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Summary. The dual concept to filters (see [1], [2]) i.e. ideals of a lattice is introduced.
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The articles [9], [5], [12], [4], [8], [3], [14], [6], [1], [11], [10], [13], and [7] provide the notation
and terminology for this paper.

1. SOME PROPERTIES OF THERESTRICTION OFBINARY OPERATIONS

The following propositions are true:

(1) LetD be a non empty set,Sbe a non empty subset ofD, f be a binary operation onD, and
g be a binary operation onSsuch thatg = f �[:S, S:]. Then

(i) if f is commutative, theng is commutative,

(ii) if f is idempotent, theng is idempotent, and

(iii) if f is associative, theng is associative.

(2) LetD be a non empty set,Sbe a non empty subset ofD, f be a binary operation onD, g be
a binary operation onS, d be an element ofD, andd′ be an element ofSsuch thatg = f �[:S,
S:] andd′ = d. Then

(i) if d is a left unity w.r.t. f , thend′ is a left unity w.r.t.g,

(ii) if d is a right unity w.r.t. f , thend′ is a right unity w.r.t.g, and

(iii) if d is a unity w.r.t. f , thend′ is a unity w.r.t.g.

(3) Let D be a non empty set,Sbe a non empty subset ofD, f1, f2 be binary operations onD,
andg1, g2 be binary operations onSsuch thatg1 = f1�[:S, S:] andg2 = f2�[:S, S:]. Then

(i) if f1 is left distributive w.r.t. f2, theng1 is left distributive w.r.t.g2, and

(ii) if f1 is right distributive w.r.t.f2, theng1 is right distributive w.r.t.g2.

(4) Let D be a non empty set,Sbe a non empty subset ofD, f1, f2 be binary operations onD,
andg1, g2 be binary operations onS. Supposeg1 = f1�[:S, S:] andg2 = f2�[:S, S:]. If f1 is
distributive w.r.t. f2, theng1 is distributive w.r.t.g2.

(5) Let D be a non empty set,Sbe a non empty subset ofD, f1, f2 be binary operations onD,
andg1, g2 be binary operations onS. If g1 = f1�[:S, S:] andg2 = f2�[:S, S:], then if f1 absorbs
f2, theng1 absorbsg2.
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2. CLOSED SUBSETS OF ALATTICE

Let D be a non empty set and letX1, X2 be subsets ofD. Let us observe thatX1 = X2 if and only if:

(Def. 1) For every elementx of D holdsx∈ X1 iff x∈ X2.

For simplicity, we use the following convention:L denotes a lattice,p, q, r denote elements of
L, p′, q′ denote elements ofL◦, andx denotes a set.

Next we state several propositions:

(6) LetL1, L2 be lattice structures. Suppose the lattice structure ofL1 = the lattice structure of
L2. ThenL1

◦ = L2
◦.

(7) (L◦)◦ = the lattice structure ofL.

(8) Let L1, L2 be non empty lattice structures. Suppose the lattice structure ofL1 = the lattice
structure ofL2. Let a1, b1 be elements ofL1 anda2, b2 be elements ofL2. Supposea1 = a2

andb1 = b2. Thena1tb1 = a2tb2 anda1ub1 = a2ub2 anda1 v b1 iff a2 v b2.

(9) LetL1, L2 be lower bound lattices. Suppose the lattice structure ofL1 = the lattice structure
of L2. Then⊥(L1) =⊥(L2).

(10) LetL1, L2 be upper bound lattices. Suppose the lattice structure ofL1 = the lattice structure
of L2. Then>(L1) =>(L2).

(11) LetL1, L2 be complemented lattices. Suppose the lattice structure ofL1 = the lattice struc-
ture ofL2. Let a1, b1 be elements ofL1 anda2, b2 be elements ofL2. If a1 = a2 andb1 = b2

anda1 is a complement ofb1, thena2 is a complement ofb2.

(12) LetL1, L2 be Boolean lattices. Suppose the lattice structure ofL1 = the lattice structure of
L2. Let a be an element ofL1 andb be an element ofL2. If a = b, thenac = bc.

(13) LetX be a subset ofL. Suppose that for allp, q holdsp∈ X andq∈ X iff puq∈ X. Then
X is a closed subset ofL.

