Filters — Part I

Grzegorz Bancerek Warsaw University Białystok

Summary. Filters of a lattice, maximal filters (ultrafilters), operation to create a filter generating by an element or by a non-empty subset of the lattice are discussed. Besides, there are introduced implicative lattices such that for every two elements there is an element being pseudo-complement of them. Some facts concerning these concepts are presented too, i.e. for any proper filter there exists an ultrafilter consisting it.

MML Identifier: FILTER_0.

WWW: http://mizar.org/JFM/Vol2/filter_0.html

The articles [7], [4], [5], [1], [8], [11], [3], [2], [12], [6], [9], and [10] provide the notation and terminology for this paper.

We adopt the following convention: L is a lattice, p, p_1 , q, q_1 , r are elements of L, and x is a set. We now state several propositions:

- (1) If $p \sqsubseteq q$, then $r \sqcup p \sqsubseteq r \sqcup q$ and $p \sqcup r \sqsubseteq q \sqcup r$ and $p \sqcup r \sqsubseteq r \sqcup q$ and $r \sqcup p \sqsubseteq q \sqcup r$.
- (2) If $p \sqsubseteq r$, then $p \sqcap q \sqsubseteq r$ and $q \sqcap p \sqsubseteq r$.
- (3) If $p \sqsubseteq r$, then $p \sqsubseteq q \sqcup r$ and $p \sqsubseteq r \sqcup q$.
- (4) If $p \sqsubseteq p_1$ and $q \sqsubseteq q_1$, then $p \sqcup q \sqsubseteq p_1 \sqcup q_1$ and $p \sqcup q \sqsubseteq q_1 \sqcup p_1$.
- (5) If $p \sqsubseteq p_1$ and $q \sqsubseteq q_1$, then $p \sqcap q \sqsubseteq p_1 \sqcap q_1$ and $p \sqcap q \sqsubseteq q_1 \sqcap p_1$.
- (6) If $p \sqsubseteq r$ and $q \sqsubseteq r$, then $p \sqcup q \sqsubseteq r$.
- (7) If $r \sqsubseteq p$ and $r \sqsubseteq q$, then $r \sqsubseteq p \sqcap q$.

Let us consider L. A non empty subset of L is said to be a filter of L if:

(Def. 1) $p \in \text{it and } q \in \text{it iff } p \sqcap q \in \text{it.}$

We now state the proposition

- (9)¹ Let D be a non empty subset of L. Then D is a filter of L if and only if the following conditions are satisfied:
- (i) for all p, q such that $p \in D$ and $q \in D$ holds $p \sqcap q \in D$, and
- (ii) for all p, q such that $p \in D$ and $p \sqsubseteq q$ holds $q \in D$.

In the sequel H, F denote filters of L.

One can prove the following propositions:

¹ The proposition (8) has been removed.

- (10) If $p \in H$, then $p \sqcup q \in H$ and $q \sqcup p \in H$.
- (11) There exists p such that $p \in H$.
- (12) If *L* is an upper bound lattice, then $\top_L \in H$.
- (13) If L is an upper bound lattice, then $\{\top_L\}$ is a filter of L.
- (14) If $\{p\}$ is a filter of L, then L is upper-bounded.
- (15) The carrier of L is a filter of L.

Let us consider L. The functor [L] yields a filter of L and is defined by:

(Def. 2) [L] = the carrier of L.

Let us consider L, p. The functor [p] yields a filter of L and is defined by:

(Def. 3)
$$[p] = \{q : p \sqsubseteq q\}.$$

One can prove the following propositions:

- $(18)^2$ $q \in [p)$ iff $p \sqsubseteq q$.
- (19) $p \in [p]$ and $p \sqcup q \in [p]$ and $q \sqcup p \in [p]$.
- (20) If L is a lower bound lattice, then $[L] = [\bot_L]$.

Let us consider L, F. We say that F is an ultrafilter if and only if:

(Def. 4) $F \neq$ the carrier of L and for every H such that $F \subseteq H$ and $H \neq$ the carrier of L holds F = H.

