Finite Sequences and Tuples of Elements of a Non-empty Sets

Czesław Byliński Warsaw University Białystok

Summary. The first part of the article is a continuation of [4]. Next, we define the identity sequence of natural numbers and the constant sequences. The main part of this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a non-empty set D and it is denoted by element of D^n . Also some basic facts about tuples of a non-empty set are proved.

MML Identifier: FINSEQ_2.

WWW: http://mizar.org/JFM/Vol2/finseq_2.html

The articles [13], [12], [9], [16], [2], [3], [14], [11], [1], [15], [17], [6], [8], [7], [4], [5], and [10] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: *i*, *j*, *l* are natural numbers, *k* is a natural number, *A*, *a*, *b*, *x*, x_1 , x_2 , x_3 are sets, *D*, *D'*, *E* are non empty sets, *d*, d_1 , d_2 , d_3 are elements of *D*, d', d'_1 , d'_2 , d'_3 are elements of *D'*, and *p*, *q*, *r* are finite sequences.

One can prove the following propositions:

- (1) $\min(i, j)$ is a natural number and $\max(i, j)$ is a natural number.
- (2) If $l = \min(i, j)$, then $\operatorname{Seg} i \cap \operatorname{Seg} j = \operatorname{Seg} l$.
- (3) If $i \le j$, then $\max(0, i j) = 0$.
- (4) If $j \le i$, then $\max(0, i j) = i j$.
- (5) $\max(0, i j)$ is a natural number.
- (6) $\min(0,i) = 0$ and $\min(i,0) = 0$ and $\max(0,i) = i$ and $\max(i,0) = i$.
- (8)¹ If $i \in \text{Seg}(l+1)$, then $i \in \text{Seg} l$ or i = l+1.
- (9) If $i \in \text{Seg} l$, then $i \in \text{Seg}(l+j)$.
- (10) If len p = i and len q = i and for every j such that $j \in \text{Seg } i$ holds p(j) = q(j), then p = q.
- (11) If $b \in \operatorname{rng} p$, then there exists *i* such that $i \in \operatorname{dom} p$ and p(i) = b.
- (13)² For every set *D* and for every finite sequence *p* of elements of *D* such that $i \in \text{dom } p$ holds $p(i) \in D$.

¹ The proposition (7) has been removed.

 $^{^2}$ The proposition (12) has been removed.

- (14) For every set *D* such that for every *i* such that $i \in \text{dom } p$ holds $p(i) \in D$ holds *p* is a finite sequence of elements of *D*.
- (15) $\langle d_1, d_2 \rangle$ is a finite sequence of elements of *D*.
- (16) $\langle d_1, d_2, d_3 \rangle$ is a finite sequence of elements of *D*.
- (18)³ If $i \in \operatorname{dom} p$, then $i \in \operatorname{dom}(p \cap q)$.
- (19) $\operatorname{len}(p \cap \langle a \rangle) = \operatorname{len} p + 1.$
- (20) If $p \cap \langle a \rangle = q \cap \langle b \rangle$, then p = q and a = b.
- (21) If len p = i + 1, then there exist q, a such that $p = q \land \langle a \rangle$.
- (22) Let p be a finite sequence of elements of D. Suppose len $p \neq 0$. Then there exists a finite sequence q of elements of D and there exists d such that $p = q \land \langle d \rangle$.
- (23) If $q = p \upharpoonright \text{Seg } i$ and len $p \le i$, then p = q.
- (24) If $q = p \upharpoonright \text{Seg} i$, then $\text{len } q = \min(i, \text{len } p)$.
- (25) If len r = i + j, then there exist p, q such that len p = i and len q = j and $r = p \cap q$.
- (26) Let *r* be a finite sequence of elements of *D*. Suppose len r = i + j. Then there exist finite sequences *p*, *q* of elements of *D* such that len p = i and len q = j and $r = p \cap q$.

In this article we present several logical schemes. The scheme SeqLambdaD deals with a natural number \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} , and states that:

There exists a finite sequence z of elements of \mathcal{B} such that $\text{len} z = \mathcal{A}$ and for every j such that $j \in \text{Seg } \mathcal{A}$ holds $z(j) = \mathcal{F}(j)$

for all values of the parameters.

