Real Function One-Side Differentiability

Ewa Burakowska Warsaw University Białystok Beata Madras Warsaw University Białystok

Summary. We define real function one-side differentiability and one-side continuity. Main properties of one-side differentiability function are proved. Connections between one-side differential and differential real function at the point are demonstrated.

MML Identifier: FDIFF_3.

WWW: http://mizar.org/JFM/Vol3/fdiff_3.html

The articles [11], [1], [12], [2], [14], [5], [3], [4], [13], [7], [8], [10], [9], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: h, h_1 , h_2 denote convergent to 0 sequences of real numbers, c denotes a constant sequence of real numbers, f, f_1 , f_2 denote partial functions from \mathbb{R} to \mathbb{R} , x_0 , r, r_1 , g, g_1 , g_2 denote real numbers, n denotes a natural number, and a denotes a sequence of real numbers.

One can prove the following propositions:

- (1) If there exists r such that r > 0 and $[x_0 r, x_0] \subseteq \text{dom } f$, then there exist h, c such that $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq \text{dom } f$ and for every n holds h(n) < 0.
- (2) If there exists r such that r > 0 and $[x_0, x_0 + r] \subseteq \text{dom } f$, then there exist h, c such that $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq \text{dom } f$ and for every n holds h(n) > 0.
- (3) Suppose for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) < 0 holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $\{x_0\} \subseteq \operatorname{dom} f$. Let given h_1, h_2, c . Suppose $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h_1 + c) \subseteq \operatorname{dom} f$ and for every n holds $h_1(n) < 0$ and $\operatorname{rng}(h_2 + c) \subseteq \operatorname{dom} f$ and for every n holds $h_2(n) < 0$. Then $\lim(h_1^{-1}(f \cdot (h_1 + c) f \cdot c)) = \lim(h_2^{-1}(f \cdot (h_2 + c) f \cdot c))$.
- (4) Suppose for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) > 0 holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $\{x_0\} \subseteq \operatorname{dom} f$. Let given h_1, h_2, c . Suppose $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h_1+c) \subseteq \operatorname{dom} f$ and $\operatorname{rng}(h_2+c) \subseteq \operatorname{dom} f$ and for every n holds $h_1(n) > 0$ and for every n holds $h_2(n) > 0$. Then $\lim(h_1^{-1}(f \cdot (h_1+c) f \cdot c)) = \lim(h_2^{-1}(f \cdot (h_2+c) f \cdot c))$.

Let us consider f, x_0 . We say that f is left continuous in x_0 if and only if:

(Def. 1) $x_0 \in \text{dom } f$ and for every a such that $\text{rng } a \subseteq]-\infty, x_0[\cap \text{dom } f$ and a is convergent and $\lim a = x_0 \text{ holds } f \cdot a$ is convergent and $f(x_0) = \lim (f \cdot a)$.

We say that f is right continuous in x_0 if and only if:

(Def. 2) $x_0 \in \text{dom } f$ and for every a such that $\text{rng } a \subseteq]x_0, +\infty[\cap \text{dom } f$ and a is convergent and $\lim a = x_0 \text{ holds } f \cdot a$ is convergent and $f(x_0) = \lim(f \cdot a)$.

We say that f is right differentiable in x_0 if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) There exists r such that r > 0 and $[x_0, x_0 + r] \subseteq \text{dom } f$, and
 - (ii) for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent.

We say that f is left differentiable in x_0 if and only if the conditions (Def. 4) are satisfied.

- (Def. 4)(i) There exists r such that r > 0 and $[x_0 r, x_0] \subseteq \text{dom } f$, and
 - (ii) for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) < 0 holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent.

We now state four propositions:

- (5) If f is left differentiable in x_0 , then f is left continuous in x_0 .
- (6) Suppose f is left continuous in x_0 and $f(x_0) \neq g_2$ and there exists r such that r > 0 and $[x_0 r, x_0] \subseteq \text{dom } f$. Then there exists r_1 such that $r_1 > 0$ and $[x_0 r_1, x_0] \subseteq \text{dom } f$ and for every g such that $g \in [x_0 r_1, x_0]$ holds $f(g) \neq g_2$.
- (7) If f is right differentiable in x_0 , then f is right continuous in x_0 .
- (8) Suppose f is right continuous in x_0 and $f(x_0) \neq g_2$ and there exists r such that r > 0 and $[x_0, x_0 + r] \subseteq \text{dom } f$. Then there exists r_1 such that $r_1 > 0$ and $[x_0, x_0 + r_1] \subseteq \text{dom } f$ and for every g such that $g \in [x_0, x_0 + r_1]$ holds $f(g) \neq g_2$.

Let us consider x_0 , f. Let us assume that f is left differentiable in x_0 . The functor $f'_-(x_0)$ yields a real number and is defined by:

(Def. 5) For all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) < 0 holds $f'_-(x_0) = \lim(h^{-1}(f \cdot (h+c) - f \cdot c))$.

