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Summary. A continuation of [16]. We prove equivalent definition of the derivative
of the real function at the point and theorems about derivative of composite functions, inverse
function and derivative of quotient of two functions. At the beginning of the paper a few facts
which rather belong to [8], [9] and [7] are proved.
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The articles [18], [21], [2], [19], [6], [1], [3], [4], [10], [22], [8], [15], [5], [20], [12], [13], [17],
[14], [16], [11], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules:x0, r, r1, r2, g, p are real numbers,n, mare natural
numbers,a, b, d are sequences of real numbers,h, h1, h2 are convergent to 0 sequences of real
numbers,c is a constant sequence of real numbers,A is an open subset ofR, and f , f1, f2 are partial
functions fromR to R.

Let us considerh. Observe that−h is convergent to 0.
One can prove the following propositions:

(1) Supposea is convergent andb is convergent and lima = lim b and for everyn holdsd(2 ·
n) = a(n) andd(2·n+1) = b(n). Thend is convergent and limd = lim a.

(2) If for everyn holdsa(n) = 2·n, thena is increasing and natural-yielding.

(3) If for everyn holdsa(n) = 2·n+1, thena is increasing and natural-yielding.

(4) If rngc= {x0}, thenc is convergent and limc= x0 andh+c is convergent and lim(h+c) =
x0.

(5) If rnga = {r} and rngb = {r}, thena = b.

(6) If a is a subsequence ofh, thena is a convergent to 0 sequence of real numbers.

(7) Suppose that for allh, c such that rngc = {g} and rng(h+ c) ⊆ dom f and{g} ⊆ dom f
holdsh−1 ( f · (h+ c)− f · c) is convergent. Let givenh1, h2, c. Suppose rngc = {g} and
rng(h1 + c) ⊆ dom f and rng(h2 + c) ⊆ dom f and{g} ⊆ dom f . Then lim(h1

−1 ( f · (h1 +
c)− f ·c)) = lim(h2

−1 ( f · (h2 +c)− f ·c)).

(8) If there exists a neighbourhoodN of r such thatN ⊆ dom f , then there existh, c such that
rngc = {r} and rng(h+c)⊆ dom f and{r} ⊆ dom f .

(9) If rnga⊆ dom( f2 · f1), then rnga⊆ dom f1 and rng( f1 ·a)⊆ dom f2.
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The schemeExInc Seq of Natdeals with a sequenceA of real numbers and a unary predicateP ,
and states that:

There exists an increasing sequenceq of naturals such that for everyn holdsP [(A ·
q)(n)] and for everyn such that for everyr such thatr = A(n) holdsP [r] there exists
m such thatn = q(m)

provided the parameters meet the following condition:
• For everyn there existsm such thatn≤ m andP [A(m)].

We now state a number of propositions:

(10) Supposef (x0) 6= r and f is differentiable inx0. Then there exists a neighbourhoodN of x0

such thatN ⊆ dom f and for everyg such thatg∈ N holds f (g) 6= r.

(11) f is differentiable inx0 if and only if the following conditions are satisfied:

(i) there exists a neighbourhoodN of x0 such thatN ⊆ dom f , and

(ii) for all h, c such that rngc = {x0} and rng(h+c) ⊆ dom f holdsh−1 ( f · (h+c)− f ·c) is
convergent.

(12) f is differentiable inx0 and f ′(x0) = g if and only if the following conditions are satisfied:

(i) there exists a neighbourhoodN of x0 such thatN ⊆ dom f , and

(ii) for all h, c such that rngc = {x0} and rng(h+c) ⊆ dom f holdsh−1 ( f · (h+c)− f ·c) is
convergent and lim(h−1 ( f · (h+c)− f ·c)) = g.

(13) If f1 is differentiable inx0 and f2 is differentiable inf1(x0), then f2 · f1 is differentiable in
x0 and( f2 · f1)′(x0) = f2′( f1(x0)) · f1′(x0).

(14) Supposef2(x0) 6= 0 and f1 is differentiable inx0 and f2 is differentiable inx0. Then f1
f2

is

differentiable inx0 and( f1
f2

)′(x0) = f1
′(x0)· f2(x0)− f2

′(x0)· f1(x0)
f2(x0)2 .

(15) If f (x0) 6= 0 and f is differentiable inx0, then 1
f is differentiable inx0 and ( 1

f )
′(x0) =

− f ′(x0)
f (x0)2 .

