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Summary. The dual concept to filters (see€ [1]] [2]) i.e. ideals of a lattice is introduced.

MML Identifier: FILTER_2.
WWW: http://mizar.orqg/JFM/Vol6/filter_2.html

The articles|[9], 5], [12], [[4], [8], [B], [14], [6], 1], [11], [10], [18], and_[7] provide the notation
and terminology for this paper.

1. SOME PROPERTIES OF THERESTRICTION OFBINARY OPERATIONS

The following propositions are true:
(1) LetD be a non empty se§be a non empty subset Df, f be a binary operation ob, and
g be a binary operation oBsuch thag = f[[S, S]. Then
() if fis commutative, thegis commutative,
(i) if fisidempotent, thegis idempotent, and
(i) if fis associative, thegis associative.

(2) LetD be anon empty segbe a non empty subset bf, f be a binary operation dp, g be
a binary operation o8, d be an element d, andd’ be an element ddsuch thag = f|[S

S]andd’ =d. Then
(i) if dis a left unity w.r.t.f, thend’ is a left unity w.r.t.g,
(i) if disaright unity w.r.t.f, thend’ is a right unity w.r.t.g, and
(i) if dis aunity w.r.t.f, thend’ is a unity w.r.t.g.
(3) LetD be a non empty se§be a non empty subset b, f1, f, be binary operations oR,
andg, g2 be binary operations oBsuch thag; = f1[[ S S] andg, = f2[[: S S]. Then
(i) if fyisleft distributive w.r.t.fo, theng; is left distributive w.r.t.g,, and
(iiy if fqisright distributive w.r.t.fo, theng; is right distributive w.r.t.g,.
(4) LetD be a non empty se§be a non empty subset b, f1, f, be binary operations oR,

andgi, gz be binary operations o8 Supposey; = f1[:S S] andgy = f2[[S S]. If fis
distributive w.r.t. f, theng; is distributive w.r.t.gs.

(5) LetD be a non empty se§be a non empty subset B, f1, f» be binary operations o,
andgs, g2 be binary operations o8 If g1 = f1[[ S, S] andgz = f2[[} S, S, then if f; absorbs
f2, theng; absorbgy,.
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2. CLOSEDSUBSETS OF ALATTICE

Let D be a non empty set and [¥t, X, be subsets dD. Let us observe that; = X, if and only if:

(Def. 1) For every elementof D holdsx € Xy iff x € X;.

For simplicity, we use the following conventioh:denotes a latticep, g, r denote elements of
L, p/, d denote elements &f°, andx denotes a set.
Next we state several propositions:

(6) LetLs, L be lattice structures. Suppose the lattice structuta ef the lattice structure of
L,. ThenL:® =Ly°.
(7) (L°)° =the lattice structure df.

(8) LetLy, Lo be non empty lattice structures. Suppose the lattice structlre-efthe lattice
structure ofL,. Letas, by be elements of; anday, by be elements off,. Supposey = a
andb; = by. Thena; Ub; = apLUby anda; Mby = apMby andag C by iff ay C by.

(9) Letl,, Lo belower bound lattices. Suppose the lattice structutg ef the lattice structure
of Lo. ThenJ_(Ll) = J‘(LZ)'

(10) LetLs, L, be upper bound lattices. Suppose the lattice structure efthe lattice structure
of Lo. ThenT(l_l) = T(L2>.

(11) Letly, L, be complemented lattices. Suppose the lattice structure efthe lattice struc-
ture ofL,. Letayg, by be elements of 1 anday, b, be elements df,. If ay = ap andb; = by
anda; is a complement db;, thenay is a complement as.

(12) LetlL,, L, be Boolean lattices. Suppose the lattice structutle 6f the lattice structure of
Lo. Letabe an element df; andb be an element df,. If a= b, thena® = b°.

(13) LetX be a subset df. Suppose that for ajp, g holdsp € X andq € X iff priqge X. Then
X is a closed subset &f.

(14) LetX be a subset df. Suppose that for alh, g holdsp € X andq € X iff pLig e X. Then
X is a closed subset &f

Let us considet.. We see that the filter df is a non empty closed subsetlof

Let us considet. Then[L) is a filter of L. Let p be an element df. Then[p) is a filter ofL.
Let us considet and letD be a non empty subset bf Then|D) is a filter ofL.

Let L be a distributive lattice and |&;, F be filters ofL. ThenF, M is a filter ofL.

Let us consideL. A non empty closed subset bfis said to be an ideal df if:

(Def. 3f] peitandgeitiff pugeit.
One can prove the following three propositions:

(15) LetX be a non empty subset &f Suppose that for alp, g holdsp € X andq € X iff
pLge X. ThenX is an ideal ofL.

(16) Letl,, L, be lattices. Suppose the lattice structurdpf= the lattice structure df,. Let
givenx. If xis a filter ofLy, thenx s a filter ofL,.

(17) Letlq, Ly be lattices. Suppose the lattice structuré.pf= the lattice structure df,. Let
givenx. If xis an ideal ofL1, thenxis an ideal ofL».