We introduce F is an ultrafilter as a synonym of F is an ultrafilter.

The following three propositions are true:

- (22)³ If L is lower-bounded, then for every F such that $F \neq$ the carrier of L there exists H such that $F \subseteq H$ and H is an ultrafilter.
- (23) If there exists r such that $p \sqcap r \neq p$, then $[p] \neq$ the carrier of L.
- (24) If L is a lower bound lattice and $p \neq \bot_L$, then there exists H such that $p \in H$ and H is an ultrafilter.

In the sequel D denotes a non empty subset of L.

Let us consider L, D. The functor [D] yielding a filter of L is defined as follows:

(Def. 5) $D \subseteq [D]$ and for every F such that $D \subseteq F$ holds $[D] \subseteq F$.

Next we state the proposition

$$(26)^4$$
 $[F] = F.$

In the sequel D_1 , D_2 are non empty subsets of L. One can prove the following propositions:

- (27) If $D_1 \subseteq D_2$, then $[D_1) \subseteq [D_2)$.
- $(29)^5$ If $p \in D$, then $[p) \subseteq [D)$.
- (30) If $D = \{p\}$, then [D] = [p].

² The propositions (16) and (17) have been removed.

³ The proposition (21) has been removed.

⁴ The proposition (25) has been removed.

⁵ The proposition (28) has been removed.

- (31) If *L* is a lower bound lattice and $\bot_L \in D$, then [D] = [L] and [D] = the carrier of *L*.
- (32) If L is a lower bound lattice and $\bot_L \in F$, then F = [L] and F = the carrier of L.

Let us consider L, F. We say that F is prime if and only if:

(Def. 6) $p \sqcup q \in F$ iff $p \in F$ or $q \in F$.

Next we state the proposition

(34)⁶ If *L* is a Boolean lattice, then for all p, q holds $p \sqcap (p^c \sqcup q) \sqsubseteq q$ and for every r such that $p \sqcap r \sqsubseteq q$ holds $r \sqsubseteq p^c \sqcup q$.

Let I_1 be a non empty lattice structure. We say that I_1 is implicative if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let p, q be elements of I_1 . Then there exists an element r of I_1 such that $p \sqcap r \sqsubseteq q$ and for every element r_1 of I_1 such that $p \sqcap r_1 \sqsubseteq q$ holds $r_1 \sqsubseteq r$.

Let us observe that there exists a lattice which is strict and implicative.

An implicative lattice is an implicative lattice.

Let us consider L, p, q. Let us assume that L is an implicative lattice. The functor $p \Rightarrow q$ yields an element of L and is defined by:

(Def. 8) $p \sqcap (p \Rightarrow q) \sqsubseteq q$ and for every r such that $p \sqcap r \sqsubseteq q$ holds $r \sqsubseteq p \Rightarrow q$.

In the sequel I denotes an implicative lattice and i denotes an element of I. One can prove the following propositions:

- $(37)^7$ *I* is upper-bounded.
- (38) $i \Rightarrow i = \top_I$.
- (39) *I* is distributive.

In the sequel B is a Boolean lattice and F_1 , H_1 are filters of B. Next we state the proposition

(40) B is implicative.

Let us note that every lattice which is implicative is also distributive.

For simplicity, we follow the rules: I denotes an implicative lattice, i, j, k denote elements of I, D_3 denotes a non empty subset of I, and F_2 denotes a filter of I.

We now state two propositions:

- (41) If $i \in F_2$ and $i \Rightarrow j \in F_2$, then $j \in F_2$.
- (42) If $j \in F_2$, then $i \Rightarrow j \in F_2$.

Let us consider L, D_1 , D_2 . The functor $D_1 \sqcap D_2$ yielding a subset of L is defined as follows:

(Def. 9)
$$D_1 \sqcap D_2 = \{ p \sqcap q : p \in D_1 \land q \in D_2 \}.$$

Let us consider L, D_1 , D_2 . Observe that $D_1 \sqcap D_2$ is non empty.

