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Summary. The uniform continuity for real functions is introduced. More theorems
concerning continuous functions are given. (See [10]) The Darboux Theorem is exposed.
Algebraic features for uniformly continuous functions are presented. Various facts, e.g., a
continuous function on a compact set is uniformly continuous are proved.
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The articles [12], [14], [1], [13], [3], [2], [9], [15], [5], [4], [6], [7], [8], [11], and [10] provide the
notation and terminology for this paper.

For simplicity, we adopt the following rules:X, X1, Z, Z1 denote sets,s, g, r, p, x1, x2 denote
real numbers,Y denotes a subset ofR, and f , f1, f2 denote partial functions fromR to R.

Let us considerf , X. We say thatf is uniformly continuous onX if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f , and

(ii) for every r such that 0< r there existss such that 0< s and for allx1, x2 such thatx1 ∈ X
andx2 ∈ X and|x1−x2|< s holds| f (x1)− f (x2)|< r.

One can prove the following propositions:

(2)1 If f is uniformly continuous onX andX1 ⊆ X, then f is uniformly continuous onX1.

(3) If f1 is uniformly continuous onX and f2 is uniformly continuous onX1, then f1 + f2 is
uniformly continuous onX∩X1.

(4) If f1 is uniformly continuous onX and f2 is uniformly continuous onX1, then f1− f2 is
uniformly continuous onX∩X1.

(5) If f is uniformly continuous onX, thenp f is uniformly continuous onX.

(6) If f is uniformly continuous onX, then− f is uniformly continuous onX.

(7) If f is uniformly continuous onX, then| f | is uniformly continuous onX.

(8) Supposef1 is uniformly continuous onX and f2 is uniformly continuous onX1 and f1 is
bounded onZ and f2 is bounded onZ1. Then f1 f2 is uniformly continuous onX∩Z∩X1∩Z1.

(9) If f is uniformly continuous onX, then f is continuous onX.

1Supported by RPBP.III-24.C8.
1 The proposition (1) has been removed.
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(10) If f is Lipschitzian onX, then f is uniformly continuous onX.

(11) For all f ,Y such thatY is compact andf is continuous onY holds f is uniformly continuous
onY.

(13)2 If Y ⊆ dom f andY is compact andf is uniformly continuous onY, then f ◦Y is compact.

(14) Let given f , Y. SupposeY 6= /0 andY ⊆ dom f andY is compact andf is uniformly
continuous onY. Then there existx1, x2 such thatx1 ∈Y andx2 ∈Y and f (x1) = sup( f ◦Y)
and f (x2) = inf( f ◦Y).

(15) If X ⊆ dom f and f is a constant onX, then f is uniformly continuous onX.

(16) If p ≤ g and f is continuous on[p,g], then for everyr such thatr ∈ [ f (p), f (g)] ∪
[ f (g), f (p)] there existss such thats∈ [p,g] andr = f (s).

(17) If p ≤ g and f is continuous on [p,g], then for every r such that r ∈
[inf( f ◦[p,g]),sup( f ◦[p,g])] there existss such thats∈ [p,g] andr = f (s).

(18) If f is one-to-one andp≤ g and f is continuous on[p,g], then f is increasing on[p,g] and
decreasing on[p,g].

(19) Supposef is one-to-one andp≤ g and f is continuous on[p,g]. Then inf( f ◦[p,g]) = f (p)
and sup( f ◦[p,g]) = f (g) or inf( f ◦[p,g]) = f (g) and sup( f ◦[p,g]) = f (p).

(20) If p≤ g and f is continuous on[p,g], then f ◦[p,g] = [inf( f ◦[p,g]),sup( f ◦[p,g])].

(21) Let f be an one-to-one partial function fromR to R. If p≤ g and f is continuous on[p,g],
then f−1 is continuous on[inf( f ◦[p,g]),sup( f ◦[p,g])].
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