(16) If f is differentiable onA, then f �A is differentiable onA and f ′�A = ( f �A)′�A.

(17) If f1 is differentiable onA and f2 is differentiable onA, then f1 + f2 is differentiable onA
and( f1 + f2)′�A = ( f1)′�A +( f2)′�A.

(18) If f1 is differentiable onA and f2 is differentiable onA, then f1− f2 is differentiable onA
and( f1− f2)′�A = ( f1)′�A− ( f2)′�A.

(19) If f is differentiable onA, thenr f is differentiable onA and(r f )′�A = r f ′�A.

(20) If f1 is differentiable onA and f2 is differentiable onA, then f1 f2 is differentiable onA
and( f1 f2)′�A = ( f1)′�A f2 + f1 ( f2)′�A.

(21) Supposef1 is differentiable onA and f2 is differentiable onA and for everyx0 such that

x0 ∈ A holds f2(x0) 6= 0. Then f1
f2

is differentiable onA and( f1
f2

)′�A =
( f1)′�A f2−( f2)′�A f1

f2 f2
.

(22) Supposef is differentiable onA and for everyx0 such thatx0 ∈ A holds f (x0) 6= 0. Then 1
f

is differentiable onA and( 1
f )
′
�A =−

f ′�A
f f .

(23) Supposef1 is differentiable onA and f1◦A is an open subset ofR and f2 is differentiable
on f1◦A. Then f2 · f1 is differentiable onA and( f2 · f1)′�A = (( f2)′� f1

◦A · f1) ( f1)′�A.

(24) SupposeA⊆ dom f and for allr, p such thatr ∈A andp∈A holds| f (r)− f (p)| ≤ (r− p)2.
Then f is differentiable onA and for everyx0 such thatx0 ∈ A holds f ′(x0) = 0.
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(25) Suppose for allr1, r2 such thatr1 ∈ ]p,g[ andr2 ∈ ]p,g[ holds| f (r1)− f (r2)| ≤ (r1− r2)2

andp < g and]p,g[⊆ dom f . Then f is differentiable on]p,g[ and a constant on]p,g[.

(26) Suppose]−∞, r[ ⊆ dom f and for all r1, r2 such thatr1 ∈ ]−∞, r[ and r2 ∈ ]−∞, r[ holds
| f (r1)− f (r2)| ≤ (r1− r2)2. Then f is differentiable on]−∞, r[ and a constant on]−∞, r[.

(27) Suppose]r,+∞[ ⊆ dom f and for all r1, r2 such thatr1 ∈ ]r,+∞[ and r2 ∈ ]r,+∞[ holds
| f (r1)− f (r2)| ≤ (r1− r2)2. Then f is differentiable on]r,+∞[ and a constant on]r,+∞[.

(28) If f is total and for allr1, r2 holds| f (r1)− f (r2)| ≤ (r1− r2)2, then f is differentiable on
ΩR and a constant onΩR.

(29) Supposef is differentiable on]−∞, r[ and for everyx0 such thatx0 ∈ ]−∞, r[ holds 0<
f ′(x0). Then f is increasing on]−∞, r[ and f �]−∞, r[ is one-to-one.

(30) Supposef is differentiable on]−∞, r[ and for everyx0 such thatx0∈ ]−∞, r[ holds f ′(x0) <
0. Then f is decreasing on]−∞, r[ and f �]−∞, r[ is one-to-one.

(31) If f is differentiable on]−∞, r[ and for everyx0 such thatx0 ∈ ]−∞, r[ holds 0≤ f ′(x0),
then f is non-decreasing on]−∞, r[.

(32) If f is differentiable on]−∞, r[ and for everyx0 such thatx0 ∈ ]−∞, r[ holds f ′(x0) ≤ 0,
then f is non increasing on]−∞, r[.

(33) Supposef is differentiable on]r,+∞[ and for everyx0 such thatx0 ∈ ]r,+∞[ holds 0<
f ′(x0). Then f is increasing on]r,+∞[ and f �]r,+∞[ is one-to-one.

(34) Supposef is differentiable on]r,+∞[ and for everyx0 such thatx0 ∈ ]r,+∞[ holds f ′(x0) <
0. Then f is decreasing on]r,+∞[ and f �]r,+∞[ is one-to-one.

(35) If f is differentiable on]r,+∞[ and for everyx0 such thatx0 ∈ ]r,+∞[ holds 0≤ f ′(x0),
then f is non-decreasing on]r,+∞[.

