Ideals

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences

Summary. The dual concept to filters (see [1], [2]) i.e. ideals of a lattice is introduced.

MML Identifier: FILTER_2.

WWW: http://mizar.org/JFM/Vol6/filter_2.html

The articles [9], [5], [12], [4], [8], [3], [14], [6], [1], [11], [10], [13], and [7] provide the notation and terminology for this paper.

1. Some Properties of the Restriction of Binary Operations

The following propositions are true:

- (1) Let D be a non empty set, S be a non empty subset of D, f be a binary operation on D, and g be a binary operation on S such that $g = f \upharpoonright [:S, S:]$. Then
- (i) if f is commutative, then g is commutative,
- (ii) if f is idempotent, then g is idempotent, and
- (iii) if f is associative, then g is associative.
- (2) Let D be a non empty set, S be a non empty subset of D, f be a binary operation on D, g be a binary operation on S, d be an element of D, and d' be an element of S such that $g = f \upharpoonright [:S, S:]$ and d' = d. Then
- (i) if d is a left unity w.r.t. f, then d' is a left unity w.r.t. g,
- (ii) if d is a right unity w.r.t. f, then d' is a right unity w.r.t. g, and
- (iii) if d is a unity w.r.t. f, then d' is a unity w.r.t. g.
- (3) Let D be a non empty set, S be a non empty subset of D, f_1 , f_2 be binary operations on D, and g_1 , g_2 be binary operations on S such that $g_1 = f_1 \upharpoonright [S, S]$ and $g_2 = f_2 \upharpoonright [S, S]$. Then
- (i) if f_1 is left distributive w.r.t. f_2 , then g_1 is left distributive w.r.t. g_2 , and
- (ii) if f_1 is right distributive w.r.t. f_2 , then g_1 is right distributive w.r.t. g_2 .
- (4) Let D be a non empty set, S be a non empty subset of D, f_1 , f_2 be binary operations on D, and g_1 , g_2 be binary operations on S. Suppose $g_1 = f_1 \upharpoonright [:S, S:]$ and $g_2 = f_2 \upharpoonright [:S, S:]$. If f_1 is distributive w.r.t. f_2 , then g_1 is distributive w.r.t. g_2 .
- (5) Let D be a non empty set, S be a non empty subset of D, f_1 , f_2 be binary operations on D, and g_1 , g_2 be binary operations on S. If $g_1 = f_1 \upharpoonright [:S, S:]$ and $g_2 = f_2 \upharpoonright [:S, S:]$, then if f_1 absorbs f_2 , then g_1 absorbs g_2 .

2. CLOSED SUBSETS OF A LATTICE

Let D be a non empty set and let X_1 , X_2 be subsets of D. Let us observe that $X_1 = X_2$ if and only if:

(Def. 1) For every element x of D holds $x \in X_1$ iff $x \in X_2$.

For simplicity, we use the following convention: L denotes a lattice, p, q, r denote elements of L, p', q' denote elements of L° , and x denotes a set.

Next we state several propositions:

- (6) Let L_1 , L_2 be lattice structures. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Then $L_1^{\circ} = L_2^{\circ}$.
- (7) $(L^{\circ})^{\circ}$ = the lattice structure of L.
- (8) Let L_1 , L_2 be non empty lattice structures. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Let a_1 , b_1 be elements of L_1 and a_2 , b_2 be elements of L_2 . Suppose $a_1 = a_2$ and $b_1 = b_2$. Then $a_1 \sqcup b_1 = a_2 \sqcup b_2$ and $a_1 \sqcap b_1 = a_2 \sqcap b_2$ and $a_1 \sqsubseteq b_1$ iff $a_2 \sqsubseteq b_2$.
- (9) Let L_1, L_2 be lower bound lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Then $\perp_{(L_1)} = \perp_{(L_2)}$.
- (10) Let L_1 , L_2 be upper bound lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Then $\top_{(L_1)} = \top_{(L_2)}$.
- (11) Let L_1 , L_2 be complemented lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Let a_1 , b_1 be elements of L_1 and a_2 , b_2 be elements of L_2 . If $a_1 = a_2$ and $b_1 = b_2$ and a_1 is a complement of b_1 , then a_2 is a complement of b_2 .
- (12) Let L_1 , L_2 be Boolean lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Let a be an element of L_1 and b be an element of L_2 . If a = b, then $a^c = b^c$.
- (13) Let X be a subset of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcap q \in X$. Then X is a closed subset of L.
- (14) Let X be a subset of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcup q \in X$. Then X is a closed subset of L.

