Finite Sequences and Tuples of Elements of a Non-empty Sets

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The first part of the article is a continuation of [4]. Next, we define the identity sequence of natural numbers and the constant sequences. The main part of this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a non-empty set D and it is denoted by element of D^{n}. Also some basic facts about tuples of a non-empty set are proved

MML Identifier: FINSEQ_2.
WWW: http://mizar.org/JFM/Vol2/finseq_2.html

The articles [13], [12], [9], [16], [2], [3], [14], [11], [1], [15], [17], [6], [8], [7], [4], [5], and [10] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: i, j, l are natural numbers, k is a natural number, $A, a, b, x, x_{1}, x_{2}, x_{3}$ are sets, D, D^{\prime}, E are non empty sets, d, d_{1}, d_{2}, d_{3} are elements of D, $d^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}$ are elements of D^{\prime}, and p, q, r are finite sequences.

One can prove the following propositions:
(1) $\min (i, j)$ is a natural number and $\max (i, j)$ is a natural number.
(2) If $l=\min (i, j)$, then $\operatorname{Seg} i \cap \operatorname{Seg} j=\operatorname{Seg} l$.
(3) If $i \leq j$, then $\max (0, i-j)=0$.
(4) If $j \leq i$, then $\max (0, i-j)=i-j$.
(5) $\max (0, i-j)$ is a natural number.
(6) $\min (0, i)=0$ and $\min (i, 0)=0$ and $\max (0, i)=i$ and $\max (i, 0)=i$.
(8) If $i \in \operatorname{Seg}(l+1)$, then $i \in \operatorname{Seg} l$ or $i=l+1$.
(9) If $i \in \operatorname{Seg} l$, then $i \in \operatorname{Seg}(l+j)$.
(10) If len $p=i$ and len $q=i$ and for every j such that $j \in \operatorname{Seg} i$ holds $p(j)=q(j)$, then $p=q$.
(11) If $b \in \operatorname{rng} p$, then there exists i such that $i \in \operatorname{dom} p$ and $p(i)=b$.
$(13)^{2}$ For every set D and for every finite sequence p of elements of D such that $i \in \operatorname{dom} p$ holds $p(i) \in D$.

[^0](14) For every set D such that for every i such that $i \in \operatorname{dom} p$ holds $p(i) \in D$ holds p is a finite sequence of elements of D.
(15) $\left\langle d_{1}, d_{2}\right\rangle$ is a finite sequence of elements of D.
(16) $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is a finite sequence of elements of D.
$(18)^{3}$ If $i \in \operatorname{dom} p$, then $i \in \operatorname{dom}\left(p^{\wedge} q\right)$.
(19) $\operatorname{len}\left(p^{\wedge}\langle a\rangle\right)=\operatorname{len} p+1$.
(20) If $p^{\wedge}\langle a\rangle=q^{\wedge}\langle b\rangle$, then $p=q$ and $a=b$.
(21) If len $p=i+1$, then there exist q, a such that $p=q^{\wedge}\langle a\rangle$.
(22) Let p be a finite sequence of elements of D. Suppose len $p \neq 0$. Then there exists a finite sequence q of elements of D and there exists d such that $p=q^{\wedge}\langle d\rangle$.
(23) If $q=p \upharpoonright \operatorname{Seg} i$ and len $p \leq i$, then $p=q$.
(24) If $q=p \upharpoonright \operatorname{Seg} i$, then len $q=\min (i, \operatorname{len} p)$.
(25) If len $r=i+j$, then there exist p, q such that len $p=i$ and len $q=j$ and $r=p^{\wedge} q$.
(26) Let r be a finite sequence of elements of D. Suppose len $r=i+j$. Then there exist finite sequences p, q of elements of D such that len $p=i$ and len $q=j$ and $r=p^{\wedge} q$.