(14) LetX be a subset ofL. Suppose that for allp, q holdsp∈ X andq∈ X iff ptq∈ X. Then
X is a closed subset ofL.

Let us considerL. We see that the filter ofL is a non empty closed subset ofL.
Let us considerL. Then[L) is a filter ofL. Let p be an element ofL. Then[p) is a filter ofL.
Let us considerL and letD be a non empty subset ofL. Then[D) is a filter ofL.
Let L be a distributive lattice and letF1, F2 be filters ofL. ThenF1uF2 is a filter ofL.
Let us considerL. A non empty closed subset ofL is said to be an ideal ofL if:

(Def. 3)1 p∈ it andq∈ it iff ptq∈ it.

One can prove the following three propositions:

(15) Let X be a non empty subset ofL. Suppose that for allp, q holds p ∈ X andq ∈ X iff
ptq∈ X. ThenX is an ideal ofL.

(16) LetL1, L2 be lattices. Suppose the lattice structure ofL1 = the lattice structure ofL2. Let
givenx. If x is a filter ofL1, thenx is a filter ofL2.

(17) LetL1, L2 be lattices. Suppose the lattice structure ofL1 = the lattice structure ofL2. Let
givenx. If x is an ideal ofL1, thenx is an ideal ofL2.

Let us considerL, p. The functorp◦ yielding an element ofL◦ is defined by:

(Def. 4) p◦ = p.

1 The definition (Def. 2) has been removed.



IDEALS 3

Let us considerL and letp be an element ofL◦. The functor◦p yielding an element ofL is
defined as follows:

(Def. 5) ◦p = p.

We now state four propositions:

(18) ◦p◦ = p and(◦p′)◦ = p′.

(19) puq = p◦tq◦ andptq = p◦uq◦ andp′uq′ = ◦p′t ◦q′ andp′tq′ = ◦p′u ◦q′.

(20) pv q iff q◦ v p◦ andp′ v q′ iff ◦q′ v ◦p′.

(21) x is an ideal ofL iff x is a filter ofL◦.

Let us considerL and letX be a subset ofL. The functorX◦ yielding a subset ofL◦ is defined
by:

(Def. 6) X◦ = X.

Let us considerL and letX be a subset ofL◦. The functor◦X yields a subset ofL and is defined
as follows:

(Def. 7) ◦X = X.

Let us considerL and letD be a non empty subset ofL. One can verify thatD◦ is non empty.
Let us considerL and letD be a non empty subset ofL◦. Observe that◦D is non empty.
Let us considerL and letSbe a closed subset ofL. ThenS◦ is a closed subset ofL◦.
Let us considerL and letSbe a non empty closed subset ofL. ThenS◦ is a non empty closed

subset ofL◦.
Let us considerL and letSbe a closed subset ofL◦. Then◦S is a closed subset ofL.
Let us considerL and letSbe a non empty closed subset ofL◦. Then◦S is a non empty closed

subset ofL.
Let us considerL and letF be a filter ofL. ThenF◦ is an ideal ofL◦.
Let us considerL and letF be a filter ofL◦. Then◦F is an ideal ofL.
Let us considerL and letI be an ideal ofL. ThenI◦ is a filter ofL◦.
Let us considerL and letI be an ideal ofL◦. Then◦I is a filter ofL.
The following proposition is true

(22) Let D be a non empty subset ofL. ThenD is an ideal ofL if and only if the following
conditions are satisfied:

(i) for all p, q such thatp∈ D andq∈ D holdsptq∈ D, and

(ii) for all p, q such thatp∈ D andqv p holdsq∈ D.

In the sequelI , J are ideals ofL andF is a filter ofL.
The following propositions are true:

(23) If p∈ I , thenpuq∈ I andqu p∈ I .

(24) There existsp such thatp∈ I .

(25) If L is lower-bounded, then⊥L ∈ I .

(26) If L is lower-bounded, then{⊥L} is an ideal ofL.

(27) If {p} is an ideal ofL, thenL is lower-bounded.
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3. IDEALS GENERATED BY SUBSETS OF ALATTICE

We now state the proposition

(28) The carrier ofL is an ideal ofL.

Let us considerL. The functor(L] yields an ideal ofL and is defined as follows:

(Def. 8) (L] = the carrier ofL.