(36) If f is differentiable on]r,+∞[ and for everyx0 such thatx0 ∈ ]r,+∞[ holds f ′(x0) ≤ 0,
then f is non increasing on]r,+∞[.

(37) If f is differentiable onΩR and for everyx0 holds 0< f ′(x0), then f is increasing onΩR
and one-to-one.

(38) If f is differentiable onΩR and for everyx0 holds f ′(x0) < 0, then f is decreasing onΩR
and one-to-one.

(39) If f is differentiable onΩR and for everyx0 holds 0≤ f ′(x0), then f is non-decreasing on
ΩR.

(40) If f is differentiable onΩR and for everyx0 holds f ′(x0) ≤ 0, then f is non increasing on
ΩR.

(41) Supposef is differentiable on]p,g[ but for everyx0 such thatx0 ∈ ]p,g[ holds 0< f ′(x0)
or for everyx0 such thatx0 ∈ ]p,g[ holds f ′(x0) < 0. Then rng( f �]p,g[) is open.

(42) Supposef is differentiable on]−∞, p[ but for everyx0 such thatx0 ∈ ]−∞, p[ holds 0<
f ′(x0) or for everyx0 such thatx0 ∈ ]−∞, p[ holds f ′(x0) < 0. Then rng( f �]−∞, p[) is open.

(43) Supposef is differentiable on]p,+∞[ but for everyx0 such thatx0 ∈ ]p,+∞[ holds 0<
f ′(x0) or for everyx0 such thatx0 ∈ ]p,+∞[ holds f ′(x0) < 0. Then rng( f �]p,+∞[) is open.

(44) If f is differentiable onΩR and if for everyx0 holds 0< f ′(x0) or for everyx0 holds
f ′(x0) < 0, then rngf is open.

(45) Let f be an one-to-one partial function fromR to R. Supposef is differentiable onΩR but
for everyx0 holds 0< f ′(x0) or for everyx0 holds f ′(x0) < 0. Then f is one-to-one andf−1

is differentiable on dom( f−1) and for everyx0 such thatx0 ∈ dom( f−1) holds( f−1)′(x0) =
1

f ′( f−1(x0)) .
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(46) Let f be an one-to-one partial function fromR to R. Supposef is differentiable on
]−∞, p[ but for everyx0 such thatx0 ∈ ]−∞, p[ holds 0< f ′(x0) or for everyx0 such that
x0 ∈ ]−∞, p[ holds f ′(x0) < 0. Then f �]−∞, p[ is one-to-one and( f �]−∞, p[)−1 is differ-
entiable on dom(( f �]−∞, p[)−1) and for everyx0 such thatx0 ∈ dom(( f �]−∞, p[)−1) holds
(( f �]−∞, p[)−1)′(x0) = 1

f ′(( f �]−∞,p[)−1(x0)) .

(47) Let f be an one-to-one partial function fromR to R. Supposef is differentiable on
]p,+∞[ but for everyx0 such thatx0 ∈ ]p,+∞[ holds 0< f ′(x0) or for everyx0 such that
x0 ∈ ]p,+∞[ holds f ′(x0) < 0. Then f �]p,+∞[ is one-to-one and( f �]p,+∞[)−1 is differ-
entiable on dom(( f �]p,+∞[)−1) and for everyx0 such thatx0 ∈ dom(( f �]p,+∞[)−1) holds
(( f �]p,+∞[)−1)′(x0) = 1

f ′(( f �]p,+∞[)−1(x0)) .

(48) Let f be an one-to-one partial function fromR to R. Supposef is differentiable on]p,g[
but for everyx0 such thatx0 ∈ ]p,g[ holds 0< f ′(x0) or for everyx0 such thatx0 ∈ ]p,g[ holds
f ′(x0) < 0. Then

(i) f �]p,g[ is one-to-one,

(ii) ( f �]p,g[)−1 is differentiable on dom(( f �]p,g[)−1), and

(iii) for every x0 such thatx0 ∈ dom(( f �]p,g[)−1) holds(( f �]p,g[)−1)′(x0) = 1
f ′(( f �]p,g[)−1(x0)) .

(49) Supposef is differentiable inx0. Let givenh, c. Suppose rngc = {x0} and rng(h+ c) ⊆
dom f and rng(−h+ c) ⊆ dom f . Then (2 h)−1 ( f · (c+ h)− f · (c− h)) is convergent and
lim((2 h)−1 ( f · (c+h)− f · (c−h))) = f ′(x0).
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