Let us consider L. We see that the filter of L is a non empty closed subset of L.

Let us consider L. Then [L) is a filter of L. Let p be an element of L. Then [p) is a filter of L.

Let us consider L and let D be a non empty subset of L. Then [D] is a filter of L.

Let *L* be a distributive lattice and let F_1 , F_2 be filters of *L*. Then $F_1 \sqcap F_2$ is a filter of *L*.

Let us consider L. A non empty closed subset of L is said to be an ideal of L if:

(Def. 3)¹ $p \in \text{it and } q \in \text{it iff } p \sqcup q \in \text{it.}$

One can prove the following three propositions:

- (15) Let X be a non empty subset of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcup q \in X$. Then X is an ideal of L.
- (16) Let L_1 , L_2 be lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Let given x. If x is a filter of L_1 , then x is a filter of L_2 .
- (17) Let L_1 , L_2 be lattices. Suppose the lattice structure of L_1 = the lattice structure of L_2 . Let given x. If x is an ideal of L_1 , then x is an ideal of L_2 .

Let us consider L, p. The functor p° yielding an element of L° is defined by:

(Def. 4)
$$p^{\circ} = p$$
.

¹ The definition (Def. 2) has been removed.

Let us consider L and let p be an element of L° . The functor p yielding an element of L is defined as follows:

(Def. 5) ${}^{\circ}p = p$.

We now state four propositions:

- (18) ${}^{\circ}p^{\circ} = p \text{ and } ({}^{\circ}p')^{\circ} = p'.$
- (19) $p \sqcap q = p^{\circ} \sqcup q^{\circ}$ and $p \sqcup q = p^{\circ} \sqcap q^{\circ}$ and $p' \sqcap q' = {\circ} p' \sqcup {\circ} q'$ and $p' \sqcup q' = {\circ} p' \sqcap {\circ} q'$.
- (20) $p \sqsubseteq q \text{ iff } q^{\circ} \sqsubseteq p^{\circ} \text{ and } p' \sqsubseteq q' \text{ iff } {}^{\circ}q' \sqsubseteq {}^{\circ}p'.$
- (21) x is an ideal of L iff x is a filter of L° .

Let us consider L and let X be a subset of L. The functor X° yielding a subset of L° is defined by:

(Def. 6)
$$X^{\circ} = X$$
.

Let us consider L and let X be a subset of L° . The functor $^{\circ}X$ yields a subset of L and is defined as follows:

(Def. 7)
$${}^{\circ}X = X$$
.

Let us consider L and let D be a non empty subset of L. One can verify that D° is non empty.

Let us consider L and let D be a non empty subset of L° . Observe that $^{\circ}D$ is non empty.

Let us consider L and let S be a closed subset of L. Then S° is a closed subset of L° .

Let us consider L and let S be a non empty closed subset of L. Then S° is a non empty closed subset of L° .

Let us consider L and let S be a closed subset of L° . Then ${^{\circ}}S$ is a closed subset of L.

Let us consider L and let S be a non empty closed subset of L° . Then S is a non empty closed subset of L.

Let us consider L and let F be a filter of L. Then F° is an ideal of L° .

Let us consider L and let F be a filter of L° . Then ${^{\circ}F}$ is an ideal of L.

Let us consider L and let I be an ideal of L. Then I° is a filter of L° .

Let us consider L and let I be an ideal of L° . Then $^{\circ}I$ is a filter of L.

The following proposition is true

- (22) Let *D* be a non empty subset of *L*. Then *D* is an ideal of *L* if and only if the following conditions are satisfied:
 - (i) for all p, q such that $p \in D$ and $q \in D$ holds $p \sqcup q \in D$, and
- (ii) for all p, q such that $p \in D$ and $q \sqsubseteq p$ holds $q \in D$.

