Real Function Differentiability¹

Konrad Raczkowski Warsaw University Białystok Paweł Sadowski Warsaw University Białystok

Summary. For a real valued function defined on its domain in real numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential real functions are shown.

MML Identifier: FDIFF_1.
WWW: http://mizar.org/JFM/Vol2/fdiff_1.html

The articles [11], [13], [1], [12], [3], [6], [4], [5], [14], [2], [7], [8], [10], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: X denotes a set, x, x_0 , r, p denote real numbers, n denotes a natural number, Y denotes a subset of \mathbb{R} , Z denotes an open subset of \mathbb{R} , and f, f₁, f₂ denote partial functions from \mathbb{R} to \mathbb{R} .

We now state the proposition

(1) For every *r* holds $r \in Y$ iff $r \in \mathbb{R}$ iff $Y = \mathbb{R}$.

Let I_1 be a sequence of real numbers. We say that I_1 is convergent to 0 if and only if:

(Def. 1) I_1 is non-zero and convergent and $\lim I_1 = 0$.

Let us observe that there exists a sequence of real numbers which is convergent to 0.

One can check that there exists a sequence of real numbers which is constant.

In the sequel h denotes a convergent to 0 sequence of real numbers and c denotes a constant sequence of real numbers.

Let I_1 be a partial function from \mathbb{R} to \mathbb{R} . We say that I_1 is rest-like if and only if:

(Def. 3)¹ I_1 is total and for every h holds $h^{-1}(I_1 \cdot h)$ is convergent and $\lim(h^{-1}(I_1 \cdot h)) = 0$.

One can check that there exists a partial function from \mathbb{R} to \mathbb{R} which is rest-like. A rest is a rest-like partial function from \mathbb{R} to \mathbb{R} . Let I_1 be a partial function from \mathbb{R} to \mathbb{R} . We say that I_1 is linear if and only if:

(Def. 4) I_1 is total and there exists r such that for every p holds $I_1(p) = r \cdot p$.

Let us note that there exists a partial function from \mathbb{R} to \mathbb{R} which is linear. A linear function is a linear partial function from \mathbb{R} to \mathbb{R} . We use the following convention: R, R_1 , R_2 denote rests and L, L_1 , L_2 denote linear functions. We now state several propositions:

¹Supported by RPBP.III-24.C8.

¹ The definition (Def. 2) has been removed.

- (6)² For all L_1 , L_2 holds $L_1 + L_2$ is a linear function and $L_1 L_2$ is a linear function.
- (7) For all r, L holds r L is a linear function.
- (8) For all R_1 , R_2 holds $R_1 + R_2$ is a rest and $R_1 R_2$ is a rest and $R_1 R_2$ is a rest.
- (9) For all r, R holds r R is a rest.
- (10) $L_1 L_2$ is rest-like.
- (11) RL is a rest and LR is a rest.

Let us consider f and let x_0 be a real number. We say that f is differentiable in x_0 if and only if:

(Def. 5) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

Let us consider f and let x_0 be a real number. Let us assume that f is differentiable in x_0 . The functor $f'(x_0)$ yielding a real number is defined by the condition (Def. 6).

(Def. 6) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that $f'(x_0) = L(1)$ and for every x such that $x \in N$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

Let us consider f, X. We say that f is differentiable on X if and only if:

(Def. 7) $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

One can prove the following propositions:

- $(15)^3$ If f is differentiable on X, then X is a subset of \mathbb{R} .
- (16) f is differentiable on Z iff $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds f is differentiable in x.
- (17) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor $f'_{|X}$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined by:

(Def. 8) dom $(f'_{\uparrow X}) = X$ and for every x such that $x \in X$ holds $f'_{\uparrow X}(x) = f'(x)$.

We now state the proposition

(19)⁴ Let given f, Z. Suppose $Z \subseteq \text{dom } f$ and there exists r such that $\text{rng } f = \{r\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{|Z}(x) = 0$.

Let us consider h, n. One can verify that $h \uparrow n$ is convergent to 0. Let us consider c, n. Observe that $c \uparrow n$ is constant. We now state a number of propositions:

- (20) Let x_0 be a real number and N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let given h, c. Suppose $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq N$. Then $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $f'(x_0) = \lim(h^{-1}(f \cdot (h+c) f \cdot c))$.
- (21) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$.
- (22) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_1'(x_0) f_2'(x_0)$.

² The propositions (2)–(5) have been removed.

³ The propositions (12)–(14) have been removed.

⁴ The proposition (18) has been removed.

- (23) For all r, f, x_0 such that f is differentiable in x_0 holds r f is differentiable in x_0 and $(r f)'(x_0) = r \cdot f'(x_0)$.
- (24) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_2(x_0) \cdot f_1'(x_0) + f_1(x_0) \cdot f_2'(x_0)$.
- (25) For all f, Z such that $Z \subseteq \text{dom } f$ and $f \upharpoonright Z = \text{id}_Z$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{\upharpoonright Z}(x) = 1$.
- (26) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $(f_1 + f_2)'_{|Z}(x) = f_1'(x) + f_2'(x)$.
- (27) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $(f_1 f_2)'_{1Z}(x) = f_1'(x) f_2'(x)$.
- (28) Let given r, f, Z. Suppose $Z \subseteq \text{dom}(r f)$ and f is differentiable on Z. Then r f is differentiable on Z and for every x such that $x \in Z$ holds $(r f)'_{|Z}(x) = r \cdot f'(x)$.
- (29) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $(f_1 f_2)'_{1Z}(x) = f_2(x) \cdot f_1'(x) + f_1(x) \cdot f_2'(x)$.
- (30) If $Z \subseteq \text{dom } f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{\uparrow Z}(x) = 0$.
- (31) Suppose $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds $f(x) = r \cdot x + p$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{|Z}(x) = r$.
- (32) For every real number x_0 such that f is differentiable in x_0 holds f is continuous in x_0 .
- (33) If f is differentiable on X, then f is continuous on X.
- (34) If *f* is differentiable on *X* and $Z \subseteq X$, then *f* is differentiable on *Z*.
- (35) If f is differentiable in x_0 , then there exists R such that R(0) = 0 and R is continuous in 0.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/partfun2.html.
- [8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html.
- [9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.

REAL FUNCTION DIFFERENTIABILITY

- [11] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received June 18, 1990

Published January 2, 2004