Function Domains and Frænkel Operator

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We deal with a non-empty set of functions and a non-empty set of functions from a set A to a non-empty set B. In the case when B is a non-empty set, B^{A} is redefined. It yields a non-empty set of functions from A to B. An element of such a set is redefined as a function from A to B. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.

MML Identifier: FRAENKEL.
WWW:http://mizar.org/JFM/Vol2/fraenkel.html

The articles [6], [3], [8], [9], [4], [7], [1], [2], and [5] provide the notation and terminology for this paper.

In this paper B is a non empty set and A, C, X are sets.
In this article we present several logical schemes. The scheme Fraenkel5' deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, and two unary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{F}\left(v^{\prime}\right) ; v^{\prime}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v^{\prime}\right]\right\} \subseteq\left\{\mathcal{F}\left(u^{\prime}\right) ; u^{\prime}\right.$ ranges over elements of $\left.\mathcal{A}: Q\left[u^{\prime}\right]\right\}$
provided the following condition is satisfied:

- For every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $Q[v]$.

The scheme Fraenkel5" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right) ; u_{1}\right.$ ranges over elements of \mathcal{A}, v_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[u_{1}, v_{1}\right]\right\} \subseteq$
$\left\{\mathcal{F}\left(u_{2}, v_{2}\right) ; u_{2}\right.$ ranges over elements of \mathcal{A}, v_{2} ranges over elements of $\left.\mathcal{B}: Q\left[u_{2}, v_{2}\right]\right\}$ provided the parameters meet the following requirement:

- For every element u of \mathcal{A} and for every element v of \mathcal{B} such that $\mathcal{P}[u, v]$ holds $Q[u, v]$.

The scheme Fraenkel6' deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, and two unary predicates P, Q, and states that:
$\left\{\mathcal{F}\left(v_{1}\right) ; v_{1}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}\right) ; v_{2}\right.$ ranges over elements of $\left.\mathcal{A}: Q\left[v_{2}\right]\right\}$
provided the following condition is satisfied:

- For every element v of \mathcal{A} holds $\mathcal{P}[v]$ iff $Q[v]$.

The scheme Fraenkel6" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right) ; u_{1}\right.$ ranges over elements of \mathcal{A}, v_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=$
$\left\{\mathcal{F}\left(u_{2}, v_{2}\right) ; u_{2}\right.$ ranges over elements of \mathcal{A}, v_{2} ranges over elements of $\left.\mathcal{B}: Q\left[u_{2}, v_{2}\right]\right\}$
provided the following condition is met:

- For every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ iff $Q[u, v]$.

The scheme FraenkelF' deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right) ; v_{1}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right) ; v_{2}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v_{2}\right]\right\}$
provided the parameters have the following property:

- For every element v of \mathcal{A} holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF' R deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right) ; v_{1}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right) ; v_{2}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[v_{2}\right]\right\}$
provided the following condition is met:

- For every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right) ; u_{1}\right.$ ranges over elements of \mathcal{A}, v_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=$
$\left\{\mathcal{G}\left(u_{2}, v_{2}\right) ; u_{2}\right.$ ranges over elements of \mathcal{A}, v_{2} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[u_{2}, v_{2}\right]\right\}$
provided the following condition is satisfied:

- For every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=\mathcal{G}(u, v)$.

The scheme FraenkelF6" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right) ; u_{1}\right.$ ranges over elements of \mathcal{A}, v_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=$
$\left\{\mathcal{F}\left(v_{2}, u_{2}\right) ; u_{2}\right.$ ranges over elements of \mathcal{A}, v_{2} ranges over elements of $\left.\mathcal{B}: Q\left[u_{2}, v_{2}\right]\right\}$
provided the parameters have the following properties:

- For every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ iff $Q[u, v]$, and
- For every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=\mathcal{F}(v, u)$.

The following propositions are true:
(3 $\left.\right|^{\mid}$Let A, B be non empty sets, F, G be functions from A into B, and X be a set. If $F \upharpoonright X=G \upharpoonright X$, then for every element x of A such that $x \in X$ holds $F(x)=G(x)$.
$(5)^{2}$ For all sets A, B holds $B^{A} \subseteq 2^{[A, B:]}$.
(6) For all sets X, Y such that $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ holds every element of Y^{X} is a partial function from A to B.