In the sequel *I*, *J* are ideals of *L* and *F* is a filter of *L*.

The following propositions are true:

- (23) If $p \in I$, then $p \sqcap q \in I$ and $q \sqcap p \in I$.
- (24) There exists p such that $p \in I$.
- (25) If *L* is lower-bounded, then $\perp_L \in I$.
- (26) If *L* is lower-bounded, then $\{\bot_L\}$ is an ideal of *L*.
- (27) If $\{p\}$ is an ideal of L, then L is lower-bounded.

3. IDEALS GENERATED BY SUBSETS OF A LATTICE

We now state the proposition

(28) The carrier of L is an ideal of L.

Let us consider L. The functor (L] yields an ideal of L and is defined as follows:

(Def. 8) (L] = the carrier of L.

Let us consider L, p. The functor (p] yielding an ideal of L is defined by:

(Def. 9) $(p] = \{q : q \sqsubseteq p\}.$

We now state four propositions:

- (29) $q \in (p]$ iff $q \sqsubseteq p$.
- (30) $(p] = [p^{\circ})$ and $(p^{\circ}] = [p)$.
- (31) $p \in (p]$ and $p \sqcap q \in (p]$ and $q \sqcap p \in (p]$.
- (32) If *L* is upper-bounded, then $(L] = (\top_L]$.

Let us consider L, I. We say that I is maximal if and only if:

(Def. 10) $I \neq$ the carrier of L and for every J such that $I \subseteq J$ and $J \neq$ the carrier of L holds I = J.

The following propositions are true:

- (33) I is maximal iff I° is an ultrafilter.
- (34) If *L* is upper-bounded, then for every *I* such that $I \neq$ the carrier of *L* there exists *J* such that $I \subseteq J$ and *J* is maximal.
- (35) If there exists r such that $p \sqcup r \neq p$, then $(p) \neq$ the carrier of L.
- (36) If L is upper-bounded and $p \neq T_L$, then there exists I such that $p \in I$ and I is maximal.

In the sequel D denotes a non empty subset of L and D' denotes a non empty subset of L° . Let us consider L, D. The functor (D] yielding an ideal of L is defined by:

(Def. 11) $D \subseteq (D]$ and for every I such that $D \subseteq I$ holds $(D] \subseteq I$.

Next we state two propositions:

(37)
$$[D^{\circ}) = (D]$$
 and $[D) = (D^{\circ}]$ and $[D') = (D']$ and $[D') = (D']$.

(38) (I] = I.

In the sequel D_1 , D_2 are non empty subsets of L and D'_1 , D'_2 are non empty subsets of L° . One can prove the following propositions:

- (39) If $D_1 \subseteq D_2$, then $(D_1] \subseteq (D_2]$ and $((D)] \subseteq (D]$.
- (40) If $p \in D$, then $(p] \subseteq (D]$.
- (41) If $D = \{p\}$, then (D] = (p].
- (42) If L is upper-bounded and $T_L \in D$, then (D] = (L] and (D] = the carrier of L.
- (43) If *L* is upper-bounded and $\top_L \in I$, then I = (L] and I = the carrier of *L*.

Let us consider L, I. We say that I is prime if and only if:

(Def. 12) $p \sqcap q \in I \text{ iff } p \in I \text{ or } q \in I.$

Next we state the proposition

(44) I is prime iff I° is prime.

Let us consider L, D_1 , D_2 . The functor $D_1 \sqcup D_2$ yields a subset of L and is defined by:

(Def. 13)
$$D_1 \sqcup D_2 = \{ p \sqcup q : p \in D_1 \land q \in D_2 \}.$$

Let us consider L, D_1 , D_2 . One can check that $D_1 \sqcup D_2$ is non empty.

The following four propositions are true:

(45)
$$D_1 \sqcup D_2 = D_1 \circ \sqcap D_2 \circ$$
 and $D_1 \circ \sqcup D_2 \circ = D_1 \sqcap D_2$ and $D_1' \sqcup D_2' = \circ D_1' \sqcap \circ D_2'$ and $D_1' \sqcup D_2' = D_1' \sqcap D_2'$.