The scheme *IndSeqD* deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every finite sequence p of elements of \mathcal{A} holds $\mathcal{P}[p]$

provided the parameters meet the following conditions:

- $\mathscr{P}[\mathfrak{e}_{\mathscr{A}}]$, and
- For every finite sequence *p* of elements of \mathcal{A} and for every element *x* of \mathcal{A} such that $\mathcal{P}[p]$ holds $\mathcal{P}[p^{\frown}\langle x \rangle]$.

One can prove the following propositions:

- (27) For every non empty subset D' of D holds every finite sequence of elements of D' is a finite sequence of elements of D.
- (28) Every function from Seg i into D is a finite sequence of elements of D.
- $(30)^4$ Every finite sequence p of elements of D is a function from dom p into D.
- (31) For every function f from N into D holds $f \upharpoonright \text{Seg} i$ is a finite sequence of elements of D.
- (32) For every function f from \mathbb{N} into D such that $q = f \upharpoonright \text{Seg } i$ holds len q = i.
- (33) For every function f such that rng $p \subseteq \text{dom } f$ and $q = f \cdot p$ holds len q = len p.
- (34) Suppose D = Seg i. Let p be a finite sequence and q be a finite sequence of elements of D. If $i \le \text{len } p$, then $p \cdot q$ is a finite sequence.
- (35) Suppose D = Seg i. Let p be a finite sequence of elements of D' and q be a finite sequence of elements of D. If $i \le \text{len } p$, then $p \cdot q$ is a finite sequence of elements of D'.
- (36) Let A, D be sets, p be a finite sequence of elements of A, and f be a function from A into D. Then $f \cdot p$ is a finite sequence of elements of D.

³ The proposition (17) has been removed.

⁴ The proposition (29) has been removed.

- (37) Let *p* be a finite sequence of elements of *A* and *f* be a function from *A* into *D'*. If $q = f \cdot p$, then len q = len p.
- (38) For every function *f* from *A* into *D'* holds $f \cdot \varepsilon_A = \varepsilon_{D'}$.
- (39) Let *p* be a finite sequence of elements of *D* and *f* be a function from *D* into *D'*. If $p = \langle x_1 \rangle$, then $f \cdot p = \langle f(x_1) \rangle$.
- (40) Let *p* be a finite sequence of elements of *D* and *f* be a function from *D* into *D'*. If $p = \langle x_1, x_2 \rangle$, then $f \cdot p = \langle f(x_1), f(x_2) \rangle$.
- (41) Let *p* be a finite sequence of elements of *D* and *f* be a function from *D* into *D'*. If $p = \langle x_1, x_2, x_3 \rangle$, then $f \cdot p = \langle f(x_1), f(x_2), f(x_3) \rangle$.
- (42) For every function f from Seg i into Seg j such that if j = 0, then i = 0 and $j \le \text{len } p$ holds $p \cdot f$ is a finite sequence.
- (43) For every function f from Segi into Segi such that $i \leq \text{len } p$ holds $p \cdot f$ is a finite sequence.
- (44) For every function f from dom p into dom p holds $p \cdot f$ is a finite sequence.
- (45) For every function f from Seg i into Seg i such that rng f = Seg i and $i \le \text{len } p$ and $q = p \cdot f$ holds len q = i.
- (46) For every function f from dom p into dom p such that $\operatorname{rng} f = \operatorname{dom} p$ and $q = p \cdot f$ holds $\operatorname{len} q = \operatorname{len} p$.
- (47) For every permutation f of Seg i such that $i \leq \text{len } p$ and $q = p \cdot f$ holds len q = i.
- (48) For every permutation f of dom p such that $q = p \cdot f$ holds len q = len p.
- (49) Let *p* be a finite sequence of elements of *D* and *f* be a function from Seg*i* into Seg*j*. Suppose if j = 0, then i = 0 and $j \le \text{len } p$. Then $p \cdot f$ is a finite sequence of elements of *D*.
- (50) Let *p* be a finite sequence of elements of *D* and *f* be a function from Seg*i* into Seg*i*. If $i \le \text{len } p$, then $p \cdot f$ is a finite sequence of elements of *D*.
- (51) Let p be a finite sequence of elements of D and f be a function from dom p into dom p. Then $p \cdot f$ is a finite sequence of elements of D.
- (52) $\operatorname{id}_{\operatorname{Seg} k}$ is a finite sequence of elements of \mathbb{N} .

Let *i* be a natural number. The functor idseq(i) yielding a finite sequence is defined by:

(Def. 1) $idseq(i) = id_{Segi}$.

