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Summary. The first part of the article is a continuation of [4]. Next, we define the
identity sequence of natural numbers and the constant sequences. The main part of this article
is the definition of tuples. The element of a set of all sequences of the lengthn of D is called
a tuple of a non-empty setD and it is denoted by element ofDn. Also some basic facts about
tuples of a non-empty set are proved.
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The articles [13], [12], [9], [16], [2], [3], [14], [11], [1], [15], [17], [6], [8], [7], [4], [5], and [10]
provide the notation and terminology for this paper.

For simplicity, we adopt the following convention:i, j, l are natural numbers,k is a natural
number,A, a, b, x, x1, x2, x3 are sets,D, D′, E are non empty sets,d, d1, d2, d3 are elements ofD,
d′, d′1, d′2, d′3 are elements ofD′, andp, q, r are finite sequences.

One can prove the following propositions:

(1) min(i, j) is a natural number and max(i, j) is a natural number.

(2) If l = min(i, j), then Segi∩Segj = Segl .

(3) If i ≤ j, then max(0, i− j) = 0.

(4) If j ≤ i, then max(0, i− j) = i− j.

(5) max(0, i− j) is a natural number.

(6) min(0, i) = 0 and min(i,0) = 0 and max(0, i) = i and max(i,0) = i.

(8)1 If i ∈ Seg(l +1), theni ∈ Segl or i = l +1.

(9) If i ∈ Segl , theni ∈ Seg(l + j).

(10) If lenp = i and lenq = i and for everyj such thatj ∈ Segi holdsp( j) = q( j), thenp = q.

(11) If b∈ rngp, then there existsi such thati ∈ domp andp(i) = b.

(13)2 For every setD and for every finite sequencep of elements ofD such thati ∈ domp holds
p(i) ∈ D.

1 The proposition (7) has been removed.
2 The proposition (12) has been removed.
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(14) For every setD such that for everyi such thati ∈ domp holdsp(i) ∈ D holdsp is a finite
sequence of elements ofD.

(15) 〈d1,d2〉 is a finite sequence of elements ofD.

(16) 〈d1,d2,d3〉 is a finite sequence of elements ofD.

(18)3 If i ∈ domp, theni ∈ dom(pa q).

(19) len(pa 〈a〉) = lenp+1.

(20) If pa 〈a〉= qa 〈b〉, thenp = q anda = b.

(21) If lenp = i +1, then there existq, a such thatp = qa 〈a〉.

(22) Let p be a finite sequence of elements ofD. Suppose lenp 6= 0. Then there exists a finite
sequenceq of elements ofD and there existsd such thatp = qa 〈d〉.

(23) If q = p�Segi and lenp≤ i, thenp = q.

(24) If q = p�Segi, then lenq = min(i, lenp).

(25) If lenr = i + j, then there existp, q such that lenp = i and lenq = j andr = pa q.

(26) Let r be a finite sequence of elements ofD. Suppose lenr = i + j. Then there exist finite
sequencesp, q of elements ofD such that lenp = i and lenq = j andr = pa q.

In this article we present several logical schemes. The schemeSeqLambdaDdeals with a natural
numberA , a non empty setB, and a unary functorF yielding an element ofB, and states that:

There exists a finite sequencez of elements ofB such that lenz= A and for everyj
such thatj ∈ SegA holdsz( j) = F ( j)

for all values of the parameters.
The schemeIndSeqDdeals with a non empty setA and a unary predicateP , and states that:

For every finite sequencep of elements ofA holdsP [p]
provided the parameters meet the following conditions:

• P [εA ], and
• For every finite sequencep of elements ofA and for every elementx of A such that

P [p] holdsP [pa 〈x〉].
One can prove the following propositions:

(27) For every non empty subsetD′ of D holds every finite sequence of elements ofD′ is a finite
sequence of elements ofD.

(28) Every function from Segi into D is a finite sequence of elements ofD.

(30)4 Every finite sequencep of elements ofD is a function from domp into D.

(31) For every functionf from N into D holds f �Segi is a finite sequence of elements ofD.

(32) For every functionf from N into D such thatq = f �Segi holds lenq = i.

(33) For every functionf such that rngp⊆ dom f andq = f · p holds lenq = lenp.

