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Summary. We show that Fibonacci commutes with g.c.d.; we then derive the formula
connecting the Fibonacci sequence with the roots of the polynofhiak — 1.

MML Identifier: FIB_NUM.

WWW: http://mizar.org/JFM/Voll4/fib_num.html

The articles[[2],[[9],[10],[[5],[T1], [3], 41, [71, [6], and([8] provide the notation and terminology for
this paper.

1. FBONAcclI COMMUTES WITH GCD
The following propositions are true:
(1) For all natural numbens, n holds gcdm, n) = gcd'm,n+m).
(2) For all natural numbeis m, n such that gctk, m) = 1 holds gcdk, m-n) = gcdk, n).

(3) For every real numbeyrsuch thas > 0 there exists a natural numbesuch than > 0 and
0<landi<s

In this article we present several logical schemes. The sclkéimed concerns a unary predi-
cate?, and states that:
For every natural numbérholds?[k]|
provided the following conditions are met:
° fP[O},
e P[1],and
¢ For every natural numbdrsuch that?[k] and?[k+ 1] holdsP[k+ 2].
The schemdin Ind concerns a binary predicat® and states that:
For all natural numbens, n holds®[m, n|
provided the following conditions are satisfied:
e For all natural numbem,, n such that?[m, n| holds®[n,m|, and
e Letkbe a natural number. Suppose that for all natural numienssuch tham < k
andn < k holds®[m,n]. Letmbe a natural number. th <k, then?[k, m].
We now state two propositions:

(4) Forall natural numbers, nholds Figm+ (n+ 1)) = Fib(n) - Fib(m) + Fib(n+ 1) - Fib(m+
1).

(5) For all natural numbens, n holds gcdFib(m), Fib(n)) = Fib(gcdm,n)).
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2. FBONACCI NUMBERS AND THE GOLDEN MEAN
We now state the proposition

(6) Letx, a, b, c be real numbers. Suppoae“ 0 andA(a,b,c) > 0. Thena-x*+b-x+c=0
if and only if x = —2—VA@P0) ZA(a’b’C) orx = —2rVA@bo) VZA(a’b’c)
.a .a .

The real number is defined by:
(Def. 1) 1=1/5
The real numbeT is defined as follows:

=_ 146

(Def.2) T=1,5.

Next we state several propositions:

(7) For every natural numberholds Fin) = T"gg"-

(8) For every natural numberholds|Fib(n) — \T/—ng\ <1l

(9) For all sequencds, G of real numbers such that for every natural numbkoldsF (n) =
G(n) holdsF = G.

(10) For all sequencek g, h of real numbers such thgtis non-zero hold$f /g) (g/h) = f /h.

(11) Forall sequencefs g of real numbers and for every natural numbéolds(f/g)(n) = %
and(f/g)(n) = f(n)-g(n)~*.

(12) LetF be a sequence of real numbers. Suppose that for every natural nanhiodats

F(n)= %(’;)1). ThenF is convergent and lirh = 1.
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