In this article we present several logical schemes. The scheme SeqLambdaD deals with a natural number \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:

There exists a finite sequence z of elements of \mathcal{B} such that len $z=\mathcal{A}$ and for every j such that $j \in \operatorname{Seg} \mathcal{A}$ holds $z(j)=\mathcal{F}(j)$ for all values of the parameters.

The scheme $\operatorname{IndSeq} D$ deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P}, and states that: For every finite sequence p of elements of \mathcal{A} holds $\mathcal{P}[p]$
provided the parameters meet the following conditions:

- $\mathcal{P}\left[\varepsilon_{\mathcal{A}}\right]$, and
- For every finite sequence p of elements of \mathcal{A} and for every element x of \mathcal{A} such that $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\wedge}\langle x\rangle\right]$.
One can prove the following propositions:
(27) For every non empty subset D^{\prime} of D holds every finite sequence of elements of D^{\prime} is a finite sequence of elements of D.
(28) Every function from Seg i into D is a finite sequence of elements of D.
$(30)^{4}$ Every finite sequence p of elements of D is a function from $\operatorname{dom} p$ into D.
(31) For every function f from \mathbb{N} into D holds $f \upharpoonright \operatorname{Seg} i$ is a finite sequence of elements of D.
(32) For every function f from \mathbb{N} into D such that $q=f \upharpoonright \operatorname{Seg} i$ holds len $q=i$.
(33) For every function f such that $\operatorname{rng} p \subseteq \operatorname{dom} f$ and $q=f \cdot p$ holds len $q=\operatorname{len} p$.
(34) Suppose $D=\operatorname{Seg} i$. Let p be a finite sequence and q be a finite sequence of elements of D. If $i \leq \operatorname{len} p$, then $p \cdot q$ is a finite sequence.
(35) Suppose $D=\operatorname{Seg} i$. Let p be a finite sequence of elements of D^{\prime} and q be a finite sequence of elements of D. If $i \leq \operatorname{len} p$, then $p \cdot q$ is a finite sequence of elements of D^{\prime}.
(36) Let A, D be sets, p be a finite sequence of elements of A, and f be a function from A into D. Then $f \cdot p$ is a finite sequence of elements of D.

[^1](37) Let p be a finite sequence of elements of A and f be a function from A into D^{\prime}. If $q=f \cdot p$, then len $q=\operatorname{len} p$.
(38) For every function f from A into D^{\prime} holds $f \cdot \varepsilon_{A}=\varepsilon_{D^{\prime}}$.
(39) Let p be a finite sequence of elements of D and f be a function from D into D^{\prime}. If $p=\left\langle x_{1}\right\rangle$, then $f \cdot p=\left\langle f\left(x_{1}\right)\right\rangle$.
(40) Let p be a finite sequence of elements of D and f be a function from D into D^{\prime}. If $p=\left\langle x_{1}\right.$, $\left.x_{2}\right\rangle$, then $f \cdot p=\left\langle f\left(x_{1}\right), f\left(x_{2}\right)\right\rangle$.
(41) Let p be a finite sequence of elements of D and f be a function from D into D^{\prime}. If $p=\left\langle x_{1}\right.$, $\left.x_{2}, x_{3}\right\rangle$, then $f \cdot p=\left\langle f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)\right\rangle$.
(42) For every function f from $\operatorname{Seg} i$ into $\operatorname{Seg} j$ such that if $j=0$, then $i=0$ and $j \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence.
(43) For every function f from $\operatorname{Seg} i$ into $\operatorname{Seg} i$ such that $i \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence.
(44) For every function f from $\operatorname{dom} p$ into $\operatorname{dom} p$ holds $p \cdot f$ is a finite sequence.
(45) For every function f from Seg i into $\operatorname{Seg} i$ such that $\operatorname{rng} f=\operatorname{Seg} i$ and $i \leq \operatorname{len} p$ and $q=p \cdot f$ holds len $q=i$.
(46) For every function f from $\operatorname{dom} p$ into $\operatorname{dom} p$ such that $\operatorname{rng} f=\operatorname{dom} p$ and $q=p \cdot f$ holds $\operatorname{len} q=\operatorname{len} p$.
(47) For every permutation f of $\operatorname{Seg} i$ such that $i \leq \operatorname{len} p$ and $q=p \cdot f$ holds len $q=i$.
(48) For every permutation f of $\operatorname{dom} p$ such that $q=p \cdot f$ holds len $q=\operatorname{len} p$.
(49) Let p be a finite sequence of elements of D and f be a function from $\operatorname{Seg} i$ into $\operatorname{Seg} j$. Suppose if $j=0$, then $i=0$ and $j \leq \operatorname{len} p$. Then $p \cdot f$ is a finite sequence of elements of D.
(50) Let p be a finite sequence of elements of D and f be a function from $\operatorname{Seg} i$ into $\operatorname{Seg} i$. If $i \leq$ len p, then $p \cdot f$ is a finite sequence of elements of D.
(51) Let p be a finite sequence of elements of D and f be a function from $\operatorname{dom} p$ into $\operatorname{dom} p$. Then $p \cdot f$ is a finite sequence of elements of D.
(52) $\quad \operatorname{id}_{\operatorname{Seg} k}$ is a finite sequence of elements of \mathbb{N}.