(34) SupposeD = Segi. Let p be a finite sequence andq be a finite sequence of elements ofD.
If i ≤ lenp, thenp·q is a finite sequence.

(35) SupposeD = Segi. Let p be a finite sequence of elements ofD′ andq be a finite sequence
of elements ofD. If i ≤ lenp, thenp·q is a finite sequence of elements ofD′.

(36) LetA, D be sets,p be a finite sequence of elements ofA, and f be a function fromA into
D. Then f · p is a finite sequence of elements ofD.

3 The proposition (17) has been removed.
4 The proposition (29) has been removed.
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(37) Let p be a finite sequence of elements ofA and f be a function fromA into D′. If q = f · p,
then lenq = lenp.

(38) For every functionf from A into D′ holds f · εA = εD′ .

(39) Letp be a finite sequence of elements ofD and f be a function fromD into D′. If p= 〈x1〉,
then f · p = 〈 f (x1)〉.

(40) Let p be a finite sequence of elements ofD and f be a function fromD into D′. If p = 〈x1,
x2〉, then f · p = 〈 f (x1), f (x2)〉.

(41) Let p be a finite sequence of elements ofD and f be a function fromD into D′. If p = 〈x1,
x2,x3〉, then f · p = 〈 f (x1), f (x2), f (x3)〉.

(42) For every functionf from Segi into Segj such that ifj = 0, theni = 0 and j ≤ lenp holds
p· f is a finite sequence.

(43) For every functionf from Segi into Segi such thati ≤ lenp holdsp· f is a finite sequence.

(44) For every functionf from domp into domp holdsp· f is a finite sequence.

(45) For every functionf from Segi into Segi such that rngf = Segi andi ≤ lenp andq = p· f
holds lenq = i.

(46) For every functionf from domp into domp such that rngf = domp andq = p · f holds
lenq = lenp.

(47) For every permutationf of Segi such thati ≤ lenp andq = p· f holds lenq = i.

(48) For every permutationf of domp such thatq = p· f holds lenq = lenp.

(49) Let p be a finite sequence of elements ofD and f be a function from Segi into Segj.
Suppose ifj = 0, theni = 0 and j ≤ lenp. Thenp· f is a finite sequence of elements ofD.

(50) Let p be a finite sequence of elements ofD and f be a function from Segi into Segi. If
i ≤ lenp, thenp· f is a finite sequence of elements ofD.

(51) Let p be a finite sequence of elements ofD and f be a function from domp into domp.
Thenp· f is a finite sequence of elements ofD.

(52) idSegk is a finite sequence of elements ofN.

Let i be a natural number. The functor idseq(i) yielding a finite sequence is defined by:

(Def. 1) idseq(i) = idSegi .

The following propositions are true:

(54)5 domidseq(k) = Segk.

(55) len idseq(k) = k.

(56) If j ∈ Segi, then(idseq(i))( j) = j.

(57) If i 6= 0, then for every elementk of Segi holds(idseq(i))(k) = k.

(58) idseq(0) = /0.

(59) idseq(1) = 〈1〉.

(60) idseq(i +1) = (idseq(i))a 〈i +1〉.

(61) idseq(2) = 〈1,2〉.
5 The proposition (53) has been removed.
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(62) idseq(3) = 〈1,2,3〉.

(63) p· idseq(k) = p�Segk.

(64) If lenp≤ k, thenp· idseq(k) = p.

(65) idseq(k) is a permutation of Segk.

(66) Segk 7−→ a is a finite sequence.

Let i be a natural number and leta be a set. The functori 7→ a yielding a finite sequence is
defined as follows:

(Def. 2) i 7→ a = Segi 7−→ a.

We now state a number of propositions:

(68)6 dom(k 7→ a) = Segk.

(69) len(k 7→ a) = k.

(70) If b∈ Segk, then(k 7→ a)(b) = a.

(71) If k 6= 0, then for every elementw of Segk holds(k 7→ d)(w) = d.

(72) 0 7→ a = /0.

(73) 1 7→ a = 〈a〉.

(74) (i +1) 7→ a = (i 7→ a)a 〈a〉.

(75) 2 7→ a = 〈a,a〉.

(76) 3 7→ a = 〈a,a,a〉.

