Function Domains and Frænkel Operator

Andrzej Trybulec Warsaw University Białystok

Summary. We deal with a non-empty set of functions and a non-empty set of functions from a set *A* to a non-empty set *B*. In the case when *B* is a non-empty set, B^A is redefined. It yields a non-empty set of functions from *A* to *B*. An element of such a set is redefined as a function from *A* to *B*. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.

MML Identifier: FRAENKEL.

WWW: http://mizar.org/JFM/Vol2/fraenkel.html

The articles [6], [3], [8], [9], [4], [7], [1], [2], and [5] provide the notation and terminology for this paper.

In this paper *B* is a non empty set and *A*, *C*, *X* are sets.

In this article we present several logical schemes. The scheme *Fraenkel5*' deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two unary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(v'); v' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v']\} \subseteq \{\mathcal{F}(u'); u' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v']\} \subseteq \{\mathcal{F}(u'); u' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v']\} \subseteq \{\mathcal{F}(u'); u' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v']\} \subseteq \{\mathcal{F}(u'); u' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v']\} \subseteq \{\mathcal{F}(u'); u' \text{ ranges over elements of } \mathcal{F}(v')\}$

 $\mathcal{A}: Q[u']\}$

provided the following condition is satisfied:

• For every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds Q[v].

The scheme *Fraenkel5*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(u_1, v_1); u_1 \text{ ranges over elements of } \mathcal{A}, v_1 \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[u_1, v_1]\} \subseteq$

 $\{\mathcal{F}(u_2, v_2); u_2 \text{ ranges over elements of } \mathcal{A}, v_2 \text{ ranges over elements of } \mathcal{B}: Q[u_2, v_2]\}$ provided the parameters meet the following requirement:

• For every element u of \mathcal{A} and for every element v of \mathcal{B} such that $\mathcal{P}[u, v]$ holds Q[u, v]. The scheme *Fraenkel6*' deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two unary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(v_1); v_1 \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v_1]\} = \{\mathcal{F}(v_2); v_2 \text{ ranges over elements of } \mathcal{A} : \mathcal{Q}[v_2]\}$

provided the following condition is satisfied:

• For every element v of \mathcal{A} holds $\mathcal{P}[v]$ iff Q[v].

The scheme *Fraenkel6*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(u_1, v_1); u_1 \text{ ranges over elements of } \mathcal{A}, v_1 \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[u_1, v_1]\} =$

{ $\mathcal{F}(u_2, v_2)$; u_2 ranges over elements of \mathcal{A}, v_2 ranges over elements of \mathcal{B} : $Q[u_2, v_2]$ } provided the following condition is met:

• For every element *u* of \mathcal{A} and for every element *v* of \mathcal{B} holds $\mathcal{P}[u, v]$ iff Q[u, v].

The scheme *FraenkelF*' deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(v_1); v_1 \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v_1]\} = \{\mathcal{G}(v_2); v_2 \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v_2]\}$

provided the parameters have the following property:

• For every element *v* of \mathcal{A} holds $\mathcal{F}(v) = \mathcal{G}(v)$.

The scheme *FraenkelF'R* deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(v_1); v_1 \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v_1]\} = \{\mathcal{G}(v_2); v_2 \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v_2]\}$

provided the following condition is met:

• For every element *v* of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{F}(v) = \mathcal{G}(v)$.

The scheme *FraenkelF*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(u_1, v_1); u_1 \text{ ranges over elements of } \mathcal{A}, v_1 \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[u_1, v_1]\} =$

{ $\mathcal{G}(u_2, v_2)$; u_2 ranges over elements of \mathcal{A}, v_2 ranges over elements of $\mathcal{B} : \mathcal{P}[u_2, v_2]$ } provided the following condition is satisfied:

• For every element *u* of \mathcal{A} and for every element *v* of \mathcal{B} holds $\mathcal{F}(u, v) = \mathcal{G}(u, v)$.