- (46) If $p \in D_1$ and $q \in D_2$, then $p \sqcup q \in D_1 \sqcup D_2$ and $q \sqcup p \in D_1 \sqcup D_2$.
- (47) If $x \in D_1 \sqcup D_2$, then there exist p, q such that $x = p \sqcup q$ and $p \in D_1$ and $q \in D_2$.
- (48) $D_1 \sqcup D_2 = D_2 \sqcup D_1$.

Let *L* be a distributive lattice and let I_1 , I_2 be ideals of *L*. Then $I_1 \sqcup I_2$ is an ideal of *L*. One can prove the following four propositions:

(49)
$$(D_1 \cup D_2] = ((D_1] \cup D_2]$$
 and $(D_1 \cup D_2] = (D_1 \cup (D_2]]$.

(50)
$$(I \cup J] = \{r : \bigvee_{p,q} (r \sqsubseteq p \sqcup q \land p \in I \land q \in J)\}.$$

- (51) $I \subseteq I \sqcup J$ and $J \subseteq I \sqcup J$.
- (52) $(I \cup J] = (I \sqcup J].$

We adopt the following rules: B denotes a Boolean lattice, I_3 , J_1 denote ideals of B, and a, b denote elements of B.

Next we state two propositions:

- (53) L is a complemented lattice iff L° is a complemented lattice.
- (54) L is a Boolean lattice iff L° is a Boolean lattice.

Let B be a Boolean lattice. One can verify that B° is Boolean and lattice-like.

In the sequel a' denotes an element of $(B \text{ qua } \text{lattice})^{\circ}$.

The following propositions are true:

- (55) $(a^{\circ})^{c} = a^{c} \text{ and } ({}^{\circ}a')^{c} = a'^{c}.$
- (56) $(I_3 \cup J_1] = I_3 \sqcup J_1$.
- (57) I_3 is maximal iff $I_3 \neq$ the carrier of B and for every a holds $a \in I_3$ or $a^c \in I_3$.
- (58) $I_3 \neq (B]$ and I_3 is prime iff I_3 is maximal.
- (59) If I_3 is maximal, then for every a holds $a \in I_3$ iff $a^c \notin I_3$.
- (60) If $a \neq b$, then there exists I_3 such that I_3 is maximal but $a \in I_3$ and $b \notin I_3$ or $a \notin I_3$ and $b \in I_3$.

In the sequel P denotes a non empty closed subset of L and o_1 , o_2 denote binary operations on P.

Next we state two propositions:

- (61)(i) (The join operation of L) \upharpoonright [: P, P:] is a binary operation on P, and
- (ii) (the meet operation of L) \upharpoonright [: P, P:] is a binary operation on P.

(62) Suppose $o_1 =$ (the join operation of $L) \upharpoonright [P, P]$ and $o_2 =$ (the meet operation of $L) \upharpoonright [P, P]$. Then o_1 is commutative and associative and o_2 is commutative and associative and o_1 absorbs o_2 and o_2 absorbs o_1 .

Let us consider L, p, q. Let us assume that $p \sqsubseteq q$. The functor [p,q] yielding a non empty closed subset of L is defined as follows:

(Def. 14) $[p,q] = \{r : p \sqsubseteq r \land r \sqsubseteq q\}.$

One can prove the following propositions:

- (63) If $p \sqsubseteq q$, then $r \in [p,q]$ iff $p \sqsubseteq r$ and $r \sqsubseteq q$.
- (64) If $p \sqsubseteq q$, then $p \in [p,q]$ and $q \in [p,q]$.
- (65) $[p,p] = \{p\}.$
- (66) If *L* is upper-bounded, then $[p] = [p, \top_L]$.
- (67) If *L* is lower-bounded, then $(p] = [\bot_L, p]$.
- (68) Let L_1 , L_2 be lattices, F_1 be a filter of L_1 , and F_2 be a filter of L_2 . Suppose the lattice structure of L_1 = the lattice structure of L_2 and $F_1 = F_2$. Then $\mathbb{L}_{(F_1)} = \mathbb{L}_{(F_2)}$.

