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Summary. The uniform continuity for real functions is introduced. More theorems
concerning continuous functions are given. (See [10]) The Darboux Theorem is exposed.
Algebraic features for uniformly continuous functions are presented. Various facts, e.g., a
continuous function on a compact set is uniformly continuous are proved.
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The articles[[12],[114],T1],[[183],[I8],12],[18],115],[5], 14], 6], [7], [8], [11], and [10] provide the
notation and terminology for this paper.

For simplicity, we adopt the following rules{, X1, Z, Z; denote setss, g, r, p, X1, X2 denote
real numbersY denotes a subset &, andf, f;, fo denote partial functions frofR to R.

Let us consideff, X. We say thatf is uniformly continuous oiX if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)()) X Cdomf, and

(i) for everyr such that O< r there exists such that O< sand for allx;, xo such that; € X
andxz € X and|x; —Xz| < sholds|f(x1) — f(x2)| <.

One can prove the following propositions:
(ZH If fis uniformly continuous oiX andX; C X, thenf is uniformly continuous oiX;.

(3) If fy is uniformly continuous orX and f; is uniformly continuous orX;, then f; + fo is
uniformly continuous ofrX N Xz.

(4) If fq is uniformly continuous oX and fs is uniformly continuous orX;, thenf; — f; is
uniformly continuous orX N X;.

(5) If fis uniformly continuous oiX, thenp f is uniformly continuous oix.
(6) If fis uniformly continuous oiX, then—f is uniformly continuous oiXx.
(7) If fis uniformly continuous otX, then|f| is uniformly continuous oiX.

(8) Supposef, is uniformly continuous ofX and f; is uniformly continuous orX; and f; is
bounded oz andf; is bounded oiZ;. Thenf; fsis uniformly continuous oXNZNX;NZ;.

(9) If fis uniformly continuous oiX, thenf is continuous orX.

1Supported by RPBP.1I1-24.C8.
1 The proposition (1) has been removed.
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(20) If f is Lipschitzian onX, thenf is uniformly continuous orX.

(11) Forallf,Y suchthal is compact and is continuous oiY holdsf is uniformly continuous
ony.

(13ﬂ If Y C domf andY is compact and is uniformly continuous oiY, thenf°Y is compact.

(14) Let givenf, Y. SupposeYy # 0 andY C domf andY is compact andf is uniformly
continuous orY. Then there exist;, o such thatx; € Y andx; € Y and f(x1) = sup(f°Y)
andf(xz) = inf(f°Y).

(15) If X € domf andf is a constant oiX, thenf is uniformly continuous oiX.

(16) If p< g andf is continuous onp,g], then for everyr such thatr € [f(p), f(g)] U
[f(9), f(p)] there exists such thas € [p,g] andr = f(s).

(17) If p< g and f is continuous on|p,g], then for everyr such thatr €
[inf(f°[p,q]),sup(f°[p,q])] there exists such thas € [p,g] andr = f(s).

(18) If f is one-to-one ang < gandf is continuous orip, g], thenf is increasing otp,g] and
decreasing ofp, q.

(19) Supposd is one-to-one ang < g andf is continuous oiiip,g]. Then in{ f°[p,g]) = f(p)
and supf°[p,g]) = f(g) orinf(f°[p,g]) = f(g) and supf°[p,g]) = f(p).

(20) If p<gandf is continuous orip,g|, thenf°[p,g] = [inf(f°[p,q]),sun f°[p,q])]-

(21) Letf be an one-to-one partial function frakto R. If p < gandf is continuous onp, ],
then 1 is continuous orjinf(f°[p,g]),sup f°[p,g))].
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