The scheme *FraenkelF6*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(u_1, v_1); u_1 \text{ ranges over elements of } \mathcal{A}, v_1 \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[u_1, v_1]\} =$

 $\{\mathcal{F}(v_2, u_2); u_2 \text{ ranges over elements of } \mathcal{A}, v_2 \text{ ranges over elements of } \mathcal{B}: Q[u_2, v_2]\}$ provided the parameters have the following properties:

• For every element u of A and for every element v of B holds $\mathcal{P}[u, v]$ iff Q[u, v], and

• For every element *u* of \mathcal{A} and for every element *v* of \mathcal{B} holds $\mathcal{F}(u, v) = \mathcal{F}(v, u)$. The following propositions are true:

- (3)¹ Let *A*, *B* be non empty sets, *F*, *G* be functions from *A* into *B*, and *X* be a set. If F | X = G | X, then for every element *x* of *A* such that $x \in X$ holds F(x) = G(x).
- (5)² For all sets A, B holds $B^A \subseteq 2^{[:A,B:]}$.
- (6) For all sets X, Y such that $Y^X \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ holds every element of Y^X is a partial function from A to B.

Now we present a number of schemes. The scheme *RelevantArgs* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a set \mathcal{C} , a function \mathcal{D} from \mathcal{A} into \mathcal{B} , a function \mathcal{E} from \mathcal{A} into \mathcal{B} , and two unary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{D}(u'); u' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[u'] \land u' \in \mathcal{C}\} = \{\mathcal{E}(v'); v' \text{ ranges over elements of } \mathcal{A} : \mathcal{Q}[v'] \land v' \in \mathcal{C}\}$

provided the parameters meet the following requirements:

- $\mathcal{D} \upharpoonright \mathcal{C} = \mathcal{E} \upharpoonright \mathcal{C}$, and
- For every element *u* of \mathcal{A} such that $u \in \mathcal{C}$ holds $\mathcal{P}[u]$ iff Q[u].

The scheme *Fr Set0* deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P} , and states that: $\{x; x \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[x]\} \subseteq \mathcal{A}$

for all values of the parameters.

The scheme *Gen1* " deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate \mathcal{P} , and states that:

For every element *s* of \mathcal{A} and for every element *t* of \mathcal{B} such that $\mathcal{P}[s,t]$ holds $\mathcal{Q}[\mathcal{F}(s,t)]$ provided the parameters satisfy the following condition:

For every set s₁ such that s₁ ∈ {𝓕(s₂,t₁); s₂ ranges over elements of 𝔅,t₁ ranges over elements of 𝔅 : 𝒫[s₂,t₁]} holds 𝓿[s₁].

The scheme *Gen1*"A deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate \mathcal{P} , and states that:

¹ The propositions (1) and (2) have been removed.

² The proposition (4) has been removed.

For every set s_1 such that $s_1 \in \{\mathcal{F}(s_2, t_1); s_2 \text{ ranges over elements of } \mathcal{A}, t_1 \text{ ranges over elements of } \mathcal{B} : \mathcal{P}[s_2, t_1] \}$ holds $Q[s_1]$

provided the following condition is met:

• For every element *s* of \mathcal{A} and for every element *t* of \mathcal{B} such that $\mathcal{P}[s,t]$ holds $Q[\mathcal{F}(s,t)]$.

The scheme *Gen2*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a non empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a unary predicate Q, and a binary predicate \mathcal{P} , and states that:

 $\{s_1; s_1 \text{ ranges over elements of } \mathcal{C} : s_1 \in \{\mathcal{F}(s_2, t_1); s_2 \text{ ranges over elements of } \mathcal{A}, t_1 \text{ ranges over elements of } \mathcal{B} : \mathcal{P}[s_2, t_1]\} \land Q[s_1]\} = \{\mathcal{F}(s_3, t_2); s_3 \text{ ranges over elements } \mathcal{P}(s_3, t_3); s_3 \text{ rang$

of \mathcal{A}, t_2 ranges over elements of $\mathcal{B}: \mathcal{P}[s_3, t_2] \land \mathcal{Q}[\mathcal{F}(s_3, t_2)]$

for all values of the parameters.