Let i be a natural number. The functor $\mathrm{idseq}(i)$ yielding a finite sequence is defined by:
(Def. 1) $\operatorname{idseq}(i)=\operatorname{id}_{\operatorname{Seg}} i$.
The following propositions are true:
$(54)^{5}$ domidseq $(k)=\operatorname{Seg} k$.
(55) lenidseq $(k)=k$.
(56) If $j \in \operatorname{Seg} i$, then $(\operatorname{idseq}(i))(j)=j$.
(57) If $i \neq 0$, then for every element k of Seg i holds $(\operatorname{idseq}(i))(k)=k$.
(58) $\quad \operatorname{idseq}(0)=0$.
(59) $\quad \operatorname{idseq}(1)=\langle 1\rangle$.
(60) $\operatorname{idseq}(i+1)=(\operatorname{idseq}(i))^{\wedge}\langle i+1\rangle$.
(61) $\operatorname{idseq}(2)=\langle 1,2\rangle$.

[^2](62) $\quad \operatorname{idseq}(3)=\langle 1,2,3\rangle$.
(63) $p \cdot \operatorname{idseq}(k)=p \upharpoonright \operatorname{Seg} k$.
(64) If len $p \leq k$, then $p \cdot \operatorname{idseq}(k)=p$.
(65) $\operatorname{idseq}(k)$ is a permutation of $\operatorname{Seg} k$.
(66) $\operatorname{Seg} k \longmapsto a$ is a finite sequence.

