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Summary. We show that Fibonacci commutes with g.c.d.; we then derive the formula
connecting the Fibonacci sequence with the roots of the polynomialx2−x−1.

MML Identifier: FIB_NUM.

WWW: http://mizar.org/JFM/Vol14/fib_num.html

The articles [2], [9], [10], [5], [1], [3], [4], [7], [6], and [8] provide the notation and terminology for
this paper.

1. FIBONACCI COMMUTES WITH GCD

The following propositions are true:

(1) For all natural numbersm, n holds gcd(m,n) = gcd(m,n+m).

(2) For all natural numbersk, m, n such that gcd(k,m) = 1 holds gcd(k,m·n) = gcd(k,n).

(3) For every real numberssuch thats> 0 there exists a natural numbern such thatn > 0 and
0 < 1

n and 1
n ≤ s.

In this article we present several logical schemes. The schemeFib Ind concerns a unary predi-
cateP , and states that:

For every natural numberk holdsP [k]
provided the following conditions are met:

• P [0],
• P [1], and
• For every natural numberk such thatP [k] andP [k+1] holdsP [k+2].

The schemeBin Indconcerns a binary predicateP , and states that:
For all natural numbersm, n holdsP [m,n]

provided the following conditions are satisfied:
• For all natural numbersm, n such thatP [m,n] holdsP [n,m], and
• Let k be a natural number. Suppose that for all natural numbersm, n such thatm< k

andn < k holdsP [m,n]. Let mbe a natural number. Ifm≤ k, thenP [k,m].
We now state two propositions:

(4) For all natural numbersm, n holds Fib(m+(n+1)) = Fib(n) ·Fib(m)+Fib(n+1) ·Fib(m+
1).

(5) For all natural numbersm, n holds gcd(Fib(m),Fib(n)) = Fib(gcd(m,n)).
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2. FIBONACCI NUMBERS AND THE GOLDEN MEAN

We now state the proposition

(6) Let x, a, b, c be real numbers. Supposea 6= 0 and∆(a,b,c)≥ 0. Thena ·x2 +b ·x+c = 0

if and only if x = −b−
√

∆(a,b,c)
2·a or x = −b+

√
∆(a,b,c)

2·a .

The real numberτ is defined by:

(Def. 1) τ = 1+
√

5
2 .

The real numberτ is defined as follows:

(Def. 2) τ = 1−
√

5
2 .

Next we state several propositions:

(7) For every natural numbern holds Fib(n) = τn−τn
√

5
.

(8) For every natural numbern holds|Fib(n)− τn
√

5
|< 1.

(9) For all sequencesF , G of real numbers such that for every natural numbern holdsF(n) =
G(n) holdsF = G.

(10) For all sequencesf , g, h of real numbers such thatg is non-zero holds( f/g) (g/h) = f/h.

(11) For all sequencesf , gof real numbers and for every natural numbernholds( f/g)(n) = f (n)
g(n)

and( f/g)(n) = f (n) ·g(n)−1.

(12) Let F be a sequence of real numbers. Suppose that for every natural numbern holds
F(n) = Fib(n+1)

Fib(n) . ThenF is convergent and limF = τ.
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