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Summary. The article contains some propositions and theorems related to [9] and
[8]. The notions introduced in [9] are extended to finite sequences. A number of additional
propositions related to this notions are proved. There are also proved some properties of
distributive operations and unary operations. The notation and propositions for inverses are
introduced.
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The articles [11], [7], [12], [13], [4], [1], [6], [5], [3], [2], [9], [8], and [10] provide the notation and
terminology for this paper.

For simplicity, we follow the rules:x, y denote sets,C, C′, D, D′, E denote non empty sets,c
denotes an element ofC, c′ denotes an element ofC′, d, d1, d2, d3, d4, e denote elements ofD, and
d′ denotes an element ofD′.

We now state several propositions:

(1) For every functionf holds〈 /0, f 〉= /0 and〈 f , /0〉= /0.

(2) For every functionf holds[: /0, f :] = /0 and[: f , /0 :] = /0.

(4)1 For all functionsF , f holdsF◦( /0, f ) = /0 andF◦( f , /0) = /0.

(5) For every functionF holdsF◦( /0,x) = /0.

(6) For every functionF holdsF◦(x, /0) = /0.

(7) For every setX and for all setsx1, x2 holds〈X 7−→ x1,X 7−→ x2〉= X 7−→ 〈〈x1, x2〉〉.

(8) For every functionF and for every setX and for all setsx1, x2 such that〈〈x1, x2〉〉 ∈ domF
holdsF◦(X 7−→ x1, X 7−→ x2) = X 7−→ F(〈〈x1, x2〉〉).

For simplicity, we follow the rules:i, j denote natural numbers,F denotes a function from[:D,
D′ :] into E, p, q denote finite sequences of elements ofD, and p′, q′ denote finite sequences of
elements ofD′.

Let us considerD, D′, E, F , p, p′. ThenF◦(p, p′) is a finite sequence of elements ofE.
Let us considerD, D′, E, F , p, d′. ThenF◦(p,d′) is a finite sequence of elements ofE.
Let us considerD, D′, E, F , d, p′. ThenF◦(d, p′) is a finite sequence of elements ofE.
Let us considerD, i, d. Theni 7→ d is an element ofDi .
In the sequelf , f ′ denote functions fromC into D andh denotes a function fromD into E.

1 The proposition (3) has been removed.
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Let D, E be sets, letp be a finite sequence of elements ofD, and leth be a function fromD into
E. Thenh· p is a finite sequence of elements ofE.

One can prove the following propositions:

(9) h· (pa 〈d〉) = (h· p)a 〈h(d)〉.

(10) h· (pa q) = (h· p)a (h·q).

For simplicity, we adopt the following convention:T, T1, T2, T3 are elements ofDi , T ′ is an
element ofD′i , S is an element ofD j , andS′ is an element ofD′ j .

We now state a number of propositions:

(11) F◦(T a 〈d〉, T ′ a 〈d′〉) = (F◦(T, T ′))a 〈F(d, d′)〉.

(12) F◦(T a S, T ′ a S′) = (F◦(T, T ′))a F◦(S, S′).

(13) F◦(d, p′ a 〈d′〉) = (F◦(d, p′))a 〈F(d, d′)〉.

(14) F◦(d, p′ a q′) = (F◦(d, p′))a F◦(d,q′).

(15) F◦(pa 〈d〉,d′) = (F◦(p,d′))a 〈F(d, d′)〉.

(16) F◦(pa q,d′) = (F◦(p,d′))a F◦(q,d′).

(17) For every functionh from D into E holdsh· (i 7→ d) = i 7→ h(d).

(18) F◦(i 7→ d, i 7→ d′) = i 7→ F(d, d′).

(19) F◦(d, i 7→ d′) = i 7→ F(d, d′).

(20) F◦(i 7→ d,d′) = i 7→ F(d, d′).

(21) F◦(i 7→ d, T ′) = F◦(d,T ′).

(22) F◦(T, i 7→ d) = F◦(T,d).

(23) F◦(d,T ′) = F◦(d, idD′) ·T ′.

(24) F◦(T,d) = F◦(idD,d) ·T.

In the sequelF , G are binary operations onD, u is a unary operation onD, andH is a binary
operation onE.

Next we state a number of propositions:

(25) If F is associative, thenF◦(d, idD) ·F◦( f , f ′) = F◦(F◦(d, idD) · f , f ′).

(26) If F is associative, thenF◦(idD,d) ·F◦( f , f ′) = F◦( f , F◦(idD,d) · f ′).

(27) If F is associative, thenF◦(d, idD) ·F◦(T1, T2) = F◦(F◦(d, idD) ·T1, T2).

(28) If F is associative, thenF◦(idD,d) ·F◦(T1, T2) = F◦(T1, F◦(idD,d) ·T2).

(29) If F is associative, thenF◦(F◦(T1, T2), T3) = F◦(T1, F◦(T2, T3)).