Let us consider x_0 , f. Let us assume that f is right differentiable in x_0 . The functor $f'_+(x_0)$ yielding a real number is defined by:

(Def. 6) For all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) > 0 holds $f'_+(x_0) = \lim(h^{-1}(f \cdot (h+c) - f \cdot c))$.

The following propositions are true:

- (9) f is left differentiable in x_0 and $f'_-(x_0) = g$ if and only if the following conditions are satisfied:
- (i) there exists r such that 0 < r and $[x_0 r, x_0] \subseteq \text{dom } f$, and
- (ii) for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds h(n) < 0 holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $\lim(h^{-1}(f \cdot (h+c) f \cdot c)) = g$.
- (10) Suppose f_1 is left differentiable in x_0 and f_2 is left differentiable in x_0 . Then $f_1 + f_2$ is left differentiable in x_0 and $(f_1 + f_2)'_-(x_0) = f_1'_-(x_0) + f_2'_-(x_0)$.
- (11) Suppose f_1 is left differentiable in x_0 and f_2 is left differentiable in x_0 . Then $f_1 f_2$ is left differentiable in x_0 and $(f_1 f_2)'_-(x_0) = f_1'_-(x_0) f_2'_-(x_0)$.
- (12) Suppose f_1 is left differentiable in x_0 and f_2 is left differentiable in x_0 . Then f_1 f_2 is left differentiable in x_0 and $(f_1 f_2)'_-(x_0) = f_1'_-(x_0) \cdot f_2(x_0) + f_2'_-(x_0) \cdot f_1(x_0)$.
- (13) Suppose f_1 is left differentiable in x_0 and f_2 is left differentiable in x_0 and $f_2(x_0) \neq 0$. Then $\frac{f_1}{f_2}$ is left differentiable in x_0 and $(\frac{f_1}{f_2})'_-(x_0) = \frac{f_1'_-(x_0) \cdot f_2(x_0) f_2'_-(x_0) \cdot f_1(x_0)}{f_2(x_0)^2}$.
- (14) If f is left differentiable in x_0 and $f(x_0) \neq 0$, then $\frac{1}{f}$ is left differentiable in x_0 and $(\frac{1}{f})'_-(x_0) = -\frac{f'_-(x_0)}{f(x_0)^2}$.

- (15) f is right differentiable in x_0 and $f'_+(x_0) = g_1$ if and only if the following conditions are satisfied:
 - (i) there exists r such that r > 0 and $[x_0, x_0 + r] \subseteq \text{dom } f$, and
- (ii) for all h, c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $\operatorname{lim}(h^{-1}(f \cdot (h+c) f \cdot c)) = g_1$.
- (16) Suppose f_1 is right differentiable in x_0 and f_2 is right differentiable in x_0 . Then $f_1 + f_2$ is right differentiable in x_0 and $(f_1 + f_2)'_+(x_0) = f_1'_+(x_0) + f_2'_+(x_0)$.
- (17) Suppose f_1 is right differentiable in x_0 and f_2 is right differentiable in x_0 . Then $f_1 f_2$ is right differentiable in x_0 and $(f_1 f_2)'_+(x_0) = f_1'_+(x_0) f_2'_+(x_0)$.
- (18) Suppose f_1 is right differentiable in x_0 and f_2 is right differentiable in x_0 . Then f_1 f_2 is right differentiable in x_0 and $(f_1 f_2)'_+(x_0) = f_1'_+(x_0) \cdot f_2(x_0) + f_2'_+(x_0) \cdot f_1(x_0)$.
- (19) Suppose f_1 is right differentiable in x_0 and f_2 is right differentiable in x_0 and $f_2(x_0) \neq 0$. Then $\frac{f_1}{f_2}$ is right differentiable in x_0 and $(\frac{f_1}{f_2})'_+(x_0) = \frac{f_1'_+(x_0)\cdot f_2(x_0)-f_2'_+(x_0)\cdot f_1(x_0)}{f_2(x_0)^2}$.
- (20) If f is right differentiable in x_0 and $f(x_0) \neq 0$, then $\frac{1}{f}$ is right differentiable in x_0 and $(\frac{1}{f})'_+(x_0) = -\frac{f'_+(x_0)}{f(x_0)^2}$.
- (21) Suppose f is right differentiable in x_0 and left differentiable in x_0 and $f'_+(x_0) = f'_-(x_0)$. Then f is differentiable in x_0 and $f'(x_0) = f'_+(x_0)$ and $f'(x_0) = f'_-(x_0)$.
- (22) Suppose f is differentiable in x_0 . Then f is right differentiable in x_0 and left differentiable in x_0 and $f'(x_0) = f'_+(x_0)$ and $f'(x_0) = f'_-(x_0)$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [6] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfunc1.html.
- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html.
- [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fdiff_1.html.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.

[14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received December 12, 1991

Published January 2, 2004