The following propositions are true:

- $(54)^5$ domidseq $(k) = \operatorname{Seg} k$.
- (55) $\operatorname{lenidseq}(k) = k.$
- (56) If $j \in \text{Seg } i$, then (idseq(i))(j) = j.
- (57) If $i \neq 0$, then for every element k of Seg i holds (idseq(i))(k) = k.
- (58) $idseq(0) = \emptyset$.
- (59) $\operatorname{idseq}(1) = \langle 1 \rangle.$
- (60) $\operatorname{idseq}(i+1) = (\operatorname{idseq}(i)) \cap \langle i+1 \rangle.$
- (61) $idseq(2) = \langle 1, 2 \rangle.$

⁵ The proposition (53) has been removed.

- (62) idseq(3) = (1, 2, 3).
- (63) $p \cdot \operatorname{idseq}(k) = p \upharpoonright \operatorname{Seg} k.$
- (64) If len $p \le k$, then $p \cdot idseq(k) = p$.
- (65) idseq(k) is a permutation of Segk.
- (66) Seg $k \mapsto a$ is a finite sequence.

Let *i* be a natural number and let *a* be a set. The functor $i \mapsto a$ yielding a finite sequence is defined as follows:

(Def. 2) $i \mapsto a = \operatorname{Seg} i \longmapsto a$.

We now state a number of propositions:

- $(68)^6$ dom $(k \mapsto a) = \operatorname{Seg} k$.
- (69) $\operatorname{len}(k \mapsto a) = k.$
- (70) If $b \in \operatorname{Seg} k$, then $(k \mapsto a)(b) = a$.
- (71) If $k \neq 0$, then for every element w of Seg k holds $(k \mapsto d)(w) = d$.

(72)
$$0 \mapsto a = \emptyset.$$

(73)
$$1 \mapsto a = \langle a \rangle$$
.

(74) $(i+1) \mapsto a = (i \mapsto a) \land \langle a \rangle.$

(75)
$$2 \mapsto a = \langle a, a \rangle.$$

- (76) $3 \mapsto a = \langle a, a, a \rangle.$
- (77) $k \mapsto d$ is a finite sequence of elements of *D*.
- (78) For every function F such that $[:rng p, rng q] \subseteq dom F$ holds $F^{\circ}(p, q)$ is a finite sequence.
- (79) For every function F such that $[: \operatorname{rng} p, \operatorname{rng} q:] \subseteq \operatorname{dom} F$ and $r = F^{\circ}(p, q)$ holds $\operatorname{len} r = \min(\operatorname{len} p, \operatorname{len} q)$.
- (80) For every function F such that $[: \{a\}, \operatorname{rng} p:] \subseteq \operatorname{dom} F$ holds $F^{\circ}(a, p)$ is a finite sequence.
- (81) For every function F such that $[: \{a\}, \operatorname{rng} p :] \subseteq \operatorname{dom} F$ and $r = F^{\circ}(a, p)$ holds $\operatorname{len} r = \operatorname{len} p$.
- (82) For every function F such that $[: \operatorname{rng} p, \{a\}:] \subseteq \operatorname{dom} F$ holds $F^{\circ}(p, a)$ is a finite sequence.
- (83) For every function F such that $[\operatorname{rng} p, \{a\}] \subseteq \operatorname{dom} F$ and $r = F^{\circ}(p, a)$ holds $\operatorname{len} r = \operatorname{len} p$.
- (84) Let *F* be a function from [:D, D':] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. Then $F^{\circ}(p, q)$ is a finite sequence of elements of *E*.
- (85) Let *F* be a function from [:D, D':] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. If $r = F^{\circ}(p, q)$, then len $r = \min(\text{len } p, \text{len } q)$.
- (86) Let *F* be a function from [D, D'] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. If len p = len q and $r = F^{\circ}(p, q)$, then len r = len p and len r = len q.
- (87) Let *F* be a function from [:D, D':] into *E*, *p* be a finite sequence of elements of *D*, and *p'* be a finite sequence of elements of *D'*. Then $F^{\circ}(\varepsilon_D, p') = \varepsilon_E$ and $F^{\circ}(p, \varepsilon_{D'}) = \varepsilon_E$.

⁶ The proposition (67) has been removed.