(30) If F is associative, thenF◦(F◦(d1,T),d2) = F◦(d1,F◦(T,d2)).

(31) If F is associative, thenF◦(F◦(T1,d), T2) = F◦(T1, F◦(d,T2)).

(32) If F is associative, thenF◦(F(d1, d2),T) = F◦(d1,F◦(d2,T)).

(33) If F is associative, thenF◦(T,F(d1, d2)) = F◦(F◦(T,d1),d2).

(34) If F is commutative, thenF◦(T1, T2) = F◦(T2, T1).

(35) If F is commutative, thenF◦(d,T) = F◦(T,d).
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(36) If F is distributive w.r.t.G, thenF◦(G(d1, d2), f ) = G◦(F◦(d1, f ), F◦(d2, f )).

(37) If F is distributive w.r.t.G, thenF◦( f ,G(d1, d2)) = G◦(F◦( f ,d1), F◦( f ,d2)).

(38) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦( f , f ′) = H◦(h· f , h· f ′).

(39) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦(d, f ) = H◦(h(d),h· f ).

(40) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦( f ,d) = H◦(h· f ,h(d)).

(41) If u is distributive w.r.t.F , thenu·F◦( f , f ′) = F◦(u· f , u· f ′).

(42) If u is distributive w.r.t.F , thenu·F◦(d, f ) = F◦(u(d),u· f ).

(43) If u is distributive w.r.t.F , thenu·F◦( f ,d) = F◦(u· f ,u(d)).

(44) If F has a unity, thenF◦(C 7−→ 1F , f ) = f andF◦( f , C 7−→ 1F) = f .

(45) If F has a unity, thenF◦(1F , f ) = f .

(46) If F has a unity, thenF◦( f ,1F) = f .

(47) If F is distributive w.r.t.G, thenF◦(G(d1, d2),T) = G◦(F◦(d1,T), F◦(d2,T)).

(48) If F is distributive w.r.t.G, thenF◦(T,G(d1, d2)) = G◦(F◦(T,d1), F◦(T,d2)).

(49) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦(T1, T2) = H◦(h·T1, h·T2).

(50) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦(d,T) = H◦(h(d),h·T).

(51) If for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)), thenh·F◦(T,d) = H◦(h·T,h(d)).

(52) If u is distributive w.r.t.F , thenu·F◦(T1, T2) = F◦(u·T1, u·T2).

(53) If u is distributive w.r.t.F , thenu·F◦(d,T) = F◦(u(d),u·T).

(54) If u is distributive w.r.t.F , thenu·F◦(T,d) = F◦(u·T,u(d)).

(55) If G is distributive w.r.t.F andu = G◦(d, idD), thenu is distributive w.r.t.F .

(56) If G is distributive w.r.t.F andu = G◦(idD,d), thenu is distributive w.r.t.F .

(57) If F has a unity, thenF◦(i 7→ 1F , T) = T andF◦(T, i 7→ 1F) = T.

(58) If F has a unity, thenF◦(1F ,T) = T.

(59) If F has a unity, thenF◦(T,1F) = T.

Let us considerD, u, F . We say thatu is an inverse operation w.r.t.F if and only if:

(Def. 1) For everyd holdsF(d, u(d)) = 1F andF(u(d), d) = 1F .

Let us considerD, F . We say thatF if and only if:

(Def. 2) There existsu which is an inverse operation w.r.t.F .

We introduceF has an inverse operation as a synonym ofF
let us considerD, F . Let us assume thatF has a unityF is associative andF has an inverse

operation. The inverse operation w.r.t.F yields a unary operation onD and is defined by:

(Def. 3) The inverse operation w.r.t.F is an inverse operation w.r.t.F .

One can prove the following propositions:

(63)2 SupposeF is associative and has a unity and an inverse operation. ThenF((the inverse
operation w.r.t.F)(d), d) = 1F andF(d, (the inverse operation w.r.t.F)(d)) = 1F .

2 The propositions (60)–(62) have been removed.
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(64) SupposeF is associative and has a unity and an inverse operation andF(d1, d2) = 1F .
Thend1 = (the inverse operation w.r.t.F)(d2) and (the inverse operation w.r.t.F)(d1) = d2.

(65) If F is associative and has a unity and an inverse operation, then (the inverse operation
w.r.t.F)(1F) = 1F .

(66) If F is associative and has a unity and an inverse operation, then (the inverse operation
w.r.t.F)((the inverse operation w.r.t.F)(d)) = d.

(67) SupposeF is associative and commutative and has a unity and an inverse operation. Then
the inverse operation w.r.t.F is distributive w.r.t.F .

(68) If F is associative and has a unity and an inverse operation and ifF(d, d1) = F(d, d2) or
F(d1, d) = F(d2, d), thend1 = d2.

(69) If F is associative and has a unity and an inverse operation and ifF(d1, d2) = d2 or F(d2,
d1) = d2, thend1 = 1F .