(77) k 7→ d is a finite sequence of elements ofD.

(78) For every functionF such that[: rngp, rngq:]⊆ domF holdsF◦(p, q) is a finite sequence.

(79) For every functionF such that[: rngp, rngq:] ⊆ domF and r = F◦(p, q) holds lenr =
min(lenp, lenq).

(80) For every functionF such that[:{a}, rngp:]⊆ domF holdsF◦(a, p) is a finite sequence.

(81) For every functionF such that[:{a}, rngp:]⊆ domF andr = F◦(a, p) holds lenr = lenp.

(82) For every functionF such that[: rngp, {a} :]⊆ domF holdsF◦(p,a) is a finite sequence.

(83) For every functionF such that[: rngp, {a} :]⊆ domF andr = F◦(p,a) holds lenr = lenp.

(84) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq be
a finite sequence of elements ofD′. ThenF◦(p, q) is a finite sequence of elements ofE.

(85) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq be
a finite sequence of elements ofD′. If r = F◦(p, q), then lenr = min(lenp, lenq).

(86) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq be
a finite sequence of elements ofD′. If len p = lenq andr = F◦(p, q), then lenr = lenp and
lenr = lenq.

(87) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andp′

be a finite sequence of elements ofD′. ThenF◦(εD, p′) = εE andF◦(p, εD′) = εE.

6 The proposition (67) has been removed.
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(88) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq be
a finite sequence of elements ofD′. If p = 〈d1〉 andq = 〈d′1〉, thenF◦(p, q) = 〈F(d1, d′1)〉.

(89) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq be
a finite sequence of elements ofD′. If p = 〈d1,d2〉 andq = 〈d′1,d′2〉, thenF◦(p, q) = 〈F(d1,
d′1),F(d2, d′2)〉.

(90) LetF be a function from[:D, D′ :] into E, p be a finite sequence of elements ofD, andq
be a finite sequence of elements ofD′. If p = 〈d1,d2,d3〉 andq = 〈d′1,d′2,d′3〉, thenF◦(p,
q) = 〈F(d1, d′1),F(d2, d′2),F(d3, d′3)〉.

(91) LetF be a function from[:D, D′ :] into E andp be a finite sequence of elements ofD′. Then
F◦(d, p) is a finite sequence of elements ofE.

(92) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD′. If
r = F◦(d, p), then lenr = lenp.

(93) For every functionF from [:D, D′ :] into E holdsF◦(d,εD′) = εE.

(94) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD′. If
p = 〈d′1〉, thenF◦(d, p) = 〈F(d, d′1)〉.

(95) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD′. If
p = 〈d′1,d′2〉, thenF◦(d, p) = 〈F(d, d′1),F(d, d′2)〉.

(96) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD′. If
p = 〈d′1,d′2,d′3〉, thenF◦(d, p) = 〈F(d, d′1),F(d, d′2),F(d, d′3)〉.

(97) LetF be a function from[:D, D′ :] into E andp be a finite sequence of elements ofD. Then
F◦(p,d′) is a finite sequence of elements ofE.

(98) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD. If
r = F◦(p,d′), then lenr = lenp.

(99) For every functionF from [:D, D′ :] into E holdsF◦(εD,d′) = εE.

(100) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD. If
p = 〈d1〉, thenF◦(p,d′) = 〈F(d1, d′)〉.

(101) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD. If
p = 〈d1,d2〉, thenF◦(p,d′) = 〈F(d1, d′),F(d2, d′)〉.

(102) LetF be a function from[:D, D′ :] into E and p be a finite sequence of elements ofD. If
p = 〈d1,d2,d3〉, thenF◦(p,d′) = 〈F(d1, d′),F(d2, d′),F(d3, d′)〉.

Let D be a set. A set is called a set of finite sequences ofD if:

(Def. 3) If a∈ it, thena is a finite sequence of elements ofD.

Let D be a set. Note that there exists a set of finite sequences ofD which is non empty.
Let D be a set. A non empty set of finite sequences ofD is a non empty set of finite sequences

of D.
We now state the proposition

(104)7 For every setD holdsD∗ is a non empty set of finite sequences ofD.

