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Filters - Part II.
Quotient Lattices Modulo Filters and
Direct Product of Two Lattices
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Summary. Binary and unary operation preserving binary relations and quotients of
those operations modulo equivalence relations are introduced. It is shown that the quotients
inherit some important properties (commutativity, associativity, distributivity, etc.). Based
on it, the quotient (also called factor) lattice modulo a filter (i.e. modulo the equivalence
relation w.r.t the filter) is introduced. Similarly, some properties of the direct product of two
binary (unary) operations are present and then the direct product of two lattices is introduced.
Besides, the heredity of distributivity, modularity, completeness, etc., for the product of lattices
is also shown. Finally, the concept of isomorphic lattices is introduced, and there is shown that
every Boolean lattic® is isomorphic with the direct product of the factor lattBga] and the
lattice latfa)], whereais an element oB.

MML Identifier: FILTER_1.
WWW: http://mizar.org/JFM/Vol3/filter 1.html

The articles[[10],[[6],[[12],[[13],14],15],138],08],19],11],[7], [14],[2], and [11] provide the notation
and terminology for this paper.

For simplicity, we adopt the following conventioh; L1, L, are latticesF;, F are filters ofL,
p, q are elements of, p;, q; are elements of1, py, g2 are elements off,, X, X1, Y, y1 are sets,
D, D4, D, are non empty set® is a binary relationR; is an equivalence relation @f, a, b, d are
elements oD, a;, b; are elements db4, ay, b, are elements db,, B is a Boolean latticels is a
filter of B, | is an implicative latticeF, is a filter ofl, i, i1, i2, j, j1, j2, k are elements df, f, g1
are binary operations dp,, andf,, g, are binary operations dn,.

The following two propositions are true:

(1) FinFkisafilter ofL.
(2) If[p)=a),thenp=aq.

Let us considet, F;, F,. ThenFi NF; is a filter ofL.
Let us consideb, R. A unary operation o is said to be a unarig-congruent operation op
if:

(Def. 1) For all elements, y of D such thatx, y) € Rholds{it(x), it(y)) € R.
A binary operation oD is said to be a binarig-congruent operation ob if:

(Def. 2) For all elementsg, yi1, X2, Y2 of D such that{xs, y1) € Rand{x, y») € Rholds{it(x1, X2),
it(yl, yz)) cR
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In the sequeF, G denote binarnR;-congruent operations db.

Let us consideD and letR be an equivalence relation Bf A unary operation oRRis a unary
R-congruent operation oD. A binary operation oR is a binaryR-congruent operation dn. Note
that ClasseR is non empty.

Let us consideD, let R be an equivalence relation Bf and letd be an element dD. Then[d]
is an element of ClassBs

Let us consideD, letR be an equivalence relation bf and letu be a unary operation db. Let
us assume thatis a unaryR-congruent operation oD. The functoru g yields a unary operation
on ClasseR and is defined by:

(Def. 3) Forallx, y such thai € Classe® andy € x holdsu /r(x) = [u(y)]g-

Let us consideb, let R be an equivalence relation Bf, and letb be a binary operation ob.
Let us assume thdt is a binaryR-congruent operation oB. The functorb r yielding a binary
operation on Classé&is defined as follows:

(Def. 4) For allx, y, X1, y1 such thatx € Classe® andy € Classe® andx; € x andy; € y holds
b/R(Xa y) = [b(xla yl)]R'

We now state a number of propositions:

) Fr([&r,): [blr,) = [F(a b)g,)-

(4) If Fis commutative, thef g, is commutative.

(5) If Fis associative, theR g, is associative.

(6) Ifdis aleft unity w.r.t.F, then[d](Rl) is a left unity w.rt.F/g,.

(7) Ifdisaright unity w.r.t.F, then[d](Rl) is a right unity w.r.tFg,.

(8) Ifdisaunity w.r.tF, then[d](Rl) is a unity w.r.t.Fg,.

(9) If Fis left distributive w.r.t.G, thenF g, is left distributive w.r.t.G g, .
(10) If Fisright distributive w.r.tG, thenF g, is right distributive w.r.t.G g, .
(11) If F is distributive w.r.t.G, thenF g, is distributive w.r.t.Gg,.

(12) If F absorbsG, thenF g, absorbss g, .
(13) The join operation of is a binary= g, -congruent operation on the carrierlof

(14) The meet operation ¢fis a binary=g,)-congruent operation on the carrierlof

Let L be a lattice and lefE be a filter ofL. Let us assume thatis an implicative lattice. The
functorL r yielding a strict lattice is defined by the condition (Def. 5).

(Def. 5) LetR be an equivalence relation of the carrier lof SupposeR = =¢. Thenl r =
(Classeg, (the join operation ot ) g, (the meet operation df) ).

Let L be a lattice, leF be a filter ofL, and leta be an element df. Let us assume théatis an
implicative lattice. The functoar yields an element df - and is defined as follows:

(Def. 6) For every equivalence relati&hof the carrier ol such thaR = =¢ holdsa r = [a].
We now state several propositions:
(15) i/F4 U j/F4 = (I U j)/F4 andi/F4 M j/F4 = (I M j)/F4'
(16) iR C R, iff i=j€Fs.
a7 inj=k=i=(j=k).
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(18) IfI is lower-bounded, theh, is a lower bound lattice and . = (Li) /g,
(19) 1)k, is an upper bound lattice arﬂd/F4 =(T1)/r,-

(20) 1)k, is implicative.

(21) B/R, is a Boolean lattice.

