Real Function Continuity

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Abstract

Summary. The continuity of real functions is discussed. There is a function defined on some domain in real numbers which is continuous in a single point and on a subset of domain of the function. Main properties of real continuous functions are proved. Among them there is the Weierstraß Theorem. Algebraic features for real continuous functions are shown. Lipschitzian functions are introduced. The Lipschitz condition entails continuity.

MML Identifier: FCONT_1.
WWW: http://mizar.org/JFM/Vol2/fcont_1.html

The articles [14], [17], [1], [15], [5], [2], [18], [4], [3], [12], [8], [7], [6], [16], [9], [10], [11], and [13] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: n denotes a natural number, X, X_{1}, Z, Z_{1} denote sets, $s, g, r, p, x_{0}, x_{1}, x_{2}$ denote real numbers, s_{1} denotes a sequence of real numbers, Y denotes a subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

Let us consider f, x_{0}. We say that f is continuous in x_{0} if and only if:
(Def. 1) $\quad x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.

The following propositions are true:
(21) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $x_{0} \in \operatorname{dom} f$, and
(ii) for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ and for every n holds $s_{1}(n) \neq x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.
(3) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.
(4) Let given f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{1} of $f\left(x_{0}\right)$ there exists a neighbourhood N of x_{0} such that for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f\left(x_{1}\right) \in N_{1}$.

[^0](5) Let given f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{1} of $f\left(x_{0}\right)$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq$ N_{1}.
(6) If $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that $\operatorname{dom} f \cap N=\left\{x_{0}\right\}$, then f is continuous in x_{0}.
(7) Suppose f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}. Then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0} and $f_{1} f_{2}$ is continuous in x_{0}.
(8) If f is continuous in x_{0}, then $r f$ is continuous in x_{0}.
(9) If f is continuous in x_{0}, then $|f|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
(10) If f is continuous in x_{0} and $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is continuous in x_{0}.
(11) If f_{1} is continuous in x_{0} and $f_{1}\left(x_{0}\right) \neq 0$ and f_{2} is continuous in x_{0}, then $\frac{f_{2}}{f_{1}}$ is continuous in x_{0}.
(12) If f_{1} is continuous in x_{0} and f_{2} is continuous in $f_{1}\left(x_{0}\right)$, then $f_{2} \cdot f_{1}$ is continuous in x_{0}.

Let us consider f, X. We say that f is continuous on X if and only if:
(Def. 2) $\quad X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
The following propositions are true:
$(14)^{2}$ Let given X, f. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every s_{1} such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} \in X$ holds $f \cdot s_{1}$ is convergent and $f\left(\lim s_{1}\right)=\lim \left(f \cdot s_{1}\right)$.
(15) f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.
(16) $\quad f$ is continuous on X iff $f \upharpoonright X$ is continuous on X.
(17) If f is continuous on X and $X_{1} \subseteq X$, then f is continuous on X_{1}.
(18) If $x_{0} \in \operatorname{dom} f$, then f is continuous on $\left\{x_{0}\right\}$.
(19) Let given X, f_{1}, f_{2}. Suppose f_{1} is continuous on X and f_{2} is continuous on X. Then $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X and $f_{1} f_{2}$ is continuous on X.
(20) Let given X, X_{1}, f_{1}, f_{2}. Suppose f_{1} is continuous on X and f_{2} is continuous on X_{1}. Then $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1} f_{2}$ is continuous on $X \cap X_{1}$.
(21) For all r, X, f such that f is continuous on X holds $r f$ is continuous on X.
(22) If f is continuous on X, then $|f|$ is continuous on X and $-f$ is continuous on X.
(23) If f is continuous on X and $f^{-1}(\{0\})=\emptyset$, then $\frac{1}{f}$ is continuous on X.