(70) SupposeF is associative and has a unity and an inverse operation andG is distributive w.r.t.
F ande= 1F . Let givend. ThenG(e, d) = eandG(d, e) = e.

(71) SupposeF is associative and has a unity and an inverse operation andu = the inverse op-
eration w.r.t.F andG is distributive w.r.t.F . Thenu(G(d1, d2)) = G(u(d1), d2) andu(G(d1,
d2)) = G(d1, u(d2)).

(72) SupposeF is associative and has a unity and an inverse operation andu = the inverse
operation w.r.t.F andG is distributive w.r.t.F and has a unity. ThenG◦(u(1G), idD) = u.

(73) If F is associative and has a unity and an inverse operation andG is distributive w.r.t.F ,
then(G◦(d, idD))(1F) = 1F .

(74) If F is associative and has a unity and an inverse operation andG is distributive w.r.t.F ,
then(G◦(idD,d))(1F) = 1F .

(75) SupposeF is associative and has a unity and an inverse operation. ThenF◦( f , (the inverse
operation w.r.t.F) · f ) =C 7−→ 1F andF◦((the inverse operation w.r.t.F) · f , f ) =C 7−→ 1F .

(76) SupposeF is associative and has an inverse operation and a unity andF◦( f , f ′) = C 7−→
1F . Then f = (the inverse operation w.r.t.F) · f ′ and (the inverse operation w.r.t.F) · f = f ′.

(77) SupposeF is associative and has a unity and an inverse operation. ThenF◦(T, (the inverse
operation w.r.t.F) ·T) = i 7→ 1F andF◦((the inverse operation w.r.t.F) ·T, T) = i 7→ 1F .

(78) SupposeF is associative and has an inverse operation and a unity andF◦(T1, T2) = i 7→ 1F .
ThenT1 = (the inverse operation w.r.t.F) ·T2 and (the inverse operation w.r.t.F) ·T1 = T2.

(79) If F is associative and has a unity ande = 1F andF has an inverse operation andG is
distributive w.r.t.F , thenG◦(e, f ) = C 7−→ e.

(80) If F is associative and has a unity ande = 1F andF has an inverse operation andG is
distributive w.r.t.F , thenG◦(e,T) = i 7→ e.

Let F , f , g be functions. The functorF ◦ ( f ,g) yields a function and is defined as follows:

(Def. 4) F ◦ ( f ,g) = F · [: f , g:].

The following four propositions are true:

(82)3 For all functionsF , f , g such that〈〈x, y〉〉 ∈ dom(F ◦ ( f ,g)) holds (F ◦ ( f ,g))(〈〈x, y〉〉) =
F(〈〈 f (x), g(y)〉〉).

3 The proposition (81) has been removed.
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(83) For all functionsF , f , g such that〈〈x, y〉〉 ∈ dom(F ◦( f ,g)) holds(F ◦( f ,g))(x, y) = F( f (x),
g(y)).

(84) LetF be a function from[:D, D′ :] into E, f be a function fromC into D, andg be a function
from C′ into D′. ThenF ◦ ( f ,g) is a function from[:C, C′ :] into E.

(85) For all functionsu, u′ from D into D holdsF ◦ (u,u′) is a binary operation onD.

Let us considerD, F and let f , f ′ be functions fromD into D. ThenF ◦ ( f , f ′) is a binary
operation onD.

We now state several propositions:

(86) LetF be a function from[:D, D′ :] into E, f be a function fromC into D, andg be a function
from C′ into D′. Then(F ◦ ( f ,g))(c, c′) = F( f (c), g(c′)).

(87) For every functionu from D into D holds(F ◦ (idD,u))(d1, d2) = F(d1, u(d2)) and(F ◦
(u, idD))(d1, d2) = F(u(d1), d2).

(88) (F ◦ (idD,u))◦( f , f ′) = F◦( f , u· f ′).

(89) (F ◦ (idD,u))◦(T1, T2) = F◦(T1, u·T2).

(90) SupposeF is associative and commutative and has a unity and an inverse operation and
u= the inverse operation w.r.t.F . Thenu((F ◦ (idD,u))(d1, d2)) = (F ◦ (u, idD))(d1, d2) and
(F ◦ (idD,u))(d1, d2) = u((F ◦ (u, idD))(d1, d2)).

(91) If F is associative and has a unity and an inverse operation, then(F ◦ (idD, the inverse
operation w.r.t.F))(d, d) = 1F .

(92) If F is associative and has a unity and an inverse operation, then(F ◦ (idD, the inverse
operation w.r.t.F))(d, 1F) = d.

(93) If F is associative and has a unity and an inverse operation andu = the inverse operation
w.r.t.F , then(F ◦ (idD,u))(1F , d) = u(d).

(94) SupposeF is commutative and associative and has a unity and an inverse operation and
G = F ◦ (idD, the inverse operation w.r.t.F). Let givend1, d2, d3, d4. ThenF(G(d1, d2),
G(d3, d4)) = G(F(d1, d3), F(d2, d4)).
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