Let D1, D> be sets, leff; be a binary operation oB1, and letf, be a binary operation oD>.
Then|:f1, f2:| is a binary operation opD1, D2 1.
Next we state a number of propositions:

(22) [:f1, 21| ((a, @), (ba, b2)) = (f1(a, by), fa(a2, b2)).
(23) f1is commutative and, is commutative iff|: f1, f»:| is commutative.
(24) f1is associative and is associative iff: f;, f2:| is associative.

(25) @ is a left unity w.r.t. f; anday is a left unity w.r.t. f2 iff (&g, a2) is a left unity w.r.t.
|Z f;]_7 fzi‘.

(26) @ is aright unity w.r.t.f; anday is a right unity w.r.t. f2 iff (a1, a) is a right unity w.r.t.
|Z fl7 fzi‘.

(27) a isaunity w.r.t.f; anday is a unity w.r.t. fo iff (a1, &) is a unity w.r.t.|: f1, fo:].

(28) fy is left distributive w.r.t.g; and f is left distributive w.r.t.gy if and only if |: f1, f2:] is
left distributive w.r.t.|:gs1, g2:].

(29) fq is right distributive w.r.tg; andf; is right distributive w.r.tg, if and only if |: f1, f»:| is
right distributive w.r.t.|:g1, g2:|.

(30) fy is distributive w.r.t. g; and f; is distributive w.r.t. gy iff |:f1, fo:| is distributive w.r.t.
l'01, 92:.

(31) fy absorbsy; andf, absorbsy, iff |:fq, f:| absorbg:gs, g2:].

Let L3, Ly be non empty lattice structures. The funcltar, L, ] yields a strict lattice structure
and is defined by the condition (Def. 7).

(Def. 7) [L1, L2 = ([the carrier ofL1, the carrier ol ], |:the join operation oL, the join oper-
ation ofL:|, |:the meet operation df;, the meet operation df,:|).

LetLy, L, be non empty lattice structures. One can checklthat L ] is non empty.
LetL be a lattice. The functor LattR@l) yields a binary relation and is defined by:

(Def. 8) LattRelL) = {{p, q); p ranges over elements bf q ranges over elements bf pC q}.
We now state two propositions:
(32) (p,q) € LattRellL) iff p=q.

(33) domlLattRelL) = the carrier of L and rnglattR€lL) = the carrier of L and
field LattRe[L) = the carrier ofL.

LetLy, Lo be lattices. We say that andL, are isomorphic if and only if:
(Def.9) LattRe{L;) and LattRe(L,) are isomorphic.

Let us notice that the predicdte andL, are isomorphic is reflexive and symmetric. One can verify
that[: L1, Lo ] is lattice-like.
Next we state two propositions:
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(34) Letly, Lo, L3 be lattices. Suppode andL, are isomorphic ant; andLz are isomorphic.
ThenL; andLgz are isomorphic.

(35) Forall non empty lattice structurks, L, such thaf Li, L, ] is a lattice holdd ; is a lattice
andL, is a lattice.

LetLs, L, be lattices, lettbe an element df;, and letb be an element df,. Then(a, b} is an
element of: Ly, Ly .
Next we state a number of propositions:

(36) (p1, p2) Li{ar, d2) = (P1LUq1, P2LUd2) and(py, P2) M {01, G2) = (P17101, P21 G2).
(37)  (p1, p2) C (0, o) iff p1 C o andp, C .
(38) Ljis modular and; is modular iff:Ls, Ly is modular.

(39) Liisadistributive lattice antly is a distributive lattice if and only if L1, L2 ] is a distribu-
tive lattice.

(40) L; islower-bounded anh, is lower-bounded iff: L1, L, ] is lower-bounded.
(41) L;is upper-bounded ang is upper-bounded iffL;, Ly is upper-bounded.
(42) L;isbounded and; is bounded iffiL;, L, is bounded.

(43)J_ If |;1 is a lower bound lattice antl is a lower bound lattice, thet, 1,7 = (L),
(L2)/-

(44) If Ly is an upper bound lattice ang is an upper bound lattice, théh,, 5 = (T ,),
Ti))-
(L2)

(45) Supposé; is a bound lattice ants is a bound lattice. Thep; is a complement afj; and
p2 is a complement odjp if and only if {p1, p2) is @ complement ofqs, dy).

(46) L;is a complemented lattice ahg is a complemented lattice if and only[it,, Lo ] is a
complemented lattice.

(47) L;is aBoolean lattice anld, is a Boolean lattice iff: L3, L, ] is a Boolean lattice.
(48) L isimplicative and_; is implicative iff [: L1, Lo ] is implicative.

(49) [L1,L2]° =[L1° Lo°].

(50) [Li,Ly]and[Ly, Ly are isomorphic.

We follow the rulesB is a Boolean lattice and, b, c, d are elements dB.
Next we state a number of propositions:

(51) a< b= (anb)u(amnke).

(52) (a=b)¢=amnbtand(a«< b)°= (anhb®)L(a°mb) and(a«< b)*=a« b’ and(a <
b)¢=a"<h

(53) Ifaessb=a<c thenb=c.

(54) ae (aeb)=h

(55) iUj=i=j=iandi=inNj=i=]j.

(56) i=jCi=juUkandi= jCink=jandi= jCi=kUjandi= jCkni=j.
(57) (i=knN(j=kKCiuj=k

(58) (i=j)Ni=kCi=jnk
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(59) IfiteizeRandjr < jo € Ry thenitl jp < izxljo e FpandisMjr < iaMjs € Fy.

(60) Ifie[K

(61) cU(ced)e]c)o

- andj € [K| £ thenil j € [K] e andinj e [K

=( =(Fa)’

@ and for everyb such thab € [C]Em holdsbC clU(c < d).

(62) Band[Byja), L | are isomorphic.
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