Let D be a set. ThenD∗ is a non empty set of finite sequences ofD.
We now state the proposition

(105) For every setD and for every non empty setD′ of finite sequences ofD holdsD′ ⊆ D∗.

7 The proposition (103) has been removed.
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Let D be a set and letSbe a non empty set of finite sequences ofD. We see that the element of
S is a finite sequence of elements ofD.

The following proposition is true

(107)8 For every non empty subsetD′ of D holds every non empty set of finite sequences ofD′ is
a non empty set of finite sequences ofD.

Let i be a natural number and letD be a set. The functorDi yields a set of finite sequences ofD
and is defined by:

(Def. 4) Di = {s;s ranges over elements ofD∗: lens= i}.

Let i be a natural number and let us considerD. Note thatDi is non empty.
We now state a number of propositions:

(109)9 For every elementz of Di holds lenz= i.

(110) For every setD holds every finite sequencez of elements ofD is an element ofDlenz.

(111) Di = DSegi .

(112) For every setD holdsD0 = {εD}.

(113) For every setD and for every elementz of D0 holdsz= εD.

(114) For every setD holdsεD is an element ofD0.

(115) For every elementz of D0 and for every elementt of Di holdsza t = t andt a z= t.

(116) D1 = {〈d〉}.

(117) For every elementz of D1 there existsd such thatz= 〈d〉.

(118) 〈d〉 is an element ofD1.

(119) D2 = {〈d1,d2〉}.

(120) For every elementz of D2 there existd1, d2 such thatz= 〈d1,d2〉.

(121) 〈d1,d2〉 is an element ofD2.

(122) D3 = {〈d1,d2,d3〉}.

(123) For every elementz of D3 there existd1, d2, d3 such thatz= 〈d1,d2,d3〉.

(124) 〈d1,d2,d3〉 is an element ofD3.

(125) Di+ j = {za t : z ranges over elements ofDi , t ranges over elements ofD j}.

(126) For every elementsof Di+ j there exists an elementzof Di and there exists an elementt of
D j such thats= za t.

(127) For every elementz of Di and for every elementt of D j holdsza t is an element ofDi+ j .

(128) D∗ =
⋃
{Di}.

(129) For every non empty subsetD′ of D holds every element ofD′i is an element ofDi .

(130) If Di = D j , theni = j.

(131) idseq(i) is an element ofNi .

(132) i 7→ d is an element ofDi .

8 The proposition (106) has been removed.
9 The proposition (108) has been removed.
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(133) For every elementz of Di and for every functionf from D into D′ holds f ·z is an element
of D′i .

(134) Letz be an element ofDi and f be a function from Segi into Segi. If rng f = Segi, then
z· f is an element ofDi .

(135) For every elementz of Di and for every permutationf of Segi holdsz· f is an element of
Di .

(136) For every elementz of Di and for everyd holds(za 〈d〉)(i +1) = d.

(137) For every elementz of Di+1 there exists an elementt of Di and there existsd such that
z= t a 〈d〉.

(138) For every elementz of Di holdsz· idseq(i) = z.

(139) For all elementsz1, z2 of Di such that for everyj such thatj ∈ Segi holdsz1( j) = z2( j)
holdsz1 = z2.

(140) LetF be a function from[:D, D′ :] into E, z1 be an element ofDi , andz2 be an element of
D′i . ThenF◦(z1, z2) is an element ofEi .

(141) For every functionF from [:D, D′ :] into E and for every elementz of D′i holdsF◦(d,z) is
an element ofEi .

(142) For every functionF from [:D, D′ :] into E and for every elementz of Di holdsF◦(z,d′) is
an element ofEi .

(143) (i + j) 7→ x = (i 7→ x)a ( j 7→ x).

(144) For alli, D and for every elementx of Di holds domx = Segi.

(145) For every functionf and for all setsx, y such thatx ∈ dom f andy∈ dom f holds f · 〈x,
y〉= 〈 f (x), f (y)〉.

(146) For every functionf and for all setsx, y, zsuch thatx∈ dom f andy∈ dom f andz∈ dom f
holds f · 〈x,y,z〉= 〈 f (x), f (y), f (z)〉.

(147) rng〈x1,x2〉= {x1,x2}.

(148) rng〈x1,x2,x3〉= {x1,x2,x3}.
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