Let us considerL, p. The functor(p] yielding an ideal ofL is defined by:

(Def. 9) (p] = {q : qv p}.

We now state four propositions:

(29) q∈ (p] iff qv p.

(30) (p] = [p◦) and(p◦] = [p).

(31) p∈ (p] andpuq∈ (p] andqu p∈ (p].

(32) If L is upper-bounded, then(L] = (>L].

Let us considerL, I . We say thatI is maximal if and only if:

(Def. 10) I 6= the carrier ofL and for everyJ such thatI ⊆ J andJ 6= the carrier ofL holdsI = J.

The following propositions are true:

(33) I is maximal iff I◦ is an ultrafilter.

(34) If L is upper-bounded, then for everyI such thatI 6= the carrier ofL there existsJ such that
I ⊆ J andJ is maximal.

(35) If there existsr such thatpt r 6= p, then(p] 6= the carrier ofL.

(36) If L is upper-bounded andp 6=>L, then there existsI such thatp∈ I andI is maximal.

In the sequelD denotes a non empty subset ofL andD′ denotes a non empty subset ofL◦.
Let us considerL, D. The functor(D] yielding an ideal ofL is defined by:

(Def. 11) D⊆ (D] and for everyI such thatD⊆ I holds(D]⊆ I .

Next we state two propositions:

(37) [D◦) = (D] and[D) = (D◦] and[◦D′) = (D′] and[D′) = (◦D′].

(38) (I ] = I .

In the sequelD1, D2 are non empty subsets ofL andD′
1, D′

2 are non empty subsets ofL◦.
One can prove the following propositions:

(39) If D1 ⊆ D2, then(D1]⊆ (D2] and((D]]⊆ (D].

(40) If p∈ D, then(p]⊆ (D].

(41) If D = {p}, then(D] = (p].

(42) If L is upper-bounded and>L ∈ D, then(D] = (L] and(D] = the carrier ofL.

(43) If L is upper-bounded and>L ∈ I , thenI = (L] andI = the carrier ofL.

Let us considerL, I . We say thatI is prime if and only if:

(Def. 12) puq∈ I iff p∈ I or q∈ I .
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Next we state the proposition

(44) I is prime iff I◦ is prime.

Let us considerL, D1, D2. The functorD1tD2 yields a subset ofL and is defined by:

(Def. 13) D1tD2 = {ptq : p∈ D1 ∧ q∈ D2}.

Let us considerL, D1, D2. One can check thatD1tD2 is non empty.
The following four propositions are true:

(45) D1tD2 = D1
◦uD2

◦ andD1
◦tD2

◦ = D1uD2 andD′
1tD′

2 = ◦D′
1u ◦D′

2 and◦D′
1t ◦D′

2 =
D′

1uD′
2.

(46) If p∈ D1 andq∈ D2, thenptq∈ D1tD2 andqt p∈ D1tD2.

(47) If x∈ D1tD2, then there existp, q such thatx = ptq andp∈ D1 andq∈ D2.

(48) D1tD2 = D2tD1.

Let L be a distributive lattice and letI1, I2 be ideals ofL. ThenI1t I2 is an ideal ofL.
One can prove the following four propositions:

(49) (D1∪D2] = ((D1]∪D2] and(D1∪D2] = (D1∪ (D2]].

(50) (I ∪J] = {r :
∨

p,q (r v ptq ∧ p∈ I ∧ q∈ J)}.

(51) I ⊆ I tJ andJ⊆ I tJ.

(52) (I ∪J] = (I tJ].

We adopt the following rules:B denotes a Boolean lattice,I3, J1 denote ideals ofB, anda, b
denote elements ofB.

Next we state two propositions:

(53) L is a complemented lattice iffL◦ is a complemented lattice.

(54) L is a Boolean lattice iffL◦ is a Boolean lattice.

Let B be a Boolean lattice. One can verify thatB◦ is Boolean and lattice-like.
In the sequela′ denotes an element of(B qua lattice)◦.
The following propositions are true:

(55) (a◦)c = ac and(◦a′)c = a′c.

(56) (I3∪J1] = I3tJ1.

(57) I3 is maximal iff I3 6= the carrier ofB and for everya holdsa∈ I3 or ac ∈ I3.

