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Summary. Binary and unary operation preserving binary relations and quotients of
those operations modulo equivalence relations are introduced. It is shown that the quotients
inherit some important properties (commutativity, associativity, distributivity, etc.). Based
on it, the quotient (also called factor) lattice modulo a filter (i.e. modulo the equivalence
relation w.r.t the filter) is introduced. Similarly, some properties of the direct product of two
binary (unary) operations are present and then the direct product of two lattices is introduced.
Besides, the heredity of distributivity, modularity, completeness, etc., for the product of lattices
is also shown. Finally, the concept of isomorphic lattices is introduced, and there is shown that
every Boolean latticeB is isomorphic with the direct product of the factor latticeB/[a] and the
lattice latt[a], wherea is an element ofB.

MML Identifier: FILTER_1.

WWW: http://mizar.org/JFM/Vol3/filter_1.html

The articles [10], [6], [12], [13], [4], [5], [3], [8], [9], [1], [7], [14], [2], and [11] provide the notation
and terminology for this paper.

For simplicity, we adopt the following convention:L, L1, L2 are lattices,F1, F2 are filters ofL,
p, q are elements ofL, p1, q1 are elements ofL1, p2, q2 are elements ofL2, x, x1, y, y1 are sets,
D, D1, D2 are non empty sets,R is a binary relation,R1 is an equivalence relation ofD, a, b, d are
elements ofD, a1, b1 are elements ofD1, a2, b2 are elements ofD2, B is a Boolean lattice,F3 is a
filter of B, I is an implicative lattice,F4 is a filter of I , i, i1, i2, j, j1, j2, k are elements ofI , f1, g1

are binary operations onD1, and f2, g2 are binary operations onD2.
The following two propositions are true:

(1) F1∩F2 is a filter ofL.

(2) If [p) = [q), thenp = q.

Let us considerL, F1, F2. ThenF1∩F2 is a filter ofL.
Let us considerD, R. A unary operation onD is said to be a unaryR-congruent operation onD

if:

(Def. 1) For all elementsx, y of D such that〈〈x, y〉〉 ∈ Rholds〈〈it(x), it(y)〉〉 ∈ R.

A binary operation onD is said to be a binaryR-congruent operation onD if:

(Def. 2) For all elementsx1, y1, x2, y2 of D such that〈〈x1, y1〉〉 ∈Rand〈〈x2, y2〉〉 ∈Rholds〈〈it(x1, x2),
it(y1, y2)〉〉 ∈ R.
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In the sequelF , G denote binaryR1-congruent operations onD.
Let us considerD and letR be an equivalence relation ofD. A unary operation onR is a unary

R-congruent operation onD. A binary operation onR is a binaryR-congruent operation onD. Note
that ClassesR is non empty.

Let us considerD, let Rbe an equivalence relation ofD, and letd be an element ofD. Then[d]R
is an element of ClassesR.

Let us considerD, letRbe an equivalence relation ofD, and letu be a unary operation onD. Let
us assume thatu is a unaryR-congruent operation onD. The functoru/R yields a unary operation
on ClassesRand is defined by:

(Def. 3) For allx, y such thatx∈ ClassesRandy∈ x holdsu/R(x) = [u(y)]R.

Let us considerD, let R be an equivalence relation ofD, and letb be a binary operation onD.
Let us assume thatb is a binaryR-congruent operation onD. The functorb/R yielding a binary
operation on ClassesR is defined as follows:

(Def. 4) For allx, y, x1, y1 such thatx ∈ ClassesR andy ∈ ClassesR andx1 ∈ x andy1 ∈ y holds
b/R(x, y) = [b(x1, y1)]R.

We now state a number of propositions:

(3) F/R1
([a](R1), [b](R1)) = [F(a, b)](R1).

(4) If F is commutative, thenF/R1
is commutative.

(5) If F is associative, thenF/R1
is associative.

(6) If d is a left unity w.r.t.F , then[d](R1) is a left unity w.r.t.F/R1
.

(7) If d is a right unity w.r.t.F , then[d](R1) is a right unity w.r.t.F/R1
.

(8) If d is a unity w.r.t.F , then[d](R1) is a unity w.r.t.F/R1
.

(9) If F is left distributive w.r.t.G, thenF/R1
is left distributive w.r.t.G/R1

.

(10) If F is right distributive w.r.t.G, thenF/R1
is right distributive w.r.t.G/R1

.