4. SUBLATTICES

Let us consider L. Let us note that the sublattice of L can be characterized by the following (equivalent) condition:

- (Def. 15) There exist P, o_1 , o_2 such that
 - (i) $o_1 = (\text{the join operation of } L) \upharpoonright [:P,P:],$
 - (ii) $o_2 = \text{(the meet operation of } L) \upharpoonright [:P,P:], \text{ and}$
 - (iii) the lattice structure of it = $\langle P, o_1, o_2 \rangle$.

The following proposition is true

(69) For every sublattice K of L holds every element of K is an element of L.

Let us consider L, P. The functor \mathbb{L}_{P}^{L} yields a sublattice of L and is defined by:

(Def. 16) There exist o_1 , o_2 such that $o_1 = (\text{the join operation of } L) \upharpoonright [:P,P:]$ and $o_2 = (\text{the meet operation of } L) \upharpoonright [:P,P:]$ and $\mathbb{L}_P^L = \langle P,o_1,o_2 \rangle$.

Let us consider L, P. Note that \mathbb{L}_P^L is strict.

Let us consider L and let l be a sublattice of L. Then l° is a strict sublattice of L° .

Next we state a number of propositions:

- $(70) \quad \mathbb{L}_F = \mathbb{L}_F^L.$
- (71) $\mathbb{L}_{P}^{L} = (\mathbb{L}_{P^{\circ}}^{L^{\circ}})^{\circ}.$
- (72) $\mathbb{L}_{(L)}^L = \text{the lattice structure of } L \text{ and } \mathbb{L}_{[L)}^L = \text{the lattice structure of } L.$
- (73)(i) The carrier of $\mathbb{L}_P^L = P$,
- (ii) the join operation of $\mathbb{L}_{P}^{L} =$ (the join operation of $L) \upharpoonright [:P,P:],$ and
- (iii) the meet operation of $\mathbb{L}_{P}^{L} =$ (the meet operation of $L) \upharpoonright [:P,P:].$
- (74) For all p, q and for all elements p', q' of \mathbb{L}_P^L such that p = p' and q = q' holds $p \sqcup q = p' \sqcup q'$ and $p \sqcap q = p' \sqcap q'$.

- (75) For all p, q and for all elements p', q' of \mathbb{L}_P^L such that p = p' and q = q' holds $p \sqsubseteq q$ iff $p' \sqsubseteq q'$.
- (76) If *L* is lower-bounded, then \mathbb{L}_{I}^{L} is lower-bounded.
- (77) If L is modular, then \mathbb{L}_{P}^{L} is modular.
- (78) If *L* is distributive, then \mathbb{L}_{P}^{L} is distributive.
- (79) If *L* is implicative and $p \sqsubseteq q$, then $\mathbb{L}^{L}_{[p,q]}$ is implicative.
- (80) $\mathbb{L}_{(p)}^L$ is upper-bounded.
- (81) $\top_{\mathbb{L}_{(p)}^L} = p$.
- (82) If L is lower-bounded, then $\mathbb{L}_{(p]}^L$ is lower-bounded and $\perp_{\mathbb{L}_{(p)}^L} = \perp_L$.
- (83) If L is lower-bounded, then $\mathbb{L}_{(p)}^L$ is bounded.
- (84) If $p \sqsubseteq q$, then $\mathbb{L}^L_{[p,q]}$ is bounded and $\top_{\mathbb{L}^L_{[p,q]}} = q$ and $\bot_{\mathbb{L}^L_{[p,q]}} = p$.
- (85) If L is a complemented lattice and modular, then $\mathbb{L}_{(p]}^L$ is a complemented lattice.
- (86) If *L* is a complemented lattice and modular and $p \subseteq q$, then $\mathbb{L}^L_{[p,q]}$ is a complemented lattice.
- (87) If L is a Boolean lattice and $p \sqsubseteq q$, then $\mathbb{L}^L_{[p,q]}$ is a Boolean lattice.

REFERENCES

- [1] Grzegorz Bancerek. Filters part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/filter_0.html.
- [2] Grzegorz Bancerek. Filters part II. Quotient lattices modulo filters and direct product of two lattices. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/filter_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/nat_lat.html.
- [7] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/lattice4.html.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/domain_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [11] Andrzej Trybulec. Finite join and finite meet, and dual lattices. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/lattice2.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

[14] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received October 24, 1994

Published January 2, 2004