Now we present a number of schemes. The scheme RelevantArgs deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a set \mathcal{C}, a function \mathcal{D} from \mathcal{A} into \mathcal{B}, a function \mathcal{E} from \mathcal{A} into \mathcal{B}, and two unary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{D}\left(u^{\prime}\right) ; u^{\prime}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[u^{\prime}\right] \wedge u^{\prime} \in \mathcal{C}\right\}=\left\{\mathcal{E}\left(v^{\prime}\right) ; v^{\prime}\right.$ ranges over
elements of $\left.\mathcal{A}: Q\left[v^{\prime}\right] \wedge v^{\prime} \in \mathcal{C}\right\}$
provided the parameters meet the following requirements:

- $\mathcal{D} \upharpoonright \mathcal{C}=\mathcal{E} \upharpoonright \mathcal{C}$, and
- For every element u of \mathcal{A} such that $u \in \mathcal{C}$ holds $\mathcal{P}[u]$ iff $Q[u]$.

The scheme $F r \operatorname{Set} 0$ deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P}, and states that:
$\{x ; x$ ranges over elements of $\mathcal{A}: \mathcal{P}[x]\} \subseteq \mathcal{A}$
for all values of the parameters.
The scheme Genl" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate \mathcal{P}, and states that:

For every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $Q[\mathcal{F}(s, t)]$ provided the parameters satisfy the following condition:

- For every set s_{1} such that $s_{1} \in\left\{\mathcal{F}\left(s_{2}, t_{1}\right) ; s_{2}\right.$ ranges over elements of \mathcal{A}, t_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[s_{2}, t_{1}\right]\right\}$ holds $Q\left[s_{1}\right]$.
The scheme Genl" A deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate \mathcal{P}, and states that:

[^0]For every set s_{1} such that $s_{1} \in\left\{\mathcal{F}\left(s_{2}, t_{1}\right) ; s_{2}\right.$ ranges over elements of \mathcal{A}, t_{1} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[s_{2}, t_{1}\right]\right\}$ holds $Q\left[s_{1}\right]$ provided the following condition is met:

- For every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $Q[\mathcal{F}(s, t)]$.

The scheme Gen2" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a non empty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a unary predicate Q, and a binary predicate \mathcal{P}, and states that:
$\left\{s_{1} ; s_{1}\right.$ ranges over elements of $\mathcal{C}: s_{1} \in\left\{\mathcal{F}\left(s_{2}, t_{1}\right) ; s_{2}\right.$ ranges over elements of \mathcal{A}, t_{1}
ranges over elements of $\left.\left.\mathcal{B}: \mathcal{P}\left[s_{2}, t_{1}\right]\right\} \wedge Q\left[s_{1}\right]\right\}=\left\{\mathcal{F}\left(s_{3}, t_{2}\right) ; s_{3}\right.$ ranges over elements
of \mathcal{A}, t_{2} ranges over elements of $\left.\mathcal{B}: \mathcal{P}\left[s_{3}, t_{2}\right] \wedge Q\left[\mathcal{F}\left(s_{3}, t_{2}\right)\right]\right\}$ for all values of the parameters.

The scheme Gen 3^{\prime} deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding a set, and two unary predicates \mathcal{P}, Q, and states that:
$\left\{\mathcal{F}(s) ; s\right.$ ranges over elements of $\mathcal{A}: s \in\left\{s_{2} ; s_{2}\right.$ ranges over elements of $\left.\mathcal{A}: Q\left[s_{2}\right]\right\} \wedge$
$\mathcal{P}[s]\}=\left\{\mathcal{F}\left(s_{3}\right) ; s_{3}\right.$ ranges over elements of $\left.\mathcal{A}: Q\left[s_{3}\right] \wedge \mathcal{P}\left[s_{3}\right]\right\}$
for all values of the parameters.
The scheme Gen3" deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, a unary predicate Q, and a binary predicate P, and states that:
$\left\{\mathcal{F}(s, t) ; s\right.$ ranges over elements of \mathcal{A}, t ranges over elements of $\mathcal{B}: s \in\left\{s_{2} ; s_{2}\right.$ ranges
over elements of $\left.\left.\mathcal{A}: Q\left[s_{2}\right]\right\} \wedge \mathcal{P}[s, t]\right\}=\left\{\mathcal{F}\left(s_{3}, t_{2}\right) ; s_{3}\right.$ ranges over elements of \mathcal{A}, t_{2}
ranges over elements of $\left.\mathcal{B}: Q\left[s_{3}\right] \wedge \mathcal{P}\left[s_{3}, t_{2}\right]\right\}$
for all values of the parameters.
The scheme Gen 4 " deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P}, Q, and states that:
$\{\mathcal{F}(s, t) ; s$ ranges over elements of \mathcal{A}, t ranges over elements of $\mathcal{B}: \mathcal{P}[s, t]\} \subseteq\left\{\mathcal{F}\left(s_{2}, t_{1}\right) ; s_{2}\right.$ ranges over elements of \mathcal{A}, t_{1} ranges over elements of $\left.\mathcal{B}: Q\left[s_{2}, t_{1}\right]\right\}$ provided the parameters meet the following condition:

