First-countable, Sequential, and Frechet Spaces

Bartłomiej Skorulski University of Białystok

Summary. This article contains a definition of three classes of topological spaces: first-countable, Frechet, and sequential. Next there are some facts about them, that every first-countable space is Frechet and every Frechet space is sequential. Next section contains a formalized construction of topological space which is Frechet but not first-countable. This article is based on [10, pp. 73–81].

MML Identifier: FRECHET.

WWW: http://mizar.org/JFM/Vol10/frechet.html

The articles [18], [21], [20], [11], [1], [13], [22], [5], [6], [17], [2], [3], [7], [16], [14], [8], [12], [4], [9], [15], and [19] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition

(1) For every non empty 1-sorted structure T and for every sequence S of T holds rng S is a subset of T.

Let T be a non empty 1-sorted structure and let S be a sequence of T. Then rng S is a subset of T.

The following two propositions are true:

- (2) Let T_1 be a non empty 1-sorted structure, T_2 be a 1-sorted structure, and S be a sequence of T_1 . If rng $S \subseteq$ the carrier of T_2 , then S is a sequence of T_2 .
- (3) For every non empty topological space T and for every point x of T and for every basis B of x holds $B \neq \emptyset$.

Let T be a non empty topological space and let x be a point of T. Note that every basis of x is non empty.

One can prove the following propositions:

- (4) For every topological space T and for all subsets A, B of T such that A is open and B is closed holds $A \setminus B$ is open.
- (5) Let T be a topological structure. Suppose that
- (i) \emptyset_T is closed,
- (ii) Ω_T is closed,
- (iii) for all subsets A, B of T such that A is closed and B is closed holds $A \cup B$ is closed, and
- (iv) for every family F of subsets of T such that F is closed holds $\bigcap F$ is closed.

Then *T* is a topological space.

- (6) Let T be a topological space, S be a non empty topological structure, and f be a map from T into S. Suppose that for every subset A of S holds A is closed iff $f^{-1}(A)$ is closed. Then S is a topological space.
- (7) Let x be a point of the metric space of real numbers and x', r be real numbers. If x' = x and r > 0, then Ball(x, r) = |x' r, x' + r|.
- (8) Let *A* be a subset of \mathbb{R}^1 . Then *A* is open if and only if for every real number *x* such that $x \in A$ there exists a real number *r* such that r > 0 and $|x r, x + r| \subseteq A$.
- (9) For every sequence S of \mathbb{R}^1 such that for every natural number n holds $S(n) \in]n \frac{1}{4}, n + \frac{1}{4}[$ holds rng S is closed.
- (10) For every subset *B* of \mathbb{R}^1 such that $B = \mathbb{N}$ holds *B* is closed.
- (11) Let M be a non empty metric space, x be a point of M_{top} , and x' be a point of M. Suppose x = x'. Then there exists a basis B of x such that
 - (i) $B = \{ \text{Ball}(x', \frac{1}{n}); n \text{ ranges over natural numbers: } n \neq 0 \},$
- (ii) B is countable, and
- (iii) there exists a function f from \mathbb{N} into B such that for every set n such that $n \in \mathbb{N}$ there exists a natural number n' such that n = n' and $f(n) = \text{Ball}(x', \frac{1}{n'+1})$.
- (12) For all functions f, g holds $\operatorname{rng}(f+\cdot g)=f^{\circ}(\operatorname{dom} f\setminus \operatorname{dom} g)\cup \operatorname{rng} g$.
- (13) For all sets A, B such that $B \subseteq A$ holds $(id_A)^{\circ} B = B$.
- $(15)^1$ For all sets A, B, x holds $dom(id_A + (B \mapsto x)) = A \cup B$.
- (16) For all sets A, B, x such that $B \neq \emptyset$ holds $\operatorname{rng}(\operatorname{id}_A + \cdot (B \longmapsto x)) = (A \setminus B) \cup \{x\}$.
- (17) For all sets A, B, C, x such that $C \subseteq A$ holds $(id_A + (B \longmapsto x))^{-1}(C \setminus \{x\}) = C \setminus B \setminus \{x\}$.
- (18) For all sets A, B, x such that $x \notin A$ holds $(id_A + (B \longmapsto x))^{-1}(\{x\}) = B$.
- (19) For all sets A, B, C, x such that $C \subseteq A$ and $x \notin A$ holds $(id_A + (B \longmapsto x))^{-1}(C \cup \{x\}) = C \cup B$.
- (20) For all sets A, B, C, x such that $C \subseteq A$ and $x \notin A$ holds $(id_A + (B \longmapsto x))^{-1}(C \setminus \{x\}) = C \setminus B$.
 - 2. FIRST-COUNTABLE, SEQUENTIAL, AND FRECHET SPACES

Let *T* be a non empty topological structure. We say that *T* is first-countable if and only if:

(Def. 1) For every point x of T holds there exists a basis of x which is countable.

The following two propositions are true:

- (21) For every non empty metric space M holds M_{top} is first-countable.
- (22) \mathbb{R}^1 is first-countable.

Let us observe that \mathbb{R}^1 is first-countable.