[^1](24) If f is continuous on X and $(f \upharpoonright X)^{-1}(\{0\})=\emptyset$, then $\frac{1}{f}$ is continuous on X.
(25) If f_{1} is continuous on X and $f_{1}^{-1}(\{0\})=\emptyset$ and f_{2} is continuous on X, then $\frac{f_{2}}{f_{1}}$ is continuous on X.
(26) If f_{1} is continuous on X and f_{2} is continuous on $f_{1}{ }^{\circ} X$, then $f_{2} \cdot f_{1}$ is continuous on X.
(27) If f_{1} is continuous on X and f_{2} is continuous on X_{1}, then $f_{2} \cdot f_{1}$ is continuous on $X \cap$ $f_{1}^{-1}\left(X_{1}\right)$.
(28) If f is total and for all x_{1}, x_{2} holds $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$ and there exists x_{0} such that f is continuous in x_{0}, then f is continuous on \mathbb{R}.
(29) For every f such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(30) If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(31) Let given f. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$. Then there exist x_{1}, x_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=\operatorname{suprng} f$ and $f\left(x_{2}\right)=$ $\inf \operatorname{rng} f$.
(32) Let given f, Y. Suppose $Y \neq 0$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist x_{1}, x_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f\left(x_{1}\right)=\sup \left(f^{\circ} Y\right)$ and $f\left(x_{2}\right)=$ $\inf \left(f^{\circ} Y\right)$.

Let us consider f, X. We say that f is Lipschitzian on X if and only if:
(Def. 3) $\quad X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.

We now state a number of propositions:
(34) If f is Lipschitzian on X and $X_{1} \subseteq X$, then f is Lipschitzian on X_{1}.
(35) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(36) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(37) Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1} and f_{1} is bounded on Z and f_{2} is bounded on Z_{1}. Then $f_{1} f_{2}$ is Lipschitzian on $X \cap Z \cap X_{1} \cap Z_{1}$.
(38) If f is Lipschitzian on X, then $p f$ is Lipschitzian on X.
(39) If f is Lipschitzian on X, then $-f$ is Lipschitzian on X and $|f|$ is Lipschitzian on X.
(40) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.
(41) id_{Y} is Lipschitzian on Y.
(42) If f is Lipschitzian on X, then f is continuous on X.
(43) For every f such that there exists r such that $\operatorname{rng} f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(44) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is continuous on X.
(45) For every f such that for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=x_{0}$ holds f is continuous on $\operatorname{dom} f$.
(46) If $f=\operatorname{id}_{\operatorname{dom} f}$, then f is continuous on $\operatorname{dom} f$.

[^2](47) If $Y \subseteq \operatorname{dom} f$ and $f \upharpoonright Y=\operatorname{id}_{Y}$, then f is continuous on Y.
(48) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=r \cdot x_{0}+p$, then f is continuous on X.
(49) If for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=x_{0}{ }^{2}$, then f is continuous on $\operatorname{dom} f$.
(50) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=x_{0}{ }^{2}$, then f is continuous on X.
(51) If for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then f is continuous on $\operatorname{dom} f$.
(52) If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then f is continuous on X.
(53) If $X \subseteq \operatorname{dom} f$ and f is monotone on X and there exist p, g such that $p \leq g$ and $f^{\circ} X=[p, g]$, then f is continuous on X.
(54) Let f be an one-to-one partial function from \mathbb{R} to \mathbb{R}. Suppose $p \leq g$ and $[p, g] \subseteq \operatorname{dom} f$ and f is increasing on $[p, g]$ and decreasing on $[p, g]$. Then $(f \upharpoonright[p, g])^{-1}$ is continuous on $f^{\circ}[p, g]$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/seq_2.html
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[9] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http: //mizar. org/ JFM/Vol2/partfun2.html
[10] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rfunct_1.html
[11] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html
[12] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
[17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[18] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Received June 18, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8.
 ${ }^{1}$ The proposition (1) has been removed.

[^1]: ${ }^{2}$ The proposition (13) has been removed.

[^2]: ${ }^{3}$ The proposition (33) has been removed.

