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Summary. We define real function one-side differentiability and one-side continuity.
Main properties of one-side differentiability function are proved. Connections between one-
side differential and differential real function at the point are demonstrated.
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The articles[[11],[1],[[1R],[12],[[14],15],138],14],113],[[¥],18],[10],[19], and [6] provide the notation
and terminology for this paper.

For simplicity, we adopt the following rulest, hy, hy denote convergent to 0 sequences of real
numbersgc denotes a constant sequence of real numbers, f, denote partial functions from
toR, xo, 1, r1, 0, 01, g2 denote real numbers,denotes a natural number, amdenotes a sequence
of real numbers.

One can prove the following propositions:

(1) If there exists such thatr > 0 and|[xp — r,%p] € domf, then there exish, ¢ such that
rgc = {Xo} and rngh+c) C domf and for everyn holdsh(n) < 0.

(2) If there existsr such thatr > 0 and[xg,Xp + r] € domf, then there exish, ¢ such that
rngc = {X} and rngh+ c) C domf and for everyn holdsh(n) > 0.

(3) Suppose for alh, ¢ such that rng = {xp} and rngh+ c) C domf and for everyn holds
h(n) < 0 holdsh™® (f - (h+c) — f - ¢) is convergent andxo} C domf. Let givenhy, hy,
c. Suppose rng= {xo} and rngh; + ¢) C domf and for everyn holds hy(n) < 0 and
rng(hz 4+ ¢) € domf and for everyn holdshy(n) < 0. Then lim(h; =2 (f - (hy4-¢) — f-¢)) =
lim(hy=t (f-(hy+c)—f-c)).

(4) Suppose for alh, ¢ such that rng = {x} and rngh+ c¢) C domf and for everyn holds
h(n) > 0 holdsh™! (f - (h+c) — f - ¢) is convergent andxo} C domf. Let givenhy, hy,
c. Suppose rng= {X} and rngh; + c¢) C domf and rnghz + c) C domf and for every
n holdshy(n) > 0 and for everyn holdshy(n) > 0. Then lim(h;=* (f - (hy +¢) — f-c)) =
lim(h,=t (f-(hy+c)—f-c)).

Let us consideff, xg. We say thaff is left continuous in if and only if:

(Def. 1) xp € domf and for everya such that rn@ C |—, X[ Ndomf anda is convergent and
lima=xg holdsf -ais convergent and(xp) = lim(f - a).

We say thaff is right continuous in if and only if:

(Def. 2) xp € domf and for everya such that rn@ C ]xp, +o[Ndomf anda is convergent and
lima=xg holdsf -ais convergent and(xp) = lim(f - a).
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We say thaff is right differentiable in if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) There exists such that > 0 and[Xg, %o +r] € domf, and
(i) for all h, csuch that rng = {xo} and rndh+ c) C domf and for everyn holdsh(n) > 0
holdsh~1 (f - (h+c) — f - ¢) is convergent.
We say thaff is left differentiable inxg if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) There exists such that > 0 and[Xp —r,%o] € domf, and
(i) for all h, csuch that rng = {xo} and rndh+c) C domf and for everyn holdsh(n) < 0
holdsh= (f - (h+c) — f - c) is convergent.
We now state four propositions:

(5) If fis left differentiable inxg, thenf is left continuous inkg.

(6) Supposef is left continuous inkg and f(xg) # g2 and there exists such that > 0 and
[Xo — I, %0] € domf. Then there exists; such that; > 0 and[xo — r1,%0] € domf and for
everyg such thag € [Xo —r1,Xo| holds f (@) # 9.

(7) If fisright differentiable i, thenf is right continuous ing.

(8) Supposd is right continuous i and f (xg) # g2 and there exists such thatr > 0 and
[X0, X0+ r] € domf. Then there exists; such thatr; > 0 and[xp,Xo +r1] € domf and for
everyg such thag € [Xo, %o +r1] holds f (g) # gp.