Let us considet, p. The functorp® yielding an element of° is defined by:

(Def. 4) p°=p.

1 The definition (Def. 2) has been removed.
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Let us considet and letp be an element of°. The functor®p yielding an element ok is
defined as follows:

(Def.5) °p=np.

We now state four propositions:
(18) °p°=pand(°p)°=p.
(19) prng=p°uUg andpuqg=p°rg°andp' ng =°p'u°q andp'uq =°p'n°g.
(20) pCqiff o C p°andp Eq iff °qd C°p'.
(21) xis anideal ofL iff xis a filter ofL°.

Let us consideL and letX be a subset df. The functorX® yielding a subset of° is defined
by:

(Def. 6) X°=X.

Let us considet. and letX be a subset df°. The functorrX yields a subset df and is defined
as follows:

(Def. 7) °X =X.

Let us considek and letD be a non empty subset bf One can verify thaD° is non empty.

Let us considek and letD be a non empty subset bf. Observe thatD is non empty.

Let us consideL and letSbe a closed subset bf ThenS’ is a closed subset af.

Let us consideLt and letSbe a non empty closed subsetlof ThenS’ is a non empty closed
subset oL°.

Let us considet. and letSbe a closed subset bf. Then°Sis a closed subset af

Let us consideL and letSbe a non empty closed subsetl6f Then°Sis a non empty closed
subset ol..

Let us considet and letF be a filter ofL. ThenF° is an ideal ofL°.

Let us considet and letF be a filter ofL°. Then®F is an ideal ofL.

Let us consideL and letl be an ideal of.. Thenl® is a filter ofL°.

Let us considet and letl be an ideal of.°. Then°l is a filter ofL.

The following proposition is true

(22) LetD be a non empty subset &f ThenD is an ideal ofL if and only if the following
conditions are satisfied:

(i) forall p,gsuchthatp € D andqe D holdspuqe D, and
(ii) forall p, gsuchthatp € D andgC p holdsq € D.

In the sequel, J are ideals of. andF is a filter ofL.
The following propositions are true:

(23) Ifpel,thenpniqgel andgrpel.

(24) There existp such thatp e l.

(25) IfLis lower-bounded, then| 1.

(26) If Lis lower-bounded, thefil| } is an ideal ofL.

(27) If{p}is anideal ol thenL is lower-bounded.
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3. IDEALS GENERATED BY SUBSETS OF ALATTICE
We now state the proposition
(28) The carrier ot is an ideal ofL.
Let us considet. The functor(L] yields an ideal of. and is defined as follows:
(Def. 8) (L] =the carrier ofL.
Let us considet, p. The functor(p] yielding an ideal oL is defined by:
(Def. 9) (p]={a:qC p}.
We now state four propositions:
(29) qe(pliff aC p.
30) (pl=[p°) and(p°] = [p)-
(31) pe(plandpriqe (pjandqrip e (p].
(32) IfLis upper-bounded, thefh] = (T(].
Let us consideL, I. We say that is maximal if and only if:
(Def. 10) | #the carrier ofL and for everyd such that C J andJ # the carrier ofL holdsl = J.
The following propositions are true:
(33) | is maximal iff1° is an ultrafilter.

(34) IfLis upper-bounded, then for evdrguch that # the carrier ol there exists) such that
| € JandJis maximal.

(35) Ifthere exists such thatpUr # p, then(p] # the carrier ofL.
(36) If Lis upper-bounded angl# T, then there existbsuch thatp € | andl is maximal.

In the sequeD denotes a non empty subsetloAndD’ denotes a non empty subset.6f
Let us considet, D. The functor(D] yielding an ideal oL is defined by:

(Def. 11) D C (D] and for everyl such thaD C | holds(D] C I.
Next we state two propositions:
(37) [D°)=(D]and[D) = (D°] and[°D’) = (D] and[D’) = (°D'].
(38) (1]=1.

In the sequeD1, D, are non empty subsets bfandD’, D’, are non empty subsets bf.
One can prove the following propositions:

(39) If D1 C Dy, then(D4] C (D2] and((D]] C (D].
(40) If peD,then(p] C (D].
(41) IfD={p}, then(D] = (p|.
(42) If Lis upper-bounded and_ € D, then(D] = (L] and(D] = the carrier ofL.
(43) IfLis upper-bounded and, € I, thenl = (L] andl = the carrier ofL.
Let us consideL, |. We say that is prime if and only if:

(Def. 12) priqeliff pelorqgel.
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Next we state the proposition
(44) |is prime iff1° is prime.
Let us consideL, D4, D». The functorD1 LI D, yields a subset df and is defined by:
(Def. 13) D1UDy={puqg: pe D1 A ge Dy}.

Let us consideL, D1, D,. One can check th&; LI D, is non empty.
The following four propositions are true:

(45) D1UD2 =D;°MD° andD;° LID,° = D1 M D, andD} LID, = °D) M°D, and°D} LI°D} =
D} rD5.

(46) If pe D1 andqe Dy, thenpliqe D;UD2 andqu p € D1UDs.
(47) Ifxe D1UD;y, then there exisp, g such thatkk = pLigandp € D; andq € D.
(48) D1UD2 =DouDs.

