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Summary. We generalize the semigroup operation on finite sequences introduced in
[8] for binary operations that have a unity or for non-empty finite sequences.
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The articles [11], [15], [12], [3], [6], [2], [14], [16], [17], [4], [13], [10], [5], [1], [9], and [7] provide
the notation and terminology for this paper.

For simplicity, we use the following convention:D is a non empty set,d, d1, d2, d3 are elements
of D, F , G, H are finite sequences of elements ofD, f is a function fromN into D, g is a binary
operation onD, k, n, l are natural numbers, andP is a permutation of domF.

Let us considerD, n, d. Thenn 7→ d is a finite sequence of elements ofD.
Let us considerD, F , g. Let us assume thatg has a unity or lenF ≥ 1. The functorg�F yields

an element ofD and is defined by:

(Def. 1)(i) g�F = 1g if g has a unity and lenF = 0,

(ii) there existsf such thatf (1) = F(1) and for everyn such that 06= n andn < lenF holds
f (n+1) = g( f (n), F(n+1)) andg�F = f (lenF), otherwise.

One can prove the following propositions:

(2)1 If lenF ≥ 1, then there existsf such thatf (1) = F(1) and for everyn such that 06= n and
n < lenF holds f (n+1) = g( f (n), F(n+1)) andg�F = f (lenF).

(3) Suppose lenF ≥ 1 and there existsf such thatf (1) = F(1) and for everyn such that 06= n
andn < lenF holds f (n+1) = g( f (n), F(n+1)) andd = f (lenF). Thend = g�F.

Let B, A be non empty sets and letb be an element ofB. ThenA 7−→ b is a function fromA into
B.

Let A be a non empty set, letF be a function fromN into A, and letp be a finite sequence of
elements ofA. ThenF+·p is a function fromN into A.

Let f be a finite sequence. Then domf is an element of FinN.
The following propositions are true:

(4) If g has a unity or lenF ≥ 1 and if g is associative and commutative, theng� F =
g-∑domF((N 7−→ 1g)+·F).

(5) If g has a unity or lenF ≥ 1, theng�F a 〈d〉= g(g�F, d).

(6) If g is associative and ifg has a unity or lenF ≥ 1 and lenG≥ 1, theng�F a G= g(g�F,
g�G).

1 The proposition (1) has been removed.
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(7) If g is associative and ifg has a unity or lenF ≥ 1, theng�〈d〉a F = g(d, g�F).

(8) If g is commutative and associative and ifg has a unity or lenF ≥ 1 and ifG = F ·P, then
g�F = g�G.

(9) Supposeg has a unity or lenF ≥ 1 andg is associative and commutative andF is one-to-one
andG is one-to-one and rngF = rngG. Theng�F = g�G.

(10) Suppose that

(i) g is associative and commutative,

(ii) g has a unity or lenF ≥ 1,

(iii) len F = lenG,

(iv) lenF = lenH, and

(v) for everyk such thatk∈ domF holdsF(k) = g(G(k), H(k)).

Theng�F = g(g�G, g�H).

(11) If g has a unity, theng� εD = 1g .

(12) g�〈d〉= d.

(13) g�〈d1,d2〉= g(d1, d2).

(14) If g is commutative, theng�〈d1,d2〉= g�〈d2,d1〉.

(15) g�〈d1,d2,d3〉= g(g(d1, d2), d3).

(16) If g is commutative, theng�〈d1,d2,d3〉= g�〈d2,d1,d3〉.

(17) g�1 7→ d = d.

(18) g�2 7→ d = g(d, d).

(19) If g is associative and ifg has a unity ork 6= 0 andl 6= 0, theng�(k+ l) 7→ d = g(g�k 7→ d,
g� l 7→ d).

(20) If g is associative and ifg has a unity ork 6= 0 andl 6= 0, theng� (k · l) 7→ d = g� l 7→
(g�k 7→ d).

(21) If lenF = 1, theng�F = F(1).

(22) If lenF = 2, theng�F = g(F(1), F(2)).
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