Let i be a natural number and let a be a set. The functor $i \mapsto a$ yielding a finite sequence is defined as follows:
(Def. 2) $\quad i \mapsto a=\operatorname{Seg} i \longmapsto a$.
We now state a number of propositions:
(68 $]^{6} \quad \operatorname{dom}(k \mapsto a)=\operatorname{Seg} k$.
(69) $\operatorname{len}(k \mapsto a)=k$.
(70) If $b \in \operatorname{Seg} k$, then $(k \mapsto a)(b)=a$.
(71) If $k \neq 0$, then for every element w of $\operatorname{Seg} k$ holds $(k \mapsto d)(w)=d$.
(72) $0 \mapsto a=\emptyset$.
(73) $\quad 1 \mapsto a=\langle a\rangle$.
(74) $\quad(i+1) \mapsto a=(i \mapsto a)^{\wedge}\langle a\rangle$.
(75) $2 \mapsto a=\langle a, a\rangle$.
(76) $3 \mapsto a=\langle a, a, a\rangle$.
(77) $\quad k \mapsto d$ is a finite sequence of elements of D.
(78) For every function F such that $[: \operatorname{rng} p, \operatorname{rng} q:] \subseteq \operatorname{dom} F$ holds $F^{\circ}(p, q)$ is a finite sequence.
(79) For every function F such that $[: \operatorname{rng} p, \operatorname{rng} q:] \subseteq \operatorname{dom} F$ and $r=F^{\circ}(p, q)$ holds len $r=$ $\min (\operatorname{len} p, \operatorname{len} q)$.
(80) For every function F such that $[:\{a\}, \operatorname{rng} p:] \subseteq \operatorname{dom} F$ holds $F^{\circ}(a, p)$ is a finite sequence.
(81) For every function F such that $[:\{a\}, \operatorname{rng} p:] \subseteq \operatorname{dom} F$ and $r=F^{\circ}(a, p)$ holds len $r=\operatorname{len} p$.
(82) For every function F such that $[: \operatorname{rng} p,\{a\}:] \subseteq \operatorname{dom} F$ holds $F^{\circ}(p, a)$ is a finite sequence.
(83) For every function F such that $[: \operatorname{rng} p,\{a\}:] \subseteq \operatorname{dom} F$ and $r=F^{\circ}(p, a)$ holds len $r=\operatorname{len} p$.
(84) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. Then $F^{\circ}(p, q)$ is a finite sequence of elements of E.
(85) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. If $r=F^{\circ}(p, q)$, then len $r=\min (\operatorname{len} p$, len $q)$.
(86) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. If len $p=\operatorname{len} q$ and $r=F^{\circ}(p, q)$, then len $r=\operatorname{len} p$ and $\operatorname{len} r=\operatorname{len} q$.
(87) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and p^{\prime} be a finite sequence of elements of D^{\prime}. Then $F^{\circ}\left(\varepsilon_{D}, p^{\prime}\right)=\varepsilon_{E}$ and $F^{\circ}\left(p, \varepsilon_{D^{\prime}}\right)=\varepsilon_{E}$.

[^3](88) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}\right\rangle$ and $q=\left\langle d_{1}^{\prime}\right\rangle$, then $F^{\circ}(p, q)=\left\langle F\left(d_{1}, d_{1}^{\prime}\right)\right\rangle$.
(89) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}, d_{2}\right\rangle$ and $q=\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$, then $F^{\circ}(p, q)=\left\langle F\left(d_{1}\right.\right.$, $\left.\left.d_{1}^{\prime}\right), F\left(d_{2}, d_{2}^{\prime}\right)\right\rangle$.
(90) Let F be a function from [: $D, D^{\prime}:$ into E, p be a finite sequence of elements of D, and q be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ and $q=\left\langle d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\rangle$, then $F^{\circ}(p$, $q)=\left\langle F\left(d_{1}, d_{1}^{\prime}\right), F\left(d_{2}, d_{2}^{\prime}\right), F\left(d_{3}, d_{3}^{\prime}\right)\right\rangle$.
(91) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D^{\prime}. Then $F^{\circ}(d, p)$ is a finite sequence of elements of E.
(92) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D^{\prime}. If $r=F^{\circ}(d, p)$, then len $r=\operatorname{len} p$.
(93) For every function F from $\left[: D, D^{\prime} ;\right]$ into E holds $F^{\circ}\left(d, \varepsilon_{D^{\prime}}\right)=\varepsilon_{E}$.
(94) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}^{\prime}\right\rangle$, then $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right)\right\rangle$.
(95) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$, then $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right), F\left(d, d_{2}^{\prime}\right)\right\rangle$.
(96) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D^{\prime}. If $p=\left\langle d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\rangle$, then $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right), F\left(d, d_{2}^{\prime}\right), F\left(d, d_{3}^{\prime}\right)\right\rangle$.
(97) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D. Then $F^{\circ}\left(p, d^{\prime}\right)$ is a finite sequence of elements of E.
(98) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D. If $r=F^{\circ}\left(p, d^{\prime}\right)$, then len $r=\operatorname{len} p$.
(99) For every function F from $\left[: D, D^{\prime}:\right]$ into E holds $F^{\circ}\left(\varepsilon_{D}, d^{\prime}\right)=\varepsilon_{E}$.
(100) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E and p be a finite sequence of elements of D. If $p=\left\langle d_{1}\right\rangle$, then $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right)\right\rangle$.
(101) Let F be a function from [:D, $\left.D^{\prime}:\right]$ into E and p be a finite sequence of elements of D. If $p=\left\langle d_{1}, d_{2}\right\rangle$, then $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right), F\left(d_{2}, d^{\prime}\right)\right\rangle$.
(102) Let F be a function from [:D, $\left.D^{\prime}:\right]$ into E and p be a finite sequence of elements of D. If $p=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$, then $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right), F\left(d_{2}, d^{\prime}\right), F\left(d_{3}, d^{\prime}\right)\right\rangle$.