The scheme *Gen3*' deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two unary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(s); s \text{ ranges over elements of } \mathcal{A} : s \in \{s_2; s_2 \text{ ranges over elements of } \mathcal{A} : Q[s_2]\} \land$

 $\mathcal{P}[s]\} = \{\mathcal{F}(s_3); s_3 \text{ ranges over elements of } \mathcal{A} : Q[s_3] \land \mathcal{P}[s_3]\}$

for all values of the parameters.

The scheme *Gen3* " deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(s,t); s \text{ ranges over elements of } \mathcal{A}, t \text{ ranges over elements of } \mathcal{B} : s \in \{s_2; s_2 \text{ ranges over elements of } \mathcal{A} : Q[s_2]\} \land \mathcal{P}[s,t]\} = \{\mathcal{F}(s_3,t_2); s_3 \text{ ranges over elements of } \mathcal{A}, t_2 \text{ ranges over elements of } \mathcal{B} : Q[s_3] \land \mathcal{P}[s_3,t_2]\}$

for all values of the parameters.

The scheme *Gen4*" deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P} , Q, and states that:

{ $\mathcal{F}(s,t)$; *s* ranges over elements of \mathcal{A}, t ranges over elements of $\mathcal{B}: \mathcal{P}[s,t]$ } \subseteq { $\mathcal{F}(s_2,t_1); s_2$ ranges over elements of \mathcal{A}, t_1 ranges over elements of $\mathcal{B}: Q[s_2,t_1]$ }

provided the parameters meet the following condition:

• Let *s* be an element of \mathcal{A} and *t* be an element of \mathcal{B} . If $\mathcal{P}[s,t]$, then there exists an element *s'* of \mathcal{A} such that Q[s',t] and $\mathcal{F}(s,t) = \mathcal{F}(s',t)$.

The scheme *FrSet 1* deals with a non empty set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(y); y \text{ ranges over elements of } \mathcal{A} : \mathcal{F}(y) \in \mathcal{B} \land \mathcal{P}[y]\} \subseteq \mathcal{B}$

for all values of the parameters.

The scheme *FrSet 2* deals with a non empty set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(y); y \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[y] \land \mathcal{F}(y) \notin \mathcal{B}\} \text{ misses } \mathcal{B}$

for all values of the parameters.

The scheme *FrEqual* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, an element \mathcal{C} of \mathcal{B} , and two binary predicates \mathcal{P} , Q, and states that:

 $\{\mathcal{F}(s,t); s \text{ ranges over elements of } \mathcal{A}, t \text{ ranges over elements of } \mathcal{B}: Q[s,t]\} = \{\mathcal{F}(s', C); s' \text{ ranges over elements of } \mathcal{A}: \mathcal{P}[s', C]\}$

provided the following condition is satisfied:

• For every element s of \mathcal{A} and for every element t of \mathcal{B} holds Q[s,t] iff t = C and $\mathcal{P}[s,t]$.

The scheme *FrEqua2* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding a set, an element \mathcal{C} of \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(s,t); s \text{ ranges over elements of } \mathcal{A}, t \text{ ranges over elements of } \mathcal{B}: t = \mathcal{C} \land \mathcal{P}[s,t]\} =$

 $\{\mathcal{F}(s', \mathcal{C}); s' \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[s', \mathcal{C}]\}$

for all values of the parameters.

Let I_1 be a set. We say that I_1 is functional if and only if:

(Def. 1) For every set *x* such that $x \in I_1$ holds *x* is a function.

One can verify that there exists a set which is non empty and functional. Let P be a functional set. Observe that every element of P is function-like and relation-like. The following proposition is true (8)³ For every function f holds $\{f\}$ is functional.

Let A, B be sets. Observe that B^A is functional.

Let *A*, *B* be sets. A functional non empty set is said to be a non empty set of functions from *A* to *B* if:

(Def. 2) Every element of it is a function from A into B.

We now state two propositions:

- (10)⁴ For every function f from A into C holds $\{f\}$ is a non empty set of functions from A to C.
- (11) B^A is a non empty set of functions from A to B.