(11) If F is distributive w.r.t.G, thenF/R1
is distributive w.r.t.G/R1

.

(12) If F absorbsG, thenF/R1
absorbsG/R1

.

(13) The join operation ofI is a binary≡(F4)-congruent operation on the carrier ofI .

(14) The meet operation ofI is a binary≡(F4)-congruent operation on the carrier ofI .

Let L be a lattice and letF be a filter ofL. Let us assume thatL is an implicative lattice. The
functorL/F yielding a strict lattice is defined by the condition (Def. 5).

(Def. 5) Let R be an equivalence relation of the carrier ofL. SupposeR = ≡F . Then L/F =
〈ClassesR, (the join operation ofL)/R, (the meet operation ofL)/R〉.

Let L be a lattice, letF be a filter ofL, and leta be an element ofL. Let us assume thatL is an
implicative lattice. The functora/F yields an element ofL/F and is defined as follows:

(Def. 6) For every equivalence relationRof the carrier ofL such thatR=≡F holdsa/F = [a]R.

We now state several propositions:

(15) i/F4
t j/F4

= (it j)/F4
andi/F4

u j/F4
= (iu j)/F4

.

(16) i/F4
v j/F4

iff i ⇒ j ∈ F4.

(17) iu j ⇒ k = i ⇒ ( j ⇒ k).
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(18) If I is lower-bounded, thenI/F4
is a lower bound lattice and⊥I/F4

= (⊥I )/F4
.

(19) I/F4
is an upper bound lattice and>I/F4

= (>I )/F4
.

(20) I/F4
is implicative.

(21) B/F3
is a Boolean lattice.

Let D1, D2 be sets, letf1 be a binary operation onD1, and let f2 be a binary operation onD2.
Then|: f1, f2:| is a binary operation on[:D1, D2 :].

Next we state a number of propositions:

(22) |: f1, f2:|(〈〈a1, a2〉〉, 〈〈b1, b2〉〉) = 〈〈 f1(a1, b1), f2(a2, b2)〉〉.

(23) f1 is commutative andf2 is commutative iff|: f1, f2:| is commutative.

(24) f1 is associative andf2 is associative iff|: f1, f2:| is associative.

(25) a1 is a left unity w.r.t. f1 anda2 is a left unity w.r.t. f2 iff 〈〈a1, a2〉〉 is a left unity w.r.t.
|: f1, f2:|.

(26) a1 is a right unity w.r.t. f1 anda2 is a right unity w.r.t. f2 iff 〈〈a1, a2〉〉 is a right unity w.r.t.
|: f1, f2:|.

(27) a1 is a unity w.r.t. f1 anda2 is a unity w.r.t. f2 iff 〈〈a1, a2〉〉 is a unity w.r.t.|: f1, f2:|.

(28) f1 is left distributive w.r.t.g1 and f2 is left distributive w.r.t.g2 if and only if |: f1, f2:| is
left distributive w.r.t.|:g1, g2:|.

(29) f1 is right distributive w.r.t.g1 and f2 is right distributive w.r.t.g2 if and only if |: f1, f2:| is
right distributive w.r.t.|:g1, g2:|.

(30) f1 is distributive w.r.t. g1 and f2 is distributive w.r.t. g2 iff |: f1, f2:| is distributive w.r.t.
|:g1, g2:|.

(31) f1 absorbsg1 and f2 absorbsg2 iff |: f1, f2:| absorbs|:g1, g2:|.

Let L1, L2 be non empty lattice structures. The functor[:L1, L2 :] yields a strict lattice structure
and is defined by the condition (Def. 7).

(Def. 7) [:L1, L2 :] = 〈[: the carrier ofL1, the carrier ofL2 :], |:the join operation ofL1, the join oper-
ation ofL2:|, |:the meet operation ofL1, the meet operation ofL2:|〉.

Let L1, L2 be non empty lattice structures. One can check that[:L1, L2 :] is non empty.
Let L be a lattice. The functor LattRel(L) yields a binary relation and is defined by:

(Def. 8) LattRel(L) = {〈〈p, q〉〉; p ranges over elements ofL, q ranges over elements ofL: pv q}.

We now state two propositions:

(32) 〈〈p, q〉〉 ∈ LattRel(L) iff pv q.

(33) domLattRel(L) = the carrier of L and rngLattRel(L) = the carrier of L and
fieldLattRel(L) = the carrier ofL.