We now state three propositions:

- (44)⁸ If $p \in D_1$ and $q \in D_2$, then $p \cap q \in D_1 \cap D_2$ and $q \cap p \in D_1 \cap D_2$.
- (45) If $x \in D_1 \cap D_2$, then there exist p, q such that $x = p \cap q$ and $p \in D_1$ and $q \in D_2$.

⁶ The proposition (33) has been removed.

⁷ The propositions (35) and (36) have been removed.

⁸ The proposition (43) has been removed.

(46) $D_1 \sqcap D_2 = D_2 \sqcap D_1$.

Let *L* be a distributive lattice and let F_3 , F_4 be filters of *L*. Then $F_3 \sqcap F_4$ is a filter of *L*. Let *L* be a Boolean lattice and let F_3 , F_4 be filters of *L*. Then $F_3 \sqcap F_4$ is a filter of *L*. The following propositions are true:

$$(47) \quad [D_1 \cup D_2) = [[D_1) \cup D_2) \text{ and } [D_1 \cup D_2) = [D_1 \cup [D_2)].$$

$$(48) \quad [F \cup H) = \{r : \bigvee_{p,q} (p \sqcap q \sqsubseteq r \land p \in F \land q \in H)\}.$$

- (49) $F \subseteq F \sqcap H$ and $H \subseteq F \sqcap H$.
- (50) $[F \cup H) = [F \cap H].$

In the sequel F_3 , F_4 are filters of I. Next we state four propositions:

- (51) $[F_3 \cup F_4] = F_3 \sqcap F_4$.
- (52) $[F_1 \cup H_1] = F_1 \cap H_1$.
- (53) If $j \in [D_3 \cup \{i\})$, then $i \Rightarrow j \in [D_3)$.
- (54) If $i \Rightarrow j \in F_2$ and $j \Rightarrow k \in F_2$, then $i \Rightarrow k \in F_2$.

In the sequel *a*, *b*, *c* denote elements of *B*. One can prove the following propositions:

- (55) $a \Rightarrow b = a^{c} \sqcup b$.
- (56) $a \sqsubseteq b \text{ iff } a \sqcap b^c = \bot_B.$
- (57) F_1 is an ultrafilter iff $F_1 \neq$ the carrier of B and for every a holds $a \in F_1$ or $a^c \in F_1$.
- (58) $F_1 \neq [B]$ and F_1 is prime iff F_1 is an ultrafilter.
- (59) If F_1 is an ultrafilter, then for every a holds $a \in F_1$ iff $a^c \notin F_1$.
- (60) If $a \neq b$, then there exists F_1 such that F_1 is an ultrafilter but $a \in F_1$ and $b \notin F_1$ or $a \notin F_1$ and $b \in F_1$.

In the sequel o_1 , o_2 denote binary operations on F.

Let us consider L, F. The functor \mathbb{L}_F yielding a lattice is defined by the condition (Def. 10).

(Def. 10) There exist o_1 , o_2 such that o_1 = (the join operation of L) \uparrow ([:F, F:] **qua** set) and o_2 = (the meet operation of L) \uparrow ([:F, F:] **qua** set) and $\mathbb{L}_F = \langle F, o_1, o_2 \rangle$.

Let us consider L, F. Note that \mathbb{L}_F is strict. Next we state a number of propositions:

- (62)⁹ For every strict lattice *L* holds $\mathbb{L}_{[L)} = L$.
- (63)(i) The carrier of $\mathbb{L}_F = F$,
- (ii) the join operation of $\mathbb{L}_F = \text{(the join operation of } L) \upharpoonright ([:F,F:] \text{ qua set}), \text{ and}$
- (iii) the meet operation of $\mathbb{L}_F =$ (the meet operation of L) \upharpoonright (:F,F:] **qua** set).
- (64) For all elements p', q' of \mathbb{L}_F such that p = p' and q = q' holds $p \sqcup q = p' \sqcup q'$ and $p \sqcap q = p' \sqcap q'$.
- (65) For all elements p', q' of \mathbb{L}_F such that p = p' and q = q' holds $p \sqsubseteq q$ iff $p' \sqsubseteq q'$.

