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Summary. Filters of a lattice, maximal filters (ultrafilters), operation to create a filter
generating by an element or by a non-empty subset of the lattice are discussed. Besides, there
are introduced implicative lattices such that for every two elements there is an element being
pseudo-complement of them. Some facts concerning these concepts are presented too, i.e. for
any proper filter there exists an ultrafilter consisting it.

MML Identifier: FILTER_O.

WWW: http://mizar.org/JFM/Vol2/filter 0.html

The articles|I7], [[4], [[5], 1], 8], [11], 3], [2], [12], [6], [9], and[[10] provide the notation and
terminology for this paper.
We adopt the following conventioi: is a lattice,p, p1, g, g1, r are elements df, andx is a set.
We now state several propositions:

(1) fpCqg,thenrupCrugandpurCquUrandplUrCrugandrupCqlr.
(2) IfpCr,thenprigqCrandqrpCr.
(3) IfpCrthenpCquUrandpCruqg.
(4) If pC prandqC qi, thenplqC p1Ugr andpuqgC gL p;.
(5) If pC prandqC i, thenpriqC pilfigs andpriqC gifpa.
(6) IfpCrandqCr, thenpuqCr.
(7) IfrC pandr Cq, thenr C pna.
Let us considet. A non empty subset df is said to be a filter ok if:
(Def. 1) peitandqeitiff prqeit.
We now state the proposition

(QH Let D be a non empty subset &f ThenD is a filter of L if and only if the following
conditions are satisfied:

(i) forall p, qsuch thatp € D andg € D holdsprqge D, and
(i) forall p,gsuchthatp € DandpC qholdsqg e D.

In the sequeH, F denote filters of..
One can prove the following propositions:

1 The proposition (8) has been removed.
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(10) IfpeH,thenpugeH andquUpeH.
(11) There existp such thatp € H.
(12) If Lis an upper bound lattice, thén. € H.
(13) IfLis an upper bound lattice, thdf '} is a filter ofL.
(24) If {p} is afilter ofL, thenL is upper-bounded.
(15) The carrier ot is a filter ofL.
Let us considet. The functor[L) yields a filter ofL and is defined by:
(Def.2) [L) =the carrier ofL.
Let us considet, p. The functor|p) yields a filter ofL and is defined by:
(Def. 3) [p)={a:pCa}.
One can prove the following propositions:
(18F qep)iff pCa.
(19) pep)andpuge [p) andgLpe€ [p).
(20) IfLis alower bound lattice, thelh) = [ L ).
Let us considet, F. We say thaF is an ultrafilter if and only if:
(Def. 4) F #the carrier ol and for everyH such thaF C H andH # the carrier ol holdsF =H.

We introduceF is an ultrafilter as a synonym &f is an ultrafilter.
The following three propositions are true:

(22 If L is lower-bounded, then for evefy such that # the carrier ofL there existd such
thatF C H andH is an ultrafilter.

(23) If there exists such thatpnr # p, then[p) # the carrier ofL.

(24) If Lis alower bound lattice and # L, then there existsl such thatp € H andH is an
ultrafilter.

In the sequeD denotes a non empty subsetlof
Let us considet, D. The functor|D) yielding a filter ofL is defined as follows:

(Def.5) D C [D) and for everyF such thaD C F holds[D) C F.
Next we state the proposition
@sf] [F)=F

In the sequeD;, D, are non empty subsets bf
One can prove the following propositions:

(27) If D1 C Dy, then[Dl) - [Dz).
(29| If pe D, then[p) C [D).
(30) 1fD={p}, then[D) = [p).

2 The propositions (16) and (17) have been removed.
3 The proposition (21) has been removed.
4 The proposition (25) has been removed.
5 The proposition (28) has been removed.
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(31) IfLis alower bound lattice andl; € D, then[D) = [L) and[D) = the carrier ofL.
(32) IfLis alower bound lattice andl, € F, thenF = [L) andF = the carrier ofL.
Let us considet, F. We say thaF is prime if and only if:
(Def.6) pugeFiff peForgeF.
Next we state the proposition

(34E] If L is a Boolean lattice, then for gfi, g holds pr1 (p°L q) C g and for everyr such that
prir E qholdsr C p°Ug.

Letl1 be a non empty lattice structure. We say thas implicative if and only if the condition
(Def. 7) is satisfied.

(Def. 7) Letp, q be elements off;. Then there exists an elemantf I, such thatpmr C g and for
every element; of |1 such thatpriry E g holdsry Cr.

Let us observe that there exists a lattice which is strict and implicative.

An implicative lattice is an implicative lattice.

Let us considet, p, g. Let us assume thatis an implicative lattice. The functgr =- q yields
an element of. and is defined by:

(Def. 8) pr(p=q) C qand for every such thatprr C g holdsr C p=-q.

In the sequel denotes an implicative lattice andenotes an element bf
One can prove the following propositions:

(37)] 1 is upper-bounded.
(38) i=i=T.
(39) | isdistributive.

In the sequeB is a Boolean lattice anBy, H; are filters ofB.
Next we state the proposition

(40) Bis implicative.

Let us note that every lattice which is implicative is also distributive.