(58) I3 6= (B] andI3 is prime iff I3 is maximal.

(59) If I3 is maximal, then for everya holdsa∈ I3 iff ac /∈ I3.

(60) If a 6= b, then there existsI3 such thatI3 is maximal buta ∈ I3 andb /∈ I3 or a /∈ I3 and
b∈ I3.

In the sequelP denotes a non empty closed subset ofL ando1, o2 denote binary operations on
P.

Next we state two propositions:

(61)(i) (The join operation ofL)�[:P, P:] is a binary operation onP, and

(ii) (the meet operation ofL)�[:P, P:] is a binary operation onP.
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(62) Supposeo1 = (the join operation ofL)�[:P, P:] ando2 = (the meet operation ofL)�[:P, P:].
Theno1 is commutative and associative ando2 is commutative and associative ando1 absorbs
o2 ando2 absorbso1.

Let us considerL, p, q. Let us assume thatpv q. The functor[p,q] yielding a non empty closed
subset ofL is defined as follows:

(Def. 14) [p,q] = {r : pv r ∧ r v q}.

One can prove the following propositions:

(63) If pv q, thenr ∈ [p,q] iff pv r andr v q.

(64) If pv q, thenp∈ [p,q] andq∈ [p,q].

(65) [p, p] = {p}.

(66) If L is upper-bounded, then[p) = [p,>L].

(67) If L is lower-bounded, then(p] = [⊥L, p].

(68) Let L1, L2 be lattices,F1 be a filter ofL1, andF2 be a filter ofL2. Suppose the lattice
structure ofL1 = the lattice structure ofL2 andF1 = F2. ThenL(F1) = L(F2).

4. SUBLATTICES

Let us considerL. Let us note that the sublattice ofL can be characterized by the following (equiv-
alent) condition:

(Def. 15) There existP, o1, o2 such that

(i) o1 = (the join operation ofL)�[:P, P:],

(ii) o2 = (the meet operation ofL)�[:P, P:], and

(iii) the lattice structure of it= 〈P,o1,o2〉.

The following proposition is true

(69) For every sublatticeK of L holds every element ofK is an element ofL.

Let us considerL, P. The functorLL
P yields a sublattice ofL and is defined by:

(Def. 16) There existo1, o2 such thato1 = (the join operation ofL)�[:P, P:] and o2 = (the meet
operation ofL)�[:P, P:] andLL

P = 〈P,o1,o2〉.

Let us considerL, P. Note thatLL
P is strict.

Let us considerL and letl be a sublattice ofL. Thenl◦ is a strict sublattice ofL◦.
Next we state a number of propositions:

(70) LF = LL
F .

(71) LL
P = (LL◦

P◦)
◦.

(72) LL
(L] = the lattice structure ofL andLL

[L) = the lattice structure ofL.

(73)(i) The carrier ofLL
P = P,

(ii) the join operation ofLL
P = (the join operation ofL)�[:P, P:], and

(iii) the meet operation ofLL
P = (the meet operation ofL)�[:P, P:].

(74) For allp, q and for all elementsp′, q′ of LL
P such thatp= p′ andq= q′ holdsptq= p′tq′

andpuq = p′uq′.
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(75) For all p, q and for all elementsp′, q′ of LL
P such thatp = p′ andq = q′ holds pv q iff

p′ v q′.

(76) If L is lower-bounded, thenLL
I is lower-bounded.

(77) If L is modular, thenLL
P is modular.

(78) If L is distributive, thenLL
P is distributive.

(79) If L is implicative andpv q, thenLL
[p,q] is implicative.

(80) LL
(p] is upper-bounded.

(81) >LL
(p]

= p.

(82) If L is lower-bounded, thenLL
(p] is lower-bounded and⊥LL

(p]
=⊥L.

(83) If L is lower-bounded, thenLL
(p] is bounded.

(84) If pv q, thenLL
[p,q] is bounded and>LL

[p,q]
= q and⊥LL

[p,q]
= p.

(85) If L is a complemented lattice and modular, thenLL
(p] is a complemented lattice.

(86) If L is a complemented lattice and modular andpv q, thenLL
[p,q] is a complemented lattice.

(87) If L is a Boolean lattice andpv q, thenLL
[p,q] is a Boolean lattice.
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