Fibonacci Numbers

Robert M. Solovay P. O. Box 5949 Eugene OR 97405 U. S. A.

Summary. We show that Fibonacci commutes with g.c.d.; we then derive the formula connecting the Fibonacci sequence with the roots of the polynomial $x^2 - x - 1$.

MML Identifier: FIB_NUM.

WWW: http://mizar.org/JFM/Vol14/fib_num.html

The articles [2], [9], [10], [5], [1], [3], [4], [7], [6], and [8] provide the notation and terminology for this paper.

1. FIBONACCI COMMUTES WITH GCD

The following propositions are true:

- (1) For all natural numbers m, n holds gcd(m,n) = gcd(m,n+m).
- (2) For all natural numbers k, m, n such that gcd(k,m) = 1 holds $gcd(k,m \cdot n) = gcd(k,n)$.
- (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and $0 < \frac{1}{n}$ and $\frac{1}{n} \le s$.

In this article we present several logical schemes. The scheme $Fib\ Ind$ concerns a unary predicate \mathcal{P} , and states that:

For every natural number k holds $\mathcal{P}[k]$ provided the following conditions are met:

- $\mathcal{P}[0]$,
- $\mathcal{P}[1]$, and
- For every natural number k such that $\mathcal{P}[k]$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k+2]$.

The scheme *Bin Ind* concerns a binary predicate \mathcal{P} , and states that:

For all natural numbers m, n holds $\mathcal{P}[m,n]$

provided the following conditions are satisfied:

- For all natural numbers m, n such that $\mathcal{P}[m,n]$ holds $\mathcal{P}[n,m]$, and
- Let k be a natural number. Suppose that for all natural numbers m, n such that m < k and n < k holds $\mathcal{P}[m, n]$. Let m be a natural number. If $m \le k$, then $\mathcal{P}[k, m]$.

We now state two propositions:

- (4) For all natural numbers m, n holds $Fib(m+(n+1)) = Fib(n) \cdot Fib(m) + Fib(n+1) \cdot Fib(m+1)$.
- (5) For all natural numbers m, n holds gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)).

2. FIBONACCI NUMBERS AND THE GOLDEN MEAN

We now state the proposition

(6) Let x, a, b, c be real numbers. Suppose $a \neq 0$ and $\Delta(a, b, c) \geq 0$. Then $a \cdot x^2 + b \cdot x + c = 0$ if and only if $x = \frac{-b - \sqrt{\Delta(a, b, c)}}{2 \cdot a}$ or $x = \frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a}$.

The real number $\boldsymbol{\tau}$ is defined by:

(Def. 1)
$$\tau = \frac{1+\sqrt{5}}{2}$$
.

The real number $\bar{\tau}$ is defined as follows:

(Def. 2)
$$\bar{\tau} = \frac{1-\sqrt{5}}{2}$$
.

Next we state several propositions:

- (7) For every natural number *n* holds $Fib(n) = \frac{\tau^n \overline{\tau}^n}{\sqrt{5}}$.
- (8) For every natural number *n* holds $|\text{Fib}(n) \frac{\tau^n}{\sqrt{5}}| < 1$.
- (9) For all sequences F, G of real numbers such that for every natural number n holds F(n) = G(n) holds F = G.
- (10) For all sequences f, g, h of real numbers such that g is non-zero holds (f/g)(g/h) = f/h.
- (11) For all sequences f, g of real numbers and for every natural number n holds $(f/g)(n) = \frac{f(n)}{g(n)}$ and $(f/g)(n) = f(n) \cdot g(n)^{-1}$.
- (12) Let F be a sequence of real numbers. Suppose that for every natural number n holds $F(n) = \frac{\operatorname{Fib}(n+1)}{\operatorname{Fib}(n)}$. Then F is convergent and $\lim F = \tau$.

ACKNOWLEDGMENTS

My thanks to Freek Wiedijk for helping me learn Mizar and to Piotr Rudnicki for instructive comments on an earlier version of this article. This article was finished while I was visiting Bialystok and Adam Naumowicz and Josef Urban helped me through some difficult moments.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [3] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pre_ff.html.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [6] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- $[7] \ \ \textbf{Jan Popiolek. Quadratic inequalities.} \ \textit{Journal of Formalized Mathematics}, \textbf{3}, \textbf{1991}. \ \texttt{http://mizar.org/JFM/Vol3/quin_1.html.} \\$
- [8] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/power.html.
- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.

[10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.

Received April 19, 2002

Published January 2, 2004