Let D be a set. A set is called a set of finite sequences of D if:
(Def. 3) If $a \in \mathrm{it}$, then a is a finite sequence of elements of D.
Let D be a set. Note that there exists a set of finite sequences of D which is non empty.
Let D be a set. A non empty set of finite sequences of D is a non empty set of finite sequences of D.

We now state the proposition
(104诸 For every set D holds D^{*} is a non empty set of finite sequences of D.
Let D be a set. Then D^{*} is a non empty set of finite sequences of D.
We now state the proposition
(105) For every set D and for every non empty set D^{\prime} of finite sequences of D holds $D^{\prime} \subseteq D^{*}$.

[^4]Let D be a set and let S be a non empty set of finite sequences of D. We see that the element of S is a finite sequence of elements of D.

The following proposition is true
$(107)^{8}$ For every non empty subset D^{\prime} of D holds every non empty set of finite sequences of D^{\prime} is a non empty set of finite sequences of D.

Let i be a natural number and let D be a set. The functor D^{i} yields a set of finite sequences of D and is defined by:
(Def. 4) $D^{i}=\left\{s ; s\right.$ ranges over elements of D^{*} : len $\left.s=i\right\}$.
Let i be a natural number and let us consider D. Note that D^{i} is non empty.
We now state a number of propositions:
(109 ${ }^{9}$ For every element z of D^{i} holds len $z=i$.
(110) For every set D holds every finite sequence z of elements of D is an element of $D^{\operatorname{len} z}$.
(111) $\quad D^{i}=D^{\operatorname{Seg} i}$.
(112) For every set D holds $D^{0}=\left\{\varepsilon_{D}\right\}$.
(113) For every set D and for every element z of D^{0} holds $z=\varepsilon_{D}$.
(114) For every set D holds ε_{D} is an element of D^{0}.
(115) For every element z of D^{0} and for every element t of D^{i} holds $z^{\wedge} t=t$ and $t^{\wedge} z=t$.
(116) $D^{1}=\{\langle d\rangle\}$.
(117) For every element z of D^{1} there exists d such that $z=\langle d\rangle$.
(118) $\langle d\rangle$ is an element of D^{1}.
(119) $D^{2}=\left\{\left\langle d_{1}, d_{2}\right\rangle\right\}$.
(120) For every element z of D^{2} there exist d_{1}, d_{2} such that $z=\left\langle d_{1}, d_{2}\right\rangle$.
(121) $\left\langle d_{1}, d_{2}\right\rangle$ is an element of D^{2}.
(122) $D^{3}=\left\{\left\langle d_{1}, d_{2}, d_{3}\right\rangle\right\}$.
(123) For every element z of D^{3} there exist d_{1}, d_{2}, d_{3} such that $z=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$.
(124) $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is an element of D^{3}.
(125) $D^{i+j}=\left\{z^{\wedge} t: z\right.$ ranges over elements of D^{i}, t ranges over elements of $\left.D^{j}\right\}$.
(126) For every element s of D^{i+j} there exists an element z of D^{i} and there exists an element t of D^{j} such that $s=z^{\wedge} t$.
(127) For every element z of D^{i} and for every element t of D^{j} holds $z^{\wedge} t$ is an element of D^{i+j}.
(128) $D^{*}=\bigcup\left\{D^{i}\right\}$.
(129) For every non empty subset D^{\prime} of D holds every element of $D^{\prime i}$ is an element of D^{i}.
(130) If $D^{i}=D^{j}$, then $i=j$.
(131) idseq (i) is an element of \mathbb{N}^{i}.
(132) $\quad i \mapsto d$ is an element of D^{i}.