Let T be a topological structure, let S be a sequence of T, and let x be a point of T. We say that S is convergent to x if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let U_1 be a subset of T. Suppose U_1 is open and $x \in U_1$. Then there exists a natural number n such that for every natural number m such that $n \le m$ holds $S(m) \in U_1$.

The following proposition is true

(23) Let T be a non empty topological structure, x be a point of T, and S be a sequence of T. If $S = \mathbb{N} \longmapsto x$, then S is convergent to x.

¹ The proposition (14) has been removed.

Let *T* be a topological structure and let *S* be a sequence of *T*. We say that *S* is convergent if and only if:

(Def. 3) There exists a point x of T such that S is convergent to x.

Let T be a non empty topological structure and let S be a sequence of T. The functor Lim S yielding a subset of T is defined as follows:

(Def. 4) For every point x of T holds $x \in \text{Lim } S$ iff S is convergent to x.

Let *T* be a non empty topological structure. We say that *T* is Frechet if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let A be a subset of T and x be a point of T. If $x \in \overline{A}$, then there exists a sequence S of T such that rng $S \subseteq A$ and $x \in \text{Lim } S$.

Let T be a non empty topological structure. We say that T is sequential if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let A be a subset of T. Then A is closed if and only if for every sequence S of T such that S is convergent and $\operatorname{rng} S \subseteq A$ holds $\operatorname{Lim} S \subseteq A$.

Next we state the proposition

(24) For every non empty topological space T such that T is first-countable holds T is Frechet.

Let us observe that every non empty topological space which is first-countable is also Frechet. The following propositions are true:

- $(26)^2$ Let T be a non empty topological space and A be a subset of T. Suppose A is closed. Let S be a sequence of T. If S is convergent and rng $S \subseteq A$, then $\text{Lim } S \subseteq A$.
- (27) Let T be a non empty topological space. Suppose that for every subset A of T such that for every sequence S of T such that S is convergent and $\operatorname{rng} S \subseteq A$ holds $\operatorname{Lim} S \subseteq A$ holds A is closed. Then T is sequential.
- (28) For every non empty topological space T such that T is Frechet holds T is sequential.

Let us note that every non empty topological space which is Frechet is also sequential.

3. Counterexample of Frechet but Not First-countable Space

The strict non empty topological space $\mathbb{R}^1_{/\mathbb{N}}$ is defined by the conditions (Def. 7).

- (Def. 7)(i) The carrier of $\mathbb{R}^1_{/\mathbb{N}} = (\mathbb{R} \setminus \mathbb{N}) \cup \{\mathbb{R}\}$, and
 - (ii) there exists a map f from \mathbb{R}^1 into $\mathbb{R}^1_{/\mathbb{N}}$ such that $f = \mathrm{id}_{\mathbb{R}} + \cdot (\mathbb{N} \longmapsto \mathbb{R})$ and for every subset A of $\mathbb{R}^1_{/\mathbb{N}}$ holds A is closed iff $f^{-1}(A)$ is closed.

The following propositions are true:

- $(30)^3$ \mathbb{R} is a point of $\mathbb{R}^1_{/\mathbb{N}}$.
- (31) Let A be a subset of $\mathbb{R}^1_{/\mathbb{N}}$. Then A is open and $\mathbb{R} \in A$ if and only if there exists a subset O of \mathbb{R}^1 such that O is open and $\mathbb{N} \subseteq O$ and $A = (O \setminus \mathbb{N}) \cup \{\mathbb{R}\}$.
- (32) For every set A holds A is a subset of $\mathbb{R}^1_{/\mathbb{N}}$ and $\mathbb{R} \notin A$ iff A is a subset of \mathbb{R}^1 and $\mathbb{N} \cap A = \emptyset$.

² The proposition (25) has been removed.

³ The proposition (29) has been removed.

- (33) Let A be a subset of \mathbb{R}^1 and B be a subset of \mathbb{R}^1/\mathbb{N} . If A = B, then $\mathbb{N} \cap A = \emptyset$ and A is open iff $\mathbb{R} \notin B$ and B is open.
- (34) For every subset A of $\mathbb{R}^1_{/\mathbb{N}}$ such that $A = \{\mathbb{R}\}$ holds A is closed.
- (35) $\mathbb{R}^1_{/\mathbb{N}}$ is not first-countable.
- (36) $\mathbb{R}^1_{/\mathbb{N}}$ is Frechet.
- (37) It is not true that for every non empty topological space *T* such that *T* is Frechet holds *T* is first-countable.

4. AUXILIARY THEOREMS

One can prove the following proposition

(40)⁴ For every real number r such that r > 0 there exists a natural number n such that $\frac{1}{n} < r$ and $n \neq 0$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/card_4.html.
- [4] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [9] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [10] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [13] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- $[15] \begin{tabular}{ll} Ian Popiolek. Real normed space. {\it Journal of Formalized Mathematics}, 2, 1990. \verb| http://mizar.org/JFM/Vol2/normsp_1.html. | the properties of th$
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [17] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

⁴ The propositions (38) and (39) have been removed.

- [19] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/yellow_8.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[21] \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. $http://mizar.org/JFM/Voll/relat_1.html$.

Received May 13, 1998

Published January 2, 2004