Let A be a set and let B be a non empty set. Then B^A is a non empty set of functions from A to B. Let F be a non empty set of functions from A to B. We see that the element of F is a function from A into B.

In the sequel p_1 is an element of B^A . We now state two propositions:

- (14)⁵ Let *X*, *Y* be sets. Suppose $Y^X \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$. Let *f* be an element of Y^X . Then there exists an element p_1 of B^A such that $p_1 | X = f$.
- (15) For every set *X* and for every p_1 holds $p_1 \upharpoonright X = p_1 \upharpoonright (A \cap X)$.

Now we present four schemes. The scheme *FraenkelFin* deals with a non empty set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} yielding a set, and states that:

 $\{\mathcal{F}(w); w \text{ ranges over elements of } \mathcal{A} : w \in \mathcal{B}\}$ is finite

provided the parameters meet the following requirement:

• \mathcal{B} is finite.

The scheme *CartFin* deals with non empty sets \mathcal{A} , \mathcal{B} , sets \mathcal{C} , \mathcal{D} , and a binary functor \mathcal{F} yielding a set, and states that:

 $\{\mathcal{F}(u',v'); u' \text{ ranges over elements of } \mathcal{A}, v' \text{ ranges over elements of } \mathcal{B}: u' \in \mathcal{C} \land v' \in \mathcal{D}\}$ is finite

provided the parameters meet the following requirements:

- C is finite, and
- \mathcal{D} is finite.

The scheme *Finiteness* deals with a non empty set \mathcal{A} , an element \mathcal{B} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

Let *x* be an element of \mathcal{A} . Suppose $x \in \mathcal{B}$. Then there exists an element *y* of \mathcal{A} such that $y \in \mathcal{B}$ and $\mathcal{P}[y,x]$ and for every element *z* of \mathcal{A} such that $z \in \mathcal{B}$ and $\mathcal{P}[z,y]$ holds $\mathcal{P}[y,z]$

provided the following conditions are satisfied:

• For every element x of \mathcal{A} holds $\mathcal{P}[x, x]$, and

• For all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

The scheme *Fin Im* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists an element c_1 of Fin \mathcal{A} such that for every element t of \mathcal{A} holds $t \in c_1$ if

and only if there exists an element t' of \mathcal{B} such that $t' \in \mathcal{C}$ and $t = \mathcal{F}(t')$ and $\mathcal{P}[t,t']$

for all values of the parameters.

The following proposition is true

(16) For all sets A, B such that A is finite and B is finite holds B^A is finite.

³ The proposition (7) has been removed.

⁴ The proposition (9) has been removed.

⁵ The propositions (12) and (13) have been removed.

Now we present three schemes. The scheme *ImFin* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a set \mathcal{C} , a set \mathcal{D} , and a unary functor \mathcal{F} yielding a set, and states that:

 $\{\mathcal{F}(p'_1); p'_1 \text{ ranges over elements of } \mathcal{B}^{\mathcal{A}}: p'_1 \circ \mathcal{C} \subseteq \mathcal{D}\}$ is finite

provided the parameters meet the following conditions:

- C is finite,
- \mathcal{D} is finite, and

• For all elements p_1 , p_2 of $\mathcal{B}^{\mathcal{A}}$ such that $p_1 \upharpoonright \mathcal{C} = p_2 \upharpoonright \mathcal{C}$ holds $\mathcal{F}(p_1) = \mathcal{F}(p_2)$.

The scheme *FunctChoice* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists a function f_1 from \mathcal{A} into \mathcal{B} such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, f_1(t)]$

provided the following requirement is met:

• For every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element f_1 of \mathcal{B} such that $\mathcal{P}[t, f_1]$.

The scheme *FuncsChoice* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists an element f_1 of $\mathcal{B}^{\mathcal{A}}$ such that for every element t of \mathcal{A} such that $t \in C$ holds $\mathcal{P}[t, f_1(t)]$

provided the parameters meet the following requirement:

• For every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element f_1 of \mathcal{B} such that $\mathcal{P}[t, f_1]$.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [4] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [5] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/setwiseo.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/finsub_1.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received February 7, 1990

Published January 2, 2004