⁹ The proposition (61) has been removed.

- (66) If *L* is upper-bounded, then \mathbb{L}_F is upper-bounded.
- (67) If *L* is modular, then \mathbb{L}_F is modular.
- (68) If *L* is distributive, then \mathbb{L}_F is distributive.
- (69) If *L* is an implicative lattice, then \mathbb{L}_F is implicative.
- (70) $\mathbb{L}_{[p)}$ is lower-bounded.
- (71) $\perp_{\mathbb{L}_{[p)}} = p$.
- (72) If *L* is upper-bounded, then $\top_{\mathbb{L}_{[p)}} = \top_L$.
- (73) If *L* is an upper bound lattice, then $\mathbb{L}_{[p)}$ is bounded.
- (74) If L is a complemented lattice and a modular lattice, then \mathbb{L}_{p} is a complemented lattice.
- (75) If *L* is a Boolean lattice, then $\mathbb{L}_{[p)}$ is a Boolean lattice.

Let us consider L, p, q. The functor $p \Leftrightarrow q$ yielding an element of L is defined by:

(Def. 11)
$$p \Leftrightarrow q = (p \Rightarrow q) \sqcap (q \Rightarrow p)$$
.

One can prove the following two propositions:

$$(77)^{10}$$
 $p \Leftrightarrow q = q \Leftrightarrow p$.

(78) If
$$i \Leftrightarrow j \in F_2$$
 and $j \Leftrightarrow k \in F_2$, then $i \Leftrightarrow k \in F_2$.

Let us consider L, F. The functor \equiv_F yielding a binary relation is defined as follows:

(Def. 12) field(
$$\equiv_F$$
) \subseteq the carrier of L and for all p , q holds $\langle p, q \rangle \in \equiv_F$ iff $p \Leftrightarrow q \in F$.

The following propositions are true:

- $(80)^{11} \equiv_F$ is a binary relation on the carrier of *L*.
- (81) If *L* is an implicative lattice, then \equiv_F is reflexive in the carrier of *L*.
- (82) \equiv_F is symmetric in the carrier of L.
- (83) If L is an implicative lattice, then \equiv_F is transitive in the carrier of L.
- (84) If L is an implicative lattice, then \equiv_F is an equivalence relation of the carrier of L.
- (85) If *L* is an implicative lattice, then field(\equiv_F) = the carrier of *L*.

Let us consider I, F_2 . Then $\equiv_{(F_2)}$ is an equivalence relation of the carrier of I.

Let us consider B, F_1 . Then $\equiv_{(F_1)}$ is an equivalence relation of the carrier of B. Let us consider L, F, p, q. The predicate $p \equiv_F q$ is defined as follows:

(Def. 13)
$$p \Leftrightarrow q \in F$$
.

Next we state four propositions:

$$(87)^{12}$$
 $p \equiv_F q \text{ iff } \langle p, q \rangle \in \equiv_F$.

- (88) $i \equiv_{F_2} i$ and $a \equiv_{F_1} a$.
- (89) If $p \equiv_F q$, then $q \equiv_F p$.
- (90) If $i \equiv_{F_2} j$ and $j \equiv_{F_2} k$, then $i \equiv_{F_2} k$ and if $a \equiv_{F_1} b$ and $b \equiv_{F_1} c$, then $a \equiv_{F_1} c$.

¹⁰ The proposition (76) has been removed.

¹¹ The proposition (79) has been removed.

¹² The proposition (86) has been removed.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [5] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/ Vol1/mcart 1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.
- [10] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [11] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.
- [12] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received July 3, 1990

Published January 2, 2004