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Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and
difference. This condition is equivalent to being closed under symmetric difference and one
of the following operations: union, intersection or difference. We introduce the set of all finite
subsets of a setA, denoted by FinA. The mode Finite Subset of a setA is introduced with the
mother type: Element of FinA. In consequence, “Finite Subset of . . . ” is an elementary type,
therefore one may use such types as “set of Finite Subset ofA”, “[(Finite Subset ofA), Finite
Subset ofA]”, and so on. The article begins with some auxiliary theorems that belong really
to [3] or [1] but are missing there. Moreover, boolA is redefined as a SET DOMAIN, for an
arbitrary setA.

MML Identifier: FINSUB_1.

WWW: http://mizar.org/JFM/Vol1/finsub_1.html

The articles [5], [2], [6], and [4] provide the notation and terminology for this paper.
In this paperX, Y denote sets.
Let I1 be a set. We say thatI1 is∪-closed if and only if:

(Def. 1) For all setsX, Y such thatX ∈ I1 andY ∈ I1 holdsX∪Y ∈ I1.

We say thatI1 is∩-closed if and only if:

(Def. 2) For all setsX, Y such thatX ∈ I1 andY ∈ I1 holdsX∩Y ∈ I1.

We say thatI1 is diff-closed if and only if:

(Def. 3) For all setsX, Y such thatX ∈ I1 andY ∈ I1 holdsX \Y ∈ I1.

Let I1 be a set. We say thatI1 is preboolean if and only if:

(Def. 4) I1 is∪-closed and diff-closed.

One can check that every set which is preboolean is also∪-closed and diff-closed and every set
which is∪-closed and diff-closed is also preboolean.

Let us note that there exists a set which is non empty,∪-closed,∩-closed, and diff-closed.
In the sequelA is a non empty preboolean set.
The following proposition is true

(10)1 Let A be a set. ThenA is preboolean if and only if for all setsX, Y such thatX ∈ A and
Y ∈ A holdsX∪Y ∈ A andX \Y ∈ A.

1Supported by RPBP.III-24.C1.
1 The propositions (1)–(9) have been removed.
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Let us considerA and letX, Y be elements ofA. ThenX∪Y is an element ofA. ThenX \Y is
an element ofA.

The following propositions are true:

(13)2 If X is an element ofA andY is an element ofA, thenX∩Y is an element ofA.

(14) If X is an element ofA andY is an element ofA, thenX−. Y is an element ofA.

(15) For every non empty setA such that for all elementsX,Y of A holdsX−. Y∈A andX\Y∈A
holdsA is preboolean.

(16) For every non empty setA such that for all elementsX,Y of A holdsX−. Y∈A andX∩Y∈A
holdsA is preboolean.

(17) For every non empty setA such that for all elementsX,Y of A holdsX−. Y∈A andX∪Y∈A
holdsA is preboolean.

Let us considerA and letX, Y be elements ofA. ThenX∩Y is an element ofA. ThenX−. Y is
an element ofA.

Next we state three propositions:

(18) /0 ∈ A.

(20)3 For every setA holds 2A is preboolean.

(21) For all non empty preboolean setsA, B holdsA∩B is non empty and preboolean.

In the sequelA, B denote sets.
Let us considerA. The functor FinA yields a preboolean set and is defined by:

(Def. 5) For every setX holdsX ∈ FinA iff X ⊆ A andX is finite.

Let us considerA. Note that FinA is non empty.
Let us considerA. Note that every element of FinA is finite.
We now state several propositions:

(23)4 If A⊆ B, then FinA⊆ FinB.

(24) Fin(A∩B) = FinA∩FinB.

(25) FinA∪FinB⊆ Fin(A∪B).

(26) FinA⊆ 2A.

(27) If A is finite, then FinA = 2A.

(28) Fin/0 = { /0}.

Let us considerA. A finite subset ofA is an element of FinA.
We now state three propositions:

(30)5 Every finite subset ofA is finite.

(32)6 Every finite subset ofA is a subset ofA.

(34)7 If A is finite, then every subset ofA is a finite subset ofA.

2 The propositions (11) and (12) have been removed.
3 The proposition (19) has been removed.
4 The proposition (22) has been removed.
5 The proposition (29) has been removed.
6 The proposition (31) has been removed.
7 The proposition (33) has been removed.
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