Let L1, L2 be lattices. We say thatL1 andL2 are isomorphic if and only if:

(Def. 9) LattRel(L1) and LattRel(L2) are isomorphic.

Let us notice that the predicateL1 andL2 are isomorphic is reflexive and symmetric. One can verify
that[:L1, L2 :] is lattice-like.

Next we state two propositions:
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(34) LetL1, L2, L3 be lattices. SupposeL1 andL2 are isomorphic andL2 andL3 are isomorphic.
ThenL1 andL3 are isomorphic.

(35) For all non empty lattice structuresL1, L2 such that[:L1, L2 :] is a lattice holdsL1 is a lattice
andL2 is a lattice.

Let L1, L2 be lattices, leta be an element ofL1, and letb be an element ofL2. Then〈〈a, b〉〉 is an
element of[:L1, L2 :].

Next we state a number of propositions:

(36) 〈〈p1, p2〉〉t 〈〈q1, q2〉〉= 〈〈p1tq1, p2tq2〉〉 and〈〈p1, p2〉〉u 〈〈q1, q2〉〉= 〈〈p1uq1, p2uq2〉〉.

(37) 〈〈p1, p2〉〉 v 〈〈q1, q2〉〉 iff p1 v q1 andp2 v q2.

(38) L1 is modular andL2 is modular iff[:L1, L2 :] is modular.

(39) L1 is a distributive lattice andL2 is a distributive lattice if and only if[:L1, L2 :] is a distribu-
tive lattice.

(40) L1 is lower-bounded andL2 is lower-bounded iff[:L1, L2 :] is lower-bounded.

(41) L1 is upper-bounded andL2 is upper-bounded iff[:L1, L2 :] is upper-bounded.

(42) L1 is bounded andL2 is bounded iff[:L1, L2 :] is bounded.

(43) If L1 is a lower bound lattice andL2 is a lower bound lattice, then⊥[:L1,L2 :] = 〈〈⊥(L1),
⊥(L2)〉〉.

(44) If L1 is an upper bound lattice andL2 is an upper bound lattice, then>[:L1,L2 :] = 〈〈>(L1),
>(L2)〉〉.

(45) SupposeL1 is a bound lattice andL2 is a bound lattice. Thenp1 is a complement ofq1 and
p2 is a complement ofq2 if and only if 〈〈p1, p2〉〉 is a complement of〈〈q1, q2〉〉.

(46) L1 is a complemented lattice andL2 is a complemented lattice if and only if[:L1, L2 :] is a
complemented lattice.

(47) L1 is a Boolean lattice andL2 is a Boolean lattice iff[:L1, L2 :] is a Boolean lattice.

(48) L1 is implicative andL2 is implicative iff [:L1, L2 :] is implicative.

(49) [:L1, L2 :]◦ = [:L1
◦, L2

◦ :].

(50) [:L1, L2 :] and[:L2, L1 :] are isomorphic.

We follow the rules:B is a Boolean lattice anda, b, c, d are elements ofB.
Next we state a number of propositions:

(51) a⇔ b = (aub)t (acubc).

(52) (a⇒ b)c = au bc and(a⇔ b)c = (au bc)t (acu b) and(a⇔ b)c = a⇔ bc and(a⇔
b)c = ac ⇔ b.

(53) If a⇔ b = a⇔ c, thenb = c.

(54) a⇔ (a⇔ b) = b.

(55) it j ⇒ i = j ⇒ i andi ⇒ iu j = i ⇒ j.

(56) i ⇒ j v i ⇒ j tk andi ⇒ j v iuk⇒ j andi ⇒ j v i ⇒ kt j andi ⇒ j v ku i ⇒ j.

(57) (i ⇒ k)u ( j ⇒ k)v it j ⇒ k.

(58) (i ⇒ j)u (i ⇒ k)v i ⇒ j uk.
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(59) If i1 ⇔ i2 ∈ F4 and j1 ⇔ j2 ∈ F4, theni1t j1 ⇔ i2t j2 ∈ F4 andi1u j1 ⇔ i2u j2 ∈ F4.

(60) If i ∈ [k]≡(F4)
and j ∈ [k]≡(F4)

, thenit j ∈ [k]≡(F4)
andiu j ∈ [k]≡(F4)

.

(61) ct (c⇔ d) ∈ [c]≡[d)
and for everyb such thatb∈ [c]≡[d)

holdsbv ct (c⇔ d).

(62) B and[:B/[a), L[a) :] are isomorphic.
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