[^5](133) For every element z of D^{i} and for every function f from D into D^{\prime} holds $f \cdot z$ is an element of $D^{\prime i}$.
(134) Let z be an element of D^{i} and f be a function from $\operatorname{Seg} i$ into $\operatorname{Seg} i$. If $\operatorname{rng} f=\operatorname{Seg} i$, then $z \cdot f$ is an element of D^{i}.
(135) For every element z of D^{i} and for every permutation f of Seg i holds $z \cdot f$ is an element of D^{i}.
(136) For every element z of D^{i} and for every d holds $\left(z^{\wedge}\langle d\rangle\right)(i+1)=d$.
(137) For every element z of D^{i+1} there exists an element t of D^{i} and there exists d such that $z=t^{\wedge}\langle d\rangle$.
(138) For every element z of D^{i} holds $z \cdot \operatorname{idseq}(i)=z$.
(139) For all elements z_{1}, z_{2} of D^{i} such that for every j such that $j \in \operatorname{Seg} i$ holds $z_{1}(j)=z_{2}(j)$ holds $z_{1}=z_{2}$.
(140) Let F be a function from $\left[: D, D^{\prime}:\right]$ into E, z_{1} be an element of D^{i}, and z_{2} be an element of $D^{\prime i}$. Then $F^{\circ}\left(z_{1}, z_{2}\right)$ is an element of E^{i}.
(141) For every function F from $\left[: D, D^{\prime}:\right]$ into E and for every element z of $D^{\prime i}$ holds $F^{\circ}(d, z)$ is an element of E^{i}.
(142) For every function F from $\left[: D, D^{\prime}:\right]$ into E and for every element z of D^{i} holds $F^{\circ}\left(z, d^{\prime}\right)$ is an element of E^{i}.
(143) $\quad(i+j) \mapsto x=(i \mapsto x)^{\wedge}(j \mapsto x)$.
(144) For all i, D and for every element x of D^{i} holds dom $x=\operatorname{Seg} i$.
(145) For every function f and for all sets x, y such that $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} f$ holds $f \cdot\langle x$, $y\rangle=\langle f(x), f(y)\rangle$.
(146) For every function f and for all sets x, y, z such that $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} f$ and $z \in \operatorname{dom} f$ holds $f \cdot\langle x, y, z\rangle=\langle f(x), f(y), f(z)\rangle$.
(147) $\operatorname{rng}\left\langle x_{1}, x_{2}\right\rangle=\left\{x_{1}, x_{2}\right\}$.
(148) $\operatorname{rng}\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\{x_{1}, x_{2}, x_{3}\right\}$.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. Ordinal2.html
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[5] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[10] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
[11] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
[12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
[16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received March 1, 1990

Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (7) has been removed.
 ${ }^{2}$ The proposition (12) has been removed.

[^1]: ${ }^{3}$ The proposition (17) has been removed.
 ${ }^{4}$ The proposition (29) has been removed.

[^2]: ${ }^{5}$ The proposition (53) has been removed.

[^3]: ${ }^{6}$ The proposition (67) has been removed.

[^4]: ${ }^{7}$ The proposition (103) has been removed.

[^5]: ${ }^{8}$ The proposition (106) has been removed.
 ${ }^{9}$ The proposition (108) has been removed.

