Binary Operations on Finite Sequences

Wojciech A. Trybulec Warsaw University

Summary. We generalize the semigroup operation on finite sequences introduced in [8] for binary operations that have a unity or for non-empty finite sequences.

MML Identifier: FINSOP_1.
WWW: http://mizar.org/JFM/Vol2/finsop_1.html

The articles [11], [15], [12], [3], [6], [2], [14], [16], [17], [4], [13], [10], [5], [1], [9], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: *D* is a non empty set, *d*, d_1 , d_2 , d_3 are elements of *D*, *F*, *G*, *H* are finite sequences of elements of *D*, *f* is a function from \mathbb{N} into *D*, *g* is a binary operation on *D*, *k*, *n*, *l* are natural numbers, and *P* is a permutation of dom *F*.

Let us consider D, n, d. Then $n \mapsto d$ is a finite sequence of elements of D.

Let us consider D, F, g. Let us assume that g has a unity or len $F \ge 1$. The functor $g \odot F$ yields an element of D and is defined by:

(Def. 1)(i) $g \odot F = \mathbf{1}_g$ if g has a unity and len F = 0,

(ii) there exists f such that f(1) = F(1) and for every n such that $0 \neq n$ and n < len F holds f(n+1) = g(f(n), F(n+1)) and $g \odot F = f(\text{len } F)$, otherwise.

One can prove the following propositions:

- (2)¹ If len $F \ge 1$, then there exists f such that f(1) = F(1) and for every n such that $0 \ne n$ and n < len F holds f(n+1) = g(f(n), F(n+1)) and $g \odot F = f(\text{len } F)$.
- (3) Suppose len $F \ge 1$ and there exists f such that f(1) = F(1) and for every n such that $0 \ne n$ and n < len F holds f(n+1) = g(f(n), F(n+1)) and d = f(len F). Then $d = g \odot F$.

Let *B*, *A* be non empty sets and let *b* be an element of *B*. Then $A \mapsto b$ is a function from *A* into *B*.

Let *A* be a non empty set, let *F* be a function from \mathbb{N} into *A*, and let *p* be a finite sequence of elements of *A*. Then F + p is a function from \mathbb{N} into *A*.

Let *f* be a finite sequence. Then dom *f* is an element of Fin \mathbb{N} .

- The following propositions are true:
- (4) If g has a unity or len $F \ge 1$ and if g is associative and commutative, then $g \odot F = g \cdot \sum_{\text{dom}F} ((\mathbb{N} \longmapsto \mathbf{1}_g) + F).$
- (5) If g has a unity or len $F \ge 1$, then $g \odot F \cap \langle d \rangle = g(g \odot F, d)$.
- (6) If g is associative and if g has a unity or len $F \ge 1$ and len $G \ge 1$, then $g \odot F \cap G = g(g \odot F, g \odot G)$.

¹ The proposition (1) has been removed.

- (7) If g is associative and if g has a unity or len $F \ge 1$, then $g \odot \langle d \rangle \cap F = g(d, g \odot F)$.
- (8) If g is commutative and associative and if g has a unity or len $F \ge 1$ and if $G = F \cdot P$, then $g \odot F = g \odot G$.
- (9) Suppose g has a unity or len $F \ge 1$ and g is associative and commutative and F is one-to-one and G is one-to-one and rng $F = \operatorname{rng} G$. Then $g \odot F = g \odot G$.
- (10) Suppose that
- (i) g is associative and commutative,
- (ii) g has a unity or len $F \ge 1$,
- (iii) $\operatorname{len} F = \operatorname{len} G$,
- (iv) $\operatorname{len} F = \operatorname{len} H$, and
- (v) for every k such that $k \in \text{dom } F$ holds F(k) = g(G(k), H(k)). Then $g \odot F = g(g \odot G, g \odot H)$.
- (11) If g has a unity, then $g \odot \varepsilon_D = \mathbf{1}_g$.
- (12) $g \odot \langle d \rangle = d$.
- (13) $g \odot \langle d_1, d_2 \rangle = g(d_1, d_2).$
- (14) If g is commutative, then $g \odot \langle d_1, d_2 \rangle = g \odot \langle d_2, d_1 \rangle$.
- (15) $g \odot \langle d_1, d_2, d_3 \rangle = g(g(d_1, d_2), d_3).$
- (16) If g is commutative, then $g \odot \langle d_1, d_2, d_3 \rangle = g \odot \langle d_2, d_1, d_3 \rangle$.
- (17) $g \odot 1 \mapsto d = d$.
- (18) $g \odot 2 \mapsto d = g(d, d).$
- (19) If g is associative and if g has a unity or $k \neq 0$ and $l \neq 0$, then $g \odot (k+l) \mapsto d = g(g \odot k \mapsto d, g \odot l \mapsto d)$.
- (20) If g is associative and if g has a unity or $k \neq 0$ and $l \neq 0$, then $g \odot (k \cdot l) \mapsto d = g \odot l \mapsto (g \odot k \mapsto d)$.
- (21) If len F = 1, then $g \odot F = F(1)$.
- (22) If len F = 2, then $g \odot F = g(F(1), F(2))$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Czesław Byliński. Semigroup operations on finite subsets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/setwop_2.html.

- [9] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
- [10] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/setwiseo.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [13] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/finsub_1.html.
- [14] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [17] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received August 10, 1990

Published January 2, 2004