ Darmochwał. \ Finite \ sets. \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Voll/finset_l.html}.$
- [10] Alicia de la Cruz. Totally bounded metric spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/tbsp_ 1.html.
- [11] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/metric_6.html.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [13] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/seqm_3.html.
- [14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [15] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.

- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [18] Bartlomiej Skorulski. First-countable, sequential, and Frechet spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/frechet.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/yellow_8.html.
- [21] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [22] Wojciech A. Trybulec. Binary operations on finite sequences. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finsop_1.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received February 13, 1999

Published January 2, 2004