- (88) Let *F* be a function from [D, D'] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. If $p = \langle d_1 \rangle$ and $q = \langle d'_1 \rangle$, then $F^{\circ}(p, q) = \langle F(d_1, d'_1) \rangle$.
- (89) Let *F* be a function from [:D, D':] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. If $p = \langle d_1, d_2 \rangle$ and $q = \langle d'_1, d'_2 \rangle$, then $F^{\circ}(p, q) = \langle F(d_1, d'_1), F(d_2, d'_2) \rangle$.
- (90) Let *F* be a function from [:D, D':] into *E*, *p* be a finite sequence of elements of *D*, and *q* be a finite sequence of elements of *D'*. If $p = \langle d_1, d_2, d_3 \rangle$ and $q = \langle d'_1, d'_2, d'_3 \rangle$, then $F^{\circ}(p, q) = \langle F(d_1, d'_1), F(d_2, d'_2), F(d_3, d'_3) \rangle$.
- (91) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D'*. Then $F^{\circ}(d, p)$ is a finite sequence of elements of *E*.
- (92) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D'*. If $r = F^{\circ}(d, p)$, then len r = len p.
- (93) For every function *F* from [:*D*, *D'*:] into *E* holds $F^{\circ}(d, \varepsilon_{D'}) = \varepsilon_E$.
- (94) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D'*. If $p = \langle d'_1 \rangle$, then $F^{\circ}(d, p) = \langle F(d, d'_1) \rangle$.
- (95) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D'*. If $p = \langle d'_1, d'_2 \rangle$, then $F^{\circ}(d, p) = \langle F(d, d'_1), F(d, d'_2) \rangle$.
- (96) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D'*. If $p = \langle d'_1, d'_2, d'_3 \rangle$, then $F^{\circ}(d, p) = \langle F(d, d'_1), F(d, d'_2), F(d, d'_3) \rangle$.
- (97) Let *F* be a function from [D, D'] into *E* and *p* be a finite sequence of elements of *D*. Then $F^{\circ}(p, d')$ is a finite sequence of elements of *E*.
- (98) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D*. If $r = F^{\circ}(p, d')$, then len r = len p.
- (99) For every function *F* from [: *D*, *D'* :] into *E* holds $F^{\circ}(\varepsilon_D, d') = \varepsilon_E$.
- (100) Let *F* be a function from [:D, D':] into *E* and *p* be a finite sequence of elements of *D*. If $p = \langle d_1 \rangle$, then $F^{\circ}(p, d') = \langle F(d_1, d') \rangle$.
- (101) Let F be a function from [:D, D':] into E and p be a finite sequence of elements of D. If $p = \langle d_1, d_2 \rangle$, then $F^{\circ}(p, d') = \langle F(d_1, d'), F(d_2, d') \rangle$.
- (102) Let F be a function from [:D, D':] into E and p be a finite sequence of elements of D. If $p = \langle d_1, d_2, d_3 \rangle$, then $F^{\circ}(p, d') = \langle F(d_1, d'), F(d_2, d'), F(d_3, d') \rangle$.

Let *D* be a set. A set is called a set of finite sequences of *D* if:

(Def. 3) If $a \in it$, then a is a finite sequence of elements of D.

Let D be a set. Note that there exists a set of finite sequences of D which is non empty. Let D be a set. A non empty set of finite sequences of D is a non empty set of finite sequences

of D.

We now state the proposition

 $(104)^7$ For every set *D* holds D^* is a non empty set of finite sequences of *D*.

Let *D* be a set. Then D^* is a non empty set of finite sequences of *D*. We now state the proposition

(105) For every set D and for every non empty set D' of finite sequences of D holds $D' \subseteq D^*$.

⁷ The proposition (103) has been removed.

Let D be a set and let S be a non empty set of finite sequences of D. We see that the element of S is a finite sequence of elements of D.

The following proposition is true

 $(107)^8$ For every non empty subset D' of D holds every non empty set of finite sequences of D' is a non empty set of finite sequences of D.

Let *i* be a natural number and let *D* be a set. The functor D^i yields a set of finite sequences of *D* and is defined by:

(Def. 4) $D^i = \{s; s \text{ ranges over elements of } D^*: \text{len } s = i\}.$

Let *i* be a natural number and let us consider *D*. Note that D^i is non empty. We now state a number of propositions:

- (109)⁹ For every element z of D^i holds len z = i.
- (110) For every set D holds every finite sequence z of elements of D is an element of $D^{\text{len } z}$.
- $(111) \quad D^i = D^{\operatorname{Seg} i}.$
- (112) For every set *D* holds $D^0 = {\epsilon_D}$.
- (113) For every set *D* and for every element *z* of D^0 holds $z = \varepsilon_D$.
- (114) For every set *D* holds ε_D is an element of D^0 .
- (115) For every element z of D^0 and for every element t of D^i holds $z \cap t = t$ and $t \cap z = t$.

