Real Function Differentiability ${ }^{1]}$

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Abstract

Summary. For a real valued function defined on its domain in real numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential real functions are shown.

MML Identifier: FDIFF_1.
WWW: http://mizar.org/JFM/Vol2/fdiff_1.html

The articles [11], [13], [1], [12], [3], [6], [4], [5], [14], [2], [7], [8], [10], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: X denotes a set, x, x_{0}, r, p denote real numbers, n denotes a natural number, Y denotes a subset of \mathbb{R}, Z denotes an open subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

We now state the proposition
(1) For every r holds $r \in Y$ iff $r \in \mathbb{R}$ iff $Y=\mathbb{R}$.

Let I_{1} be a sequence of real numbers. We say that I_{1} is convergent to 0 if and only if:
(Def. 1) I_{1} is non-zero and convergent and $\lim I_{1}=0$.
Let us observe that there exists a sequence of real numbers which is convergent to 0 .
One can check that there exists a sequence of real numbers which is constant.
In the sequel h denotes a convergent to 0 sequence of real numbers and c denotes a constant sequence of real numbers.

Let I_{1} be a partial function from \mathbb{R} to \mathbb{R}. We say that I_{1} is rest-like if and only if:
(Def. 3 ${ }^{1} I_{1}$ is total and for every h holds $h^{-1}\left(I_{1} \cdot h\right)$ is convergent and $\lim \left(h^{-1}\left(I_{1} \cdot h\right)\right)=0$.
One can check that there exists a partial function from \mathbb{R} to \mathbb{R} which is rest-like.
A rest is a rest-like partial function from \mathbb{R} to \mathbb{R}.
Let I_{1} be a partial function from \mathbb{R} to \mathbb{R}. We say that I_{1} is linear if and only if:
(Def. 4) $\quad I_{1}$ is total and there exists r such that for every p holds $I_{1}(p)=r \cdot p$.
Let us note that there exists a partial function from \mathbb{R} to \mathbb{R} which is linear.
A linear function is a linear partial function from \mathbb{R} to \mathbb{R}.
We use the following convention: R, R_{1}, R_{2} denote rests and L, L_{1}, L_{2} denote linear functions.
We now state several propositions:

[^0](6) For all L_{1}, L_{2} holds $L_{1}+L_{2}$ is a linear function and $L_{1}-L_{2}$ is a linear function.
(7) For all r, L holds $r L$ is a linear function.
(8) For all R_{1}, R_{2} holds $R_{1}+R_{2}$ is a rest and $R_{1}-R_{2}$ is a rest and $R_{1} R_{2}$ is a rest.
(9) For all r, R holds $r R$ is a rest.
(10) $L_{1} L_{2}$ is rest-like.
(11) $R L$ is a rest and $L R$ is a rest.

Let us consider f and let x_{0} be a real number. We say that f is differentiable in x_{0} if and only if:
(Def. 5) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

Let us consider f and let x_{0} be a real number. Let us assume that f is differentiable in x_{0}. The functor $f^{\prime}\left(x_{0}\right)$ yielding a real number is defined by the condition (Def. 6).
(Def. 6) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that $f^{\prime}\left(x_{0}\right)=L(1)$ and for every x such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

Let us consider f, X. We say that f is differentiable on X if and only if:
(Def. 7) $\quad X \subseteq \operatorname{dom} f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.
One can prove the following propositions:
$(15)^{3}$ If f is differentiable on X, then X is a subset of \mathbb{R}.
(16) f is differentiable on Z iff $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds f is differentiable in x.
(17) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor $f_{\lceil X}^{\prime}$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined by:
(Def. 8) $\quad \operatorname{dom}\left(f_{\mid X}^{\prime}\right)=X$ and for every x such that $x \in X$ holds $f_{\mid X}^{\prime}(x)=f^{\prime}(x)$.
We now state the proposition
(19 4^{4} Let given f, Z. Suppose $Z \subseteq \operatorname{dom} f$ and there exists r such that $\operatorname{rng} f=\{r\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=0$.

Let us consider h, n. One can verify that $h \uparrow n$ is convergent to 0 .
Let us consider c, n. Observe that $c \uparrow n$ is constant.
We now state a number of propositions:
(20) Let x_{0} be a real number and N be a neighbourhood of x_{0}. Suppose f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Let given h, c. Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}(f \cdot(h+$ $c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)$.
(21) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)+f_{2}{ }^{\prime}\left(x_{0}\right)$.
(22) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)-f_{2}{ }^{\prime}\left(x_{0}\right)$.

[^1](23) For all r, f, x_{0} such that f is differentiable in x_{0} holds $r f$ is differentiable in x_{0} and $(r f)^{\prime}\left(x_{0}\right)=r \cdot f^{\prime}\left(x_{0}\right)$.
(24) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1} f_{2}$ is differentiable in x_{0} and $\left(f_{1} f_{2}\right)^{\prime}\left(x_{0}\right)=f_{2}\left(x_{0}\right) \cdot f_{1}^{\prime}\left(x_{0}\right)+f_{1}\left(x_{0}\right) \cdot f_{2}^{\prime}\left(x_{0}\right)$.
(25) For all f, Z such that $Z \subseteq \operatorname{dom} f$ and $f\left\lceil Z=\operatorname{id}_{Z}\right.$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=1$.
(26) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)_{\mid Z}^{\prime}(x)=f_{1}{ }^{\prime}(x)+f_{2}{ }^{\prime}(x)$.
(27) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}-f_{2}\right)^{\prime}(X)=f_{1}^{\prime}(x)-f_{2}^{\prime}(x)$.
(28) Let given r, f, Z. Suppose $Z \subseteq \operatorname{dom}(r f)$ and f is differentiable on Z. Then $r f$ is differentiable on Z and for every x such that $x \in Z$ holds $(r f)^{\prime} Z(x)=r \cdot f^{\prime}(x)$.
(29) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1} f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1} f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1} f_{2}\right)^{\prime}{ }_{Z}(x)=f_{2}(x) \cdot f_{1}^{\prime}(x)+f_{1}(x) \cdot f_{2}^{\prime}(x)$.
(30) If $Z \subseteq \operatorname{dom} f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\lceil Z}^{\prime}(x)=0$.
(31) Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+p$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=r$.
(32) For every real number x_{0} such that f is differentiable in x_{0} holds f is continuous in x_{0}.
(33) If f is differentiable on X, then f is continuous on X.
(34) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
(35) If f is differentiable in x_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http: //mizar. org/JFM/Vol1/seq_2.html
[5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/ JFM/Vol2/partfun2.html
[8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html
[9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1// relset_1.html

Received June 18, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.
 ${ }^{1}$ The definition (Def. 2) has been removed.

[^1]: ${ }^{2}$ The propositions (2)-(5) have been removed.
 ${ }^{3}$ The propositions (12)-(14) have been removed.
 ${ }^{4}$ The proposition (18) has been removed.

