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Summary. A continuation of [13] and [11]. We prove a few theorems about real
functions monotonic and continuous on interval, on halfline and on the set of real numbers
and continuity of the inverse function. At the beginning of the paper we show some facts
about topological properties of the set of real numbers, halflines and intervals which rather
belong to [14].
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The articles [15], [18], [2], [16], [5], [1], [3], [7], [19], [6], [12], [4], [17], [9], [14], [10], [13], and
[8] provide the notation and terminology for this paper.

For simplicity, we use the following convention:X denotes a set,x0, r, r1, g, p denote real
numbers,n denotes a natural number,a denotes a sequence of real numbers, andf denotes a partial
function fromR to R.

Next we state several propositions:

(1) ΩR is closed.

(2) /0R is open.

(3) /0R is closed.

(4) ΩR is open.

(5) [r,+∞[ is closed.

(6) ]−∞, r] is closed.

(7) ]r,+∞[ is open.

(8) ]−∞, r[ is open.

Let us considerr. Note that]r,+∞[ is open and HL(r) is open.
Let p, g be real numbers. Observe that]p,g[ is open.
Next we state a number of propositions:

(9) 0< r andg∈ ]x0− r,x0 + r[ iff there existsr1 such thatg = x0 + r1 and|r1|< r.

(10) 0< r andg∈ ]x0− r,x0 + r[ iff g−x0 ∈ ]−r, r[.

(11) ]−∞, p] = {p}∪ ]−∞, p[.

(12) [p,+∞[ = {p}∪ ]p,+∞[.
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(13) For every real numberx0 such that for everyn holdsa(n) = x0− p
n+1 holdsa is convergent

and lima = x0.

(14) For every real numberx0 such that for everyn holdsa(n) = x0 + p
n+1 holdsa is convergent

and lima = x0.

(15) Supposef is continuous inx0 and f (x0) 6= r and there exists a neighbourhoodN of x0 such
thatN⊆ dom f . Then there exists a neighbourhoodN of x0 such thatN⊆ dom f and for every
g such thatg∈ N holds f (g) 6= r.

(16) If f is increasing onX and decreasing onX, then f �X is one-to-one.

(17) For every one-to-one partial functionf from R to R such thatf is increasing onX holds
( f �X)−1 is increasing onf ◦X.

(18) For every one-to-one partial functionf from R to R such thatf is decreasing onX holds
( f �X)−1 is decreasing onf ◦X.

(19) If X ⊆ dom f and f is monotone onX and there existsp such thatf ◦X = ]−∞, p[, then f
is continuous onX.

(20) If X ⊆ dom f and f is monotone onX and there existsp such thatf ◦X = ]p,+∞[, then f
is continuous onX.

(21) If X ⊆ dom f and f is monotone onX and there existsp such thatf ◦X = ]−∞, p], then f
is continuous onX.

(22) If X ⊆ dom f and f is monotone onX and there existsp such thatf ◦X = [p,+∞[, then f
is continuous onX.

(23) If X ⊆ dom f and f is monotone onX and there existp, g such thatf ◦X = ]p,g[, then f is
continuous onX.

(24) If X ⊆ dom f and f is monotone onX and f ◦X = R, then f is continuous onX.

(25) Let f be an one-to-one partial function fromR to R. Supposef is increasing on]p,g[ and
decreasing on]p,g[ and]p,g[⊆ dom f . Then( f �]p,g[)−1 is continuous onf ◦]p,g[.

(26) Let f be an one-to-one partial function fromR toR. Supposef is increasing on]−∞, p[ and
decreasing on]−∞, p[ and]−∞, p[⊆ dom f . Then( f �]−∞, p[)−1 is continuous onf ◦]−∞, p[.

(27) Let f be an one-to-one partial function fromR toR. Supposef is increasing on]p,+∞[ and
decreasing on]p,+∞[ and]p,+∞[⊆ dom f . Then( f �]p,+∞[)−1 is continuous onf ◦]p,+∞[.

(28) Let f be an one-to-one partial function fromR toR. Supposef is increasing on]−∞, p] and
decreasing on]−∞, p] and]−∞, p]⊆ dom f . Then( f �]−∞, p])−1 is continuous onf ◦]−∞, p].

(29) Let f be an one-to-one partial function fromR toR. Supposef is increasing on[p,+∞[ and
decreasing on[p,+∞[ and[p,+∞[⊆ dom f . Then( f �[p,+∞[)−1 is continuous onf ◦[p,+∞[.

(30) Let f be an one-to-one partial function fromR to R. Supposef is increasing onΩR,
decreasing onΩR, and total. Thenf−1 is continuous on rngf .

(31) If f is continuous on]p,g[, increasing on]p,g[, and decreasing on]p,g[, then rng( f �]p,g[)
is open.

(32) If f is continuous on]−∞, p[, increasing on]−∞, p[, and decreasing on]−∞, p[, then
rng( f �]−∞, p[) is open.

(33) If f is continuous on]p,+∞[, increasing on]p,+∞[, and decreasing on]p,+∞[, then
rng( f �]p,+∞[) is open.

(34) If f is continuous onΩR, increasing onΩR, and decreasing onΩR, then rngf is open.
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