Real Function Uniform Continuity ${ }^{1}$

Jarosław Kotowicz
Warsaw University
Białystok

Konrad Raczkowski
Warsaw University
Białystok

Abstract

Summary. The uniform continuity for real functions is introduced. More theorems concerning continuous functions are given. (See [10]) The Darboux Theorem is exposed. Algebraic features for uniformly continuous functions are presented. Various facts, e.g., a continuous function on a compact set is uniformly continuous are proved.

MML Identifier: FCONT_2.
WWW: http://mizar.org/JFM/Vol2/fcont_2.html

The articles [12], [14], [1], [13], [3], [2], [9], [15], [5], [4], [6], [7], [8], [11], and [10] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: X, X_{1}, Z, Z_{1} denote sets, s, g, r, p, x_{1}, x_{2} denote real numbers, Y denotes a subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

Let us consider f, X. We say that f is uniformly continuous on X if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left|x_{1}-x_{2}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<r$.

One can prove the following propositions:
(2) If f is uniformly continuous on X and $X_{1} \subseteq X$, then f is uniformly continuous on X_{1}.
(3) If f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}, then $f_{1}+f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(4) If f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}, then $f_{1}-f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(5) If f is uniformly continuous on X, then $p f$ is uniformly continuous on X.
(6) If f is uniformly continuous on X, then $-f$ is uniformly continuous on X.
(7) If f is uniformly continuous on X, then $|f|$ is uniformly continuous on X.
(8) Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1} and f_{1} is bounded on Z and f_{2} is bounded on Z_{1}. Then $f_{1} f_{2}$ is uniformly continuous on $X \cap Z \cap X_{1} \cap Z_{1}$.
(9) If f is uniformly continuous on X, then f is continuous on X.

[^0](10) If f is Lipschitzian on X, then f is uniformly continuous on X.
(11) For all f, Y such that Y is compact and f is continuous on Y holds f is uniformly continuous on Y.
(13 $)^{2}$ If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y, then $f^{\circ} Y$ is compact.
(14) Let given f, Y. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y. Then there exist x_{1}, x_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f\left(x_{1}\right)=\sup \left(f^{\circ} Y\right)$ and $f\left(x_{2}\right)=\inf \left(f^{\circ} Y\right)$.
(15) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is uniformly continuous on X.
(16) If $p \leq g$ and f is continuous on $[p, g]$, then for every r such that $r \in[f(p), f(g)] \cup$ $[f(g), f(p)]$ there exists s such that $s \in[p, g]$ and $r=f(s)$.
(17) If $p \leq g$ and f is continuous on $[p, g]$, then for every r such that $r \in$ $\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}[p, g]\right)\right]$ there exists s such that $s \in[p, g]$ and $r=f(s)$.
(18) If f is one-to-one and $p \leq g$ and f is continuous on $[p, g]$, then f is increasing on $[p, g]$ and decreasing on $[p, g]$.
(19) Suppose f is one-to-one and $p \leq g$ and f is continuous on $[p, g]$. Then $\inf \left(f^{\circ}[p, g]\right)=f(p)$ and $\sup \left(f^{\circ}[p, g]\right)=f(g)$ or $\inf \left(f^{\circ}[p, g]\right)=f(g)$ and $\sup \left(f^{\circ}[p, g]\right)=f(p)$.
(20) If $p \leq g$ and f is continuous on $[p, g]$, then $f^{\circ}[p, g]=\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}[p, g]\right)\right]$.
(21) Let f be an one-to-one partial function from \mathbb{R} to \mathbb{R}. If $p \leq g$ and f is continuous on $[p, g]$, then f^{-1} is continuous on $\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}[p, g]\right)\right]$.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html
[5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/ JFM/Vol2/partfun2.html
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rfunct_1.html
[8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html
[9] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html
[10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/ JFM/Vol2/fcont_1.html.
[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[13] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html

[^1][14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[15] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. relset_1.html

Received June 18, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.
 ${ }^{1}$ The proposition (1) has been removed.

[^1]: ${ }^{2}$ The proposition (12) has been removed.