- Let s be an element of \mathcal{A} and t be an element of \mathcal{B}. If $\mathcal{P}[s, t]$, then there exists an element s^{\prime} of \mathcal{A} such that $Q\left[s^{\prime}, t\right]$ and $\mathcal{F}(s, t)=\mathcal{F}\left(s^{\prime}, t\right)$.
The scheme FrSet l deals with a non empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y) ; y$ ranges over elements of $\mathcal{A}: \mathcal{F}(y) \in \mathcal{B} \wedge \mathcal{P}[y]\} \subseteq \mathcal{B}$ for all values of the parameters.

The scheme $\operatorname{FrSet} 2$ deals with a non empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y) ; y$ ranges over elements of $\mathcal{A}: \mathcal{P}[y] \wedge \mathcal{F}(y) \notin \mathcal{B}\}$ misses \mathcal{B} for all values of the parameters.

The scheme FrEqual deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, an element \mathcal{C} of \mathcal{B}, and two binary predicates \mathcal{P}, Q, and states that:
$\{\mathcal{F}(s, t) ; s$ ranges over elements of \mathcal{A}, t ranges over elements of $\mathcal{B}: Q[s, t]\}=\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right) ; s^{\prime}\right.$
ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}$
provided the following condition is satisfied:

- For every element s of \mathcal{A} and for every element t of \mathcal{B} holds $Q[s, t]$ iff $t=\mathcal{C}$ and $\mathcal{P}[s, t]$.
The scheme $\operatorname{FrEqua} 2$ deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding a set, an element \mathcal{C} of \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(s, t) ; s$ ranges over elements of \mathcal{A}, t ranges over elements of $\mathcal{B}: t=\mathcal{C} \wedge \mathcal{P}[s, t]\}=$ $\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right) ; s^{\prime}\right.$ ranges over elements of $\left.\mathcal{A}: \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}$ for all values of the parameters.

Let I_{1} be a set. We say that I_{1} is functional if and only if:
(Def. 1) For every set x such that $x \in I_{1}$ holds x is a function.
One can verify that there exists a set which is non empty and functional.
Let P be a functional set. Observe that every element of P is function-like and relation-like.
The following proposition is true
(8 ${ }^{3}$ For every function f holds $\{f\}$ is functional.
Let A, B be sets. Observe that B^{A} is functional.
Let A, B be sets. A functional non empty set is said to be a non empty set of functions from A to B if:
(Def. 2) Every element of it is a function from A into B.
We now state two propositions:
(10 $)^{4}$ For every function f from A into C holds $\{f\}$ is a non empty set of functions from A to C.
(11) B^{A} is a non empty set of functions from A to B.

Let A be a set and let B be a non empty set. Then B^{A} is a non empty set of functions from A to B. Let F be a non empty set of functions from A to B. We see that the element of F is a function from A into B.

In the sequel p_{1} is an element of B^{A}.
We now state two propositions:
$(14)^{5}$ Let X, Y be sets. Suppose $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$. Let f be an element of Y^{X}. Then there exists an element p_{1} of B^{A} such that $p_{1} \upharpoonright X=f$.
(15) For every set X and for every p_{1} holds $p_{1} \upharpoonright X=p_{1} \upharpoonright(A \cap X)$.

