Boolean Domains¹

Andrzej Trybulec Warsaw University Białystok Agata Darmochwał Warsaw University Białystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset of a set A is introduced with the mother type: Element of Fin A. In consequence, "Finite Subset of A", "[(Finite Subset of A), Finite Subset of A]", and so on. The article begins with some auxiliary theorems that belong really to [3] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

MML Identifier: FINSUB_1.

WWW: http://mizar.org/JFM/Vol1/finsub_1.html

The articles [5], [2], [6], and [4] provide the notation and terminology for this paper. In this paper *X*, *Y* denote sets.

Let I_1 be a set. We say that I_1 is \cup -closed if and only if:

(Def. 1) For all sets X, Y such that $X \in I_1$ and $Y \in I_1$ holds $X \cup Y \in I_1$.

We say that I_1 is \cap -closed if and only if:

(Def. 2) For all sets X, Y such that $X \in I_1$ and $Y \in I_1$ holds $X \cap Y \in I_1$.

We say that I_1 is diff-closed if and only if:

(Def. 3) For all sets X, Y such that $X \in I_1$ and $Y \in I_1$ holds $X \setminus Y \in I_1$.

Let I_1 be a set. We say that I_1 is preboolean if and only if:

(Def. 4) I_1 is \cup -closed and diff-closed.

One can check that every set which is preboolean is also \cup -closed and diff-closed and every set which is \cup -closed and diff-closed is also preboolean.

Let us note that there exists a set which is non empty, ∪-closed, ∩-closed, and diff-closed.

In the sequel A is a non empty preboolean set.

The following proposition is true

(10)¹ Let *A* be a set. Then *A* is preboolean if and only if for all sets *X*, *Y* such that $X \in A$ and $Y \in A$ holds $X \cup Y \in A$ and $X \setminus Y \in A$.

¹Supported by RPBP.III-24.C1.

¹ The propositions (1)–(9) have been removed.

Let us consider A and let X, Y be elements of A. Then $X \cup Y$ is an element of A. Then $X \setminus Y$ is an element of A.

The following propositions are true:

- $(13)^2$ If X is an element of A and Y is an element of A, then $X \cap Y$ is an element of A.
- (14) If X is an element of A and Y is an element of A, then X = Y is an element of A.
- (15) For every non empty set *A* such that for all elements *X*, *Y* of *A* holds $X \dot{-} Y \in A$ and $X \setminus Y \in A$ holds *A* is preboolean.
- (16) For every non empty set *A* such that for all elements *X*, *Y* of *A* holds $X
 ilder Y \in A$ and $X \cap Y \in A$ holds *A* is preboolean.
- (17) For every non empty set *A* such that for all elements *X*, *Y* of *A* holds $X \dot{-} Y \in A$ and $X \cup Y \in A$ holds *A* is preboolean.

Let us consider A and let X, Y be elements of A. Then $X \cap Y$ is an element of A. Then $X \dot{-} Y$ is an element of A.

Next we state three propositions:

- (18) $\emptyset \in A$.
- $(20)^3$ For every set A holds 2^A is preboolean.
- (21) For all non empty preboolean sets A, B holds $A \cap B$ is non empty and preboolean.

In the sequel *A*, *B* denote sets.

Let us consider A. The functor Fin A yields a preboolean set and is defined by:

(Def. 5) For every set *X* holds $X \in Fin A$ iff $X \subseteq A$ and *X* is finite.

Let us consider A. Note that Fin A is non empty.

Let us consider A. Note that every element of Fin A is finite.

We now state several propositions:

- $(23)^4$ If $A \subseteq B$, then Fin $A \subseteq Fin B$.
- (24) $\operatorname{Fin}(A \cap B) = \operatorname{Fin} A \cap \operatorname{Fin} B$.
- (25) $\operatorname{Fin} A \cup \operatorname{Fin} B \subseteq \operatorname{Fin}(A \cup B)$.
- (26) Fin $A \subseteq 2^A$.
- (27) If A is finite, then $Fin A = 2^A$.
- (28) $\operatorname{Fin}\emptyset = \{\emptyset\}.$

Let us consider A. A finite subset of A is an element of FinA.

We now state three propositions:

- $(30)^5$ Every finite subset of A is finite.
- $(32)^6$ Every finite subset of A is a subset of A.
- $(34)^7$ If A is finite, then every subset of A is a finite subset of A.

² The propositions (11) and (12) have been removed.

³ The proposition (19) has been removed.

⁴ The proposition (22) has been removed.

⁵ The proposition (29) has been removed.

⁶ The proposition (31) has been removed.

⁷ The proposition (33) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [2] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [3] Library Committee. Boolean properties of sets requirements. *Journal of Formalized Mathematics*, EMM, 2002. http://mizar.org/ JFM/EMM/boole.html.
- [4] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- $[6] \begin{tabular}{ll} Zinaida Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \\ \begin{tabular}{ll} Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \\ \begin{tabular}{ll} Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \\ \begin{tabular}{ll} Trybulec. \\ \begin{$

Received April 14, 1989

Published January 2, 2004