Let L be a distributive lattice and l&t, I> be ideals oL. Thenl; L1, is an ideal ofL_.
One can prove the following four propositions:

(49) (D1UD2] = ((D1]UD2] and(DyUD2] = (D1U(D2]].
(50) (1UJJ={r:Vpq(rEpugA pel Aqged)}.
(51) I CluJandIClud.

(52) (1uJ]=(uJd.

We adopt the following rulesB denotes a Boolean lattick;, J; denote ideals oB, anda, b
denote elements d.
Next we state two propositions:

(53) L is acomplemented lattice iff° is a complemented lattice.

(54) Lis aBoolean lattice iff.° is a Boolean lattice.

Let B be a Boolean lattice. One can verify ti&itis Boolean and lattice-like.
In the sequed’ denotes an element (B qua lattice) .
The following propositions are true:

(55) (a°)¢=atand(°&)¢=a’.

(56) (I3ud]=Il31.

(57) I3is maximal iff I3 # the carrier ofB and for everya holdsa € I3 or a° € I3.
(58) I3+ (B] andlzis prime iff 13 is maximal.

(59) If I3 is maximal, then for everg holdsa € I3 iff a° ¢ I3.

(60) If a = b, then there existts such thatlz is maximal buta € I3 andb ¢ 13 or a ¢ I3 and
bels.

In the sequeP denotes a non empty closed subset @indo;, 0, denote binary operations on
P.
Next we state two propositions:

(61)()) (The join operation of)[[: P, P] is a binary operation oR, and
(i) (the meet operation df)[[: P, P} is a binary operation oR.
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(62) Suppose; = (the join operation ok ) [[: P, P] andoz = (the meet operation df) [[: P, P].
Theno; is commutative and associative amds commutative and associative amdabsorbs
0o ando, absorb9;.

Let us consideL, p, g. Let us assume th@tC g. The functor|p, g] yielding a non empty closed
subset oL is defined as follows:

(Def. 14) [p,g ={r:pCr ArCq}.
One can prove the following propositions:
(63) If pCq,thenrep,qiff pCrandrCaq.
(64) If pC g, thenpe [p,q andg € [p,q].
(65) [p,pl = {p}-
(66) If L is upper-bounded, thdp) = [p, T_].
(67) If Lis lower-bounded, thefp] = [L(, p].
(68) Letl,, Lo be lattices,F; be a filter ofL;, andF; be a filter ofL,. Suppose the lattice
structure ofl; = the lattice structure df; andF, = F,. ThenLg) = Lg,).

4. SUBLATTICES

Let us consideL. Let us note that the sublattice bfcan be characterized by the following (equiv-
alent) condition:

(Def. 15) There exisP, 01, 02 such that
(i) o1 = (the join operation ok ) [P, P,
(i) 02 = (the meet operation af) |[:P, P, and
(iii)  the lattice structure of i= (P,01,0z).

The following proposition is true
(69) For every sublattick of L holds every element d&f is an element ok.

Let us consideL, P. The functorLk yields a sublattice of and is defined by:

(Def. 16) There exisb;, 0, such thato; = (the join operation oL)[[:P, P] and o, = (the meet
operation ofL) [P, P] andLL5 = (P,01,0,).

Let us consideL, P. Note thafl§ is strict.
Let us considek and letl be a sublattice of. Thenl® is a strict sublattice af°.
Next we state a number of propositions:

(70) Lg =LE.

(71) Lk = (Lk.)°.

(72) L'(-L] = the lattice structure df andIL'[-L) = the lattice structure df.

(73)() The carrier ofLs = P,
(i) the join operation ofL5 = (the join operation of.)[[: P, P, and
(i) the meet operation oL = (the meet operation df) [P, P].

(74) Forallp, g and for all elementg/, ¢ of Ls such thap = p’ andq= ¢ holdspuq= p'Uq
andprng=p'nd.
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(75) For allp, g and for all elementg’, g of Lk such thatp = p andq = ¢ holds p C q iff

pPCdq.

(76) If Lis lower-bounded, theh} is lower-bounded.

(77) If Lis modular, theriLk is modular.

(78) If Lis distributive, therL is distributive.

(79) If Lisimplicative andp C q, then]L[Lp d is implicative.

(80) JL'-] is upper-bounded.

(P

81) T =p

(pl

(82) IfL is lower-bounded, thehL] is lower-bounded andL(L] = 1.
P

(P

(83) IfL is lower-bounded, theh!  is bounded.

(p]

(84) If pCq,thenLt _ isbounded and”L[L = q andJ_L[L =p.
P4 P4

(85) IfLis a complemented lattice and modular, tﬂié(ﬂ is a complemented lattice.

(86) IfLis a complemented lattice and modular grd g, thenLL ] is a complemented lattice.

(p.a

(87) IfL is a Boolean lattice angd C g, thenL- _ is a Boolean lattice.

(1]
(2

(3]
4

(5]

6]

(7]

&)

[10]

[11]

[12]

[13]

[p.q]
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