(116)
$$D^1 = \{\langle d \rangle\}.$$

- (117) For every element z of D^1 there exists d such that $z = \langle d \rangle$.
- (118) $\langle d \rangle$ is an element of D^1 .

(119)
$$D^2 = \{ \langle d_1, d_2 \rangle \}.$$

- (120) For every element z of D^2 there exist d_1 , d_2 such that $z = \langle d_1, d_2 \rangle$.
- (121) $\langle d_1, d_2 \rangle$ is an element of D^2 .
- (122) $D^3 = \{ \langle d_1, d_2, d_3 \rangle \}.$
- (123) For every element z of D^3 there exist d_1, d_2, d_3 such that $z = \langle d_1, d_2, d_3 \rangle$.
- (124) $\langle d_1, d_2, d_3 \rangle$ is an element of D^3 .
- (125) $D^{i+j} = \{z \cap t : z \text{ ranges over elements of } D^i, t \text{ ranges over elements of } D^j\}.$
- (126) For every element *s* of D^{i+j} there exists an element *z* of D^i and there exists an element *t* of D^j such that $s = z^{-}t$.

(127) For every element z of D^i and for every element t of D^j holds $z \cap t$ is an element of D^{i+j} .

(128)
$$D^* = \bigcup \{D^i\}.$$

- (129) For every non empty subset D' of D holds every element of D'^i is an element of D^i .
- (130) If $D^i = D^j$, then i = j.
- (131) idseq(*i*) is an element of \mathbb{N}^i .
- (132) $i \mapsto d$ is an element of D^i .

⁸ The proposition (106) has been removed.

⁹ The proposition (108) has been removed.

- (133) For every element z of D^i and for every function f from D into D' holds $f \cdot z$ is an element of D'^i .
- (134) Let z be an element of D^i and f be a function from Seg *i* into Seg *i*. If rng f = Seg i, then $z \cdot f$ is an element of D^i .
- (135) For every element z of D^i and for every permutation f of Seg i holds $z \cdot f$ is an element of D^i .
- (136) For every element z of D^i and for every d holds $(z \land \langle d \rangle)(i+1) = d$.
- (137) For every element z of D^{i+1} there exists an element t of D^i and there exists d such that $z = t \cap \langle d \rangle$.
- (138) For every element z of D^i holds $z \cdot idseq(i) = z$.
- (139) For all elements z_1 , z_2 of D^i such that for every j such that $j \in \text{Seg } i$ holds $z_1(j) = z_2(j)$ holds $z_1 = z_2$.
- (140) Let *F* be a function from [:D, D':] into *E*, z_1 be an element of D^i , and z_2 be an element of D'^i . Then $F^{\circ}(z_1, z_2)$ is an element of E^i .
- (141) For every function F from [D, D'] into E and for every element z of D'^i holds $F^{\circ}(d, z)$ is an element of E^i .
- (142) For every function F from [D, D'] into E and for every element z of D^i holds $F^{\circ}(z, d')$ is an element of E^i .
- (143) $(i+j) \mapsto x = (i \mapsto x) \cap (j \mapsto x).$
- (144) For all *i*, *D* and for every element *x* of D^i holds dom x = Seg i.
- (145) For every function f and for all sets x, y such that $x \in \text{dom } f$ and $y \in \text{dom } f$ holds $f \cdot \langle x, y \rangle = \langle f(x), f(y) \rangle$.
- (146) For every function f and for all sets x, y, z such that $x \in \text{dom } f$ and $y \in \text{dom } f$ and $z \in \text{dom } f$ holds $f \cdot \langle x, y, z \rangle = \langle f(x), f(y), f(z) \rangle$.
- (147) $\operatorname{rng}\langle x_1, x_2 \rangle = \{x_1, x_2\}.$
- (148) $\operatorname{rng}\langle x_1, x_2, x_3 \rangle = \{x_1, x_2, x_3\}.$

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ ordinal2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [5] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.

- [10] Andrzej Trybulec. Binary operations applied to functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/ Voll/funcop_1.html.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/domain_1.html.
- [12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumset1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received March 1, 1990

Published January 2, 2004