Let us considexy, f. Let us assume thdtis left differentiable irxg. The functorf’ (xo) yields
a real number and is defined by:

(Def. 5) For allh, ¢ such that rng = {Xo} and rngh+c) C domf and for everyn holdsh(n) < 0
holds f’ (xo) = lim(h=2 (f - (h+c) - f -c)).

Let us consideK, f. Let us assume thdt is right differentiable inxg. The functorf/ (xo)
yielding a real number is defined by:

(Def. 6) For allh, c such that rng = {xo} and rngh+ c) C domf and for everyn holdsh(n) > 0
holds f’, (xo) = lim(h=t (f - (h+c)—f-c)).
The following propositions are true:

(9) f is left differentiable inxy and f’ (Xp) = g if and only if the following conditions are
satisfied:

(i) there exists such that O< r and[xg —r,X%o] € domf, and
(i) forall h, c such that rng = {xo} and rngh+ c) C domf and for everyn holdsh(n) < 0
holdsh~* (f - (h+c) — f -¢) is convergent and liih—* (f - (h+c) — f-c)) =g.

(10) Suppossd; is left differentiable inxg and f; is left differentiable inxg. Thenfy + fs is left
differentiable inxg and(f1+ f2)"_(x0) = 1’ (Xo0) + 2" (Xo)-

(11) Supposd; is left differentiable inxg and f; is left differentiable inxg. Thenf, — f; is left
differentiable inxg and(f1 — f2)"_(x0) = f1’_(X0) — 2" (Xo)-

(12) Supposds is left differentiable inxg and f; is left differentiable inxg. Thenfy fy is left
differentiable inxg and(f1 f2)" (xo) = f1’ (Xo) - f2(x0) + 2" (Xo) - f1(X0).

(13) Supposd; is left differentiable inxy and f; is left differentiable inxg and f2(xg) # 0. Then

% is left differentiable inxg and(%)L(xo) = flL(XO)'fZ(Xf';)(;Of)"‘;(X")'fl(XO).

(24) If f is left differentiable inxy and f(xp) # O, then% is left differentiable inxg and
1 __ fl(x)
(T)L(XO) - f(Xo)Z'
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(15) f is right differentiable irxg and f/ (Xo) = g1 if and only if the following conditions are
satisfied:

(i) there exists such that > 0 and[xg,Xp +r] C domf, and
(i) for all h, csuch that rng = {xo} and rndh+c) C domf and for everyn holdsh(n) > 0
holdsh~! (f - (h+c) — f - ¢) is convergent and lifh=2 (f - (h4-¢c) — f-c)) = g1.

(16) Supposd; is right differentiable inxg and f; is right differentiable inxg. Thenf, + f, is
right differentiable ik and(f1 + f2)’, (xo) = 1, (Xo) + 2. (X0)-

(17) Supposd; is right differentiable inxg and f; is right differentiable ing. Thenf; — fa is
right differentiable ik and(f1 — f2)’, (x0) = 1, (Xo) — 2/ (X0)-

(18) Supposd is right differentiable inxg and f» is right differentiable inx. Thenf; fy is
right differentiable ik and(f1 f2)’, (xo) = f1’,(Xo) - f2(X0) + 2/, (Xo) - f1(X0)-

(19) Suppossd; is right differentiable irxg and f» is right differentiable inxg and f,(xp) # 0.

Then ¢t is right differentiable ing and(£)’; (xo) = f1/+("°>'f2(xg(;of)22/+(x°>'fl(x").

(20) If f is right differentiable inxg and f(xg) # O, then% is right differentiable inxg and
f/

(21) Suppose is right differentiable inxg and left differentiable ing and f/ (xo) = f’ (o).
Thenf is differentiable ik and f’(xp) = f/ (o) and f’(xg) = f’ (o).

(22) Supposd is differentiable inxy. Thenf is right differentiable in and left differentiable
in o and f'(xo) = f/. (xo) and f'(x0) = f’ (xo).
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