Now we present four schemes. The scheme FraenkelFin deals with a non empty set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} yielding a set, and states that:
$\{\mathcal{F}(w) ; w$ ranges over elements of $\mathcal{A}: w \in \mathcal{B}\}$ is finite
provided the parameters meet the following requirement:

- \mathcal{B} is finite.

The scheme CartFin deals with non empty sets \mathcal{A}, \mathcal{B}, sets \mathcal{C}, \mathcal{D}, and a binary functor \mathcal{F} yielding a set, and states that:
$\left\{\mathcal{F}\left(u^{\prime}, v^{\prime}\right) ; u^{\prime}\right.$ ranges over elements of \mathcal{A}, v^{\prime} ranges over elements of $\mathcal{B}: u^{\prime} \in \mathcal{C} \wedge v^{\prime} \in$
$\mathcal{D}\}$ is finite
provided the parameters meet the following requirements:

- \mathcal{C} is finite, and
- \mathcal{D} is finite.

The scheme Finiteness deals with a non empty set \mathcal{A}, an element \mathcal{B} of Fin \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

Let x be an element of \mathcal{A}. Suppose $x \in \mathcal{B}$. Then there exists an element y of \mathcal{A} such
that $y \in \mathcal{B}$ and $\mathcal{P}[y, x]$ and for every element z of \mathcal{A} such that $z \in \mathcal{B}$ and $\mathcal{P}[z, y]$ holds $\mathcal{P}[y, z]$
provided the following conditions are satisfied:

- For every element x of \mathcal{A} holds $\mathcal{P}[x, x]$, and
- For all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

The scheme Fin Im deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, an element \mathcal{C} of Fin \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

There exists an element c_{1} of Fin \mathcal{A} such that for every element t of \mathcal{A} holds $t \in c_{1}$ if and only if there exists an element t^{\prime} of \mathcal{B} such that $t^{\prime} \in \mathcal{C}$ and $t=\mathcal{F}\left(t^{\prime}\right)$ and $\mathcal{P}\left[t, t^{\prime}\right]$ for all values of the parameters.

The following proposition is true
(16) For all sets A, B such that A is finite and B is finite holds B^{A} is finite.

[^1]Now we present three schemes. The scheme ImFin deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a set \mathcal{C}, a set \mathcal{D}, and a unary functor \mathcal{F} yielding a set, and states that:
$\left\{\mathcal{F}\left(p_{1}^{\prime}\right) ; p_{1}^{\prime}\right.$ ranges over elements of $\left.\mathcal{B}^{\mathfrak{A}}: p_{1}^{\prime}{ }^{\circ} \mathcal{C} \subseteq \mathcal{D}\right\}$ is finite provided the parameters meet the following conditions:

- C is finite,
- \mathcal{D} is finite, and
- For all elements p_{1}, p_{2} of $\mathcal{B}^{\mathcal{A}}$ such that $p_{1} \upharpoonright \mathcal{C}=p_{2} \upharpoonright \mathcal{C}$ holds $\mathcal{F}\left(p_{1}\right)=\mathcal{F}\left(p_{2}\right)$.

The scheme FunctChoice deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, an element \mathcal{C} of Fin \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

There exists a function f_{1} from \mathcal{A} into \mathcal{B} such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathscr{P}\left[t, f_{1}(t)\right]$
provided the following requirement is met:

- For every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element f_{1} of \mathcal{B} such that $\mathcal{P}\left[t, f_{1}\right]$.
The scheme FuncsChoice deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, an element \mathcal{C} of Fin \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

There exists an element f_{1} of $\mathcal{B}^{\mathfrak{A}}$ such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}\left[t, f_{1}(t)\right]$
provided the parameters meet the following requirement:

- For every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element f_{1} of \mathcal{B} such that $\mathcal{P}\left[t, f_{1}\right]$.

REFERENCES

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Czesław Bylinski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[4] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[5] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/setwiseo.html
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/finsub_1.html
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

[^0]: ${ }^{1}$ The propositions (1) and (2) have been removed.
 ${ }^{2}$ The proposition (4) has been removed.

[^1]: ${ }^{3}$ The proposition (7) has been removed.
 ${ }^{4}$ The proposition (9) has been removed.
 ${ }^{5}$ The propositions (12) and (13) have been removed.