For simplicity, we follow the rulest denotes an implicative latticg, j, k denote elements of
D3 denotes a non empty subsetl pndF, denotes a filter of.

We now state two propositions:

(41) IfiekRandi= je R, thenje k.
(42) Ifjek, theni=jek.
Let us considet, D1, D,. The functorD1 M D5 yielding a subset of is defined as follows:
(Def.9) D1MD2={pnq:peDi A qe Dz}.

Let us considet, D1, D,. Observe thab; M D5 is non empty.
We now state three propositions:

(44@ If pe Dy andq e Do, thenprige DM D2 andgr p € D1MDs.
(45) Ifxe D1M1Dy, then there exisp, q such thatkk = prigandp € D; andq € D».

6 The proposition (33) has been removed.
" The propositions (35) and (36) have been removed.
8 The proposition (43) has been removed.
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(46) Di1MDy =D>MD;1.

Let L be a distributive lattice and I&, F4 be filters ofL. ThenFMF4 is a filter ofL.
Let L be a Boolean lattice and |1€%, F4 be filters ofL. ThenFMF4 is a filter ofL.
The following propositions are true:

(47) [D1UDy) =[[P1)UD2) and[D1UD3) = [D1U[D2)).
(48) [FUH):{r:vp_’q(pmqgr/\peF/\qu)}.
(49) FCFrHandH CFrH.

(50) [FUH)=[FNH).

In the sequeks, F4 are filters ofl.
Next we state four propositions:

(51) [RRUFR) =RsMFs.

(52) [FLUH1) =F1MHs.

(53) If je[D3zU{i}), theni = j € [D3).

54) Ifi=jekandj=kek,theni=keF,.

In the sequed, b, c denote elements d&.
One can prove the following propositions:

(55) a=b=a‘Uh.

(56) aCbiff anb®= 1g.

(57) Fyis an ultrafilter iffF, # the carrier oB and for everya holdsa € F; or a® € F;.
(58) F1 #[B) andFy is prime iff Fy is an ultrafilter.

(59) If Fy is an ultrafilter, then for everstholdsa € F; iff a© ¢ F.

(60) If a# b, then there existB; such thatm is an ultrafilter bua € F; andb ¢ F; ora ¢ Fy
andb € F;.

In the sequeb;, 0» denote binary operations ¢n
Let us considet, F. The functorLg yielding a lattice is defined by the condition (Def. 10).

(Def. 10) There exisbs, 0 such thab; = (the join operation ot ) [([: F, F ] qua set) ando, = (the
meet operation of ) [ ([ F, F ] qua set) andLg = (F,01,0z).

Let us consideL, F. Note thatlLg is strict.
Next we state a number of propositions:

(62ﬂ For every strict latticé. holdsL ) = L.
(63)()) The carrier ofLg = F,

(i) the join operation ofLg = (the join operation ok ) [(:F, F ] qua se?, and
(i)  the meet operation of.g = (the meet operation df)[([:F, F ] qua se}.

(64) For all element®’,  of Lg such thatp = p’ andg = ¢ holdspLgq= p' Uq andprnig=
pd.
(65) For all elementg’, d of Lg such thatp= p’ andg=q holdspC qiff p C (.

9 The proposition (61) has been removed.



(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)

FILTERS— PART | 5

If L is upper-bounded, theloe is upper-bounded.

If L is modular, therLg is modular.

If L is distributive, therlLg is distributive.

If L is an implicative lattice, thelr is implicative.

LLjp) is lower-bounded.

Lig =P

If L is upper-bounded, theﬁL[p) =TL.

If L is an upper bound lattice, thén, is bounded.

If L is a complemented lattice and a modular lattice, thgjis a complemented lattice.

If L is a Boolean lattice, the]h[m is a Boolean lattice.

Let us consideL, p, g. The functorp < g yielding an element of is defined by:

(Def. 11) p<g=(p=q (= p).

One can prove the following two propositions:

77 pea=qsp.

(78)

IfiejerRandj < ke R, thenis ke k.

Let us considet, F. The functor=f yielding a binary relation is defined as follows:

(Def. 12) field=g) C the carrier ol and for allp, g holds(p, q) € =g iff p<qgeF.

The following propositions are true:

(SOE =r is a binary relation on the carrier bf

(81)
(82)
(83)
(84)
(85)

If L is an implicative lattice, theee is reflexive in the carrier of.

=g is symmetric in the carrier df.

If L is an implicative lattice, thereg is transitive in the carrier df.

If L is an implicative lattice, thekeer is an equivalence relation of the carrierlof

If L is an implicative lattice, then fie{ekg ) = the carrier ofL.

Let us considel, F,. Then=r,) is an equivalence relation of the carrierlof
Let us consideB, F;. Then= ) is an equivalence relation of the carrierif
Let us considet, F, p, g. The predicate =g qis defined as follows:

(Def. 13) peqeF.

Next we state four propositions:

@73 p=r qifi (p,q) € =¢.

(88)
(89)
(90)

i =f, i anda=r, a.
If p=r q, thenqg=f p.
Ifi =g, j and] =, k, theni =g, kand ifa=g, bandb =g, c, thena=f, c.

10 The proposition (76) has been removed.
11 The proposition (79) has been removed.
12 The proposition (86) has been removed.
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