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Summary. We continue the formalisation of circuits started by Piotr Rudnicki, An-
drzej Trybulec, Pauline Kawamoto, and the second author in [12], [13], [11], [14]. The first
step in proving properties of fulln-bit adder circuit, i.e. 1-bit adder, is presented. We employ
the notation of combining circuits introduced in [10].
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The articles [17], [16], [21], [20], [1], [18], [22], [4], [5], [3], [9], [7], [8], [23], [15], [2], [6], [19],
[13], [14], and [10] provide the notation and terminology for this paper.

1. COMBINING OF MANY SORTED SIGNATURES

Let I1 be a set. We say thatI1 is pair if and only if:

(Def. 1) There exist setsx, y such thatI1 = 〈〈x, y〉〉.

Let us note that every set which is pair is also non empty.
Let x, y be sets. Note that〈〈x, y〉〉 is pair.
One can verify that there exists a set which is pair and there exists a set which is non pair.
Let us observe that every natural number is non pair.
Let I1 be a set. We say thatI1 has a pair if and only if:

(Def. 2) There exists a pair setx such thatx∈ I1.

We introduceI1 has no pairs as an antonym ofI1 has a pair.
Observe that every set which is empty has also no pairs. Letx be a non pair set. Observe that

{x} has no pairs. Lety be a non pair set. Note that{x,y} has no pairs. Letz be a non pair set. One
can verify that{x,y,z} has no pairs.

Let us observe that there exists a non empty set which has no pairs.
Let X, Y be sets with no pairs. One can check thatX∪Y has no pairs.
Let X be a set with no pairs and letY be a set. One can check the following observations:

∗ X \Y has no pairs,

∗ X∩Y has no pairs, and

∗ Y∩X has no pairs.

1This work was written while the first author visited Shinshu University, July–August 1994.
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Let x be a pair set. Observe that{x} is relation-like. Lety be a pair set. One can verify that
{x,y} is relation-like. Letz be a pair set. Note that{x,y,z} is relation-like.

One can verify that every set which is relation-like and has no pairs is also empty.
Let I1 be a function. We say thatI1 is nonpair yielding if and only if:

(Def. 3) For every setx such thatx∈ domI1 holdsI1(x) is non pair.

Let x be a non pair set. Note that〈x〉 is nonpair yielding. Lety be a non pair set. One can verify
that〈x,y〉 is nonpair yielding. Letz be a non pair set. Observe that〈x,y,z〉 is nonpair yielding.

Next we state the proposition

(1) For every functionf such thatf is nonpair yielding holds rngf has no pairs.

Let n be a natural number. Observe that there exists a finite sequence with lengthn which is
one-to-one and nonpair yielding.

Let us observe that there exists a finite sequence which is one-to-one and nonpair yielding.
Let f be a nonpair yielding function. Observe that rngf has no pairs.
One can prove the following propositions:

(2) LetS1, S2 be non empty many sorted signatures. SupposeS1 ≈ S2 and InnerVertices(S1) is
a binary relation and InnerVertices(S2) is a binary relation. Then InnerVertices(S1+·S2) is a
binary relation.

(3) Let S1, S2 be unsplit non empty many sorted signatures with arity held in gates. Sup-
pose InnerVertices(S1) is a binary relation and InnerVertices(S2) is a binary relation. Then
InnerVertices(S1+·S2) is a binary relation.

(4) For all non empty many sorted signaturesS1, S2 such that S1 ≈ S2 and
InnerVertices(S2) misses InputVertices(S1) holds InputVertices(S1)⊆ InputVertices(S1+·S2)
and InputVertices(S1+·S2) = InputVertices(S1)∪ (InputVertices(S2)\ InnerVertices(S1)).

(5) For all setsX, Rsuch thatX has no pairs andR is a binary relation holdsX missesR.

(6) Let S1, S2 be unsplit non empty many sorted signatures with arity held in gates. Sup-
pose InputVertices(S1) has no pairs and InnerVertices(S2) is a binary relation. Then
InputVertices(S1)⊆ InputVertices(S1+·S2) and InputVertices(S1+·S2) = InputVertices(S1)∪
(InputVertices(S2)\ InnerVertices(S1)).

(7) Let S1, S2 be unsplit non empty many sorted signatures with arity held in gates. Suppose
InputVertices(S1) has no pairs and InnerVertices(S1) is a binary relation and InputVertices(S2)
has no pairs and InnerVertices(S2) is a binary relation. Then InputVertices(S1+·S2) =
InputVertices(S1)∪ InputVertices(S2).

(8) For all non empty many sorted signaturesS1, S2 such thatS1 ≈ S2 and InputVertices(S1)
has no pairs and InputVertices(S2) has no pairs holds InputVertices(S1+·S2) has no pairs.

(9) Let S1, S2 be unsplit non empty many sorted signatures with arity held in gates. If
InputVertices(S1) has no pairs and InputVertices(S2) has no pairs, then InputVertices(S1+·S2)
has no pairs.

2. COMBINING OF CIRCUITS

In this article we present several logical schemes. The scheme2AryBooleExdeals with a binary
functorF yielding an element ofBoolean, and states that:

There exists a functionf from Boolean2 into Booleansuch that for all elementsx, y
of Booleanholds f (〈x,y〉) = F (x,y)

for all values of the parameter.
The scheme2AryBooleUniqdeals with a binary functorF yielding an element ofBoolean, and

states that:
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Let f1, f2 be functions fromBoolean2 into Boolean. Suppose for all elementsx, y of
Booleanholds f1(〈x,y〉) = F (x,y) and for all elementsx, y of Booleanholds f2(〈x,
y〉) = F (x,y). Then f1 = f2

for all values of the parameter.
The scheme2AryBooleDefdeals with a binary functorF yielding an element ofBoolean, and

states that:
(i) There exists a functionf from Boolean2 into Booleansuch that for all ele-

mentsx, y of Booleanholds f (〈x,y〉) = F (x,y), and
(ii) for all functions f1, f2 from Boolean2 into Booleansuch that for all elements

x, y of Booleanholds f1(〈x,y〉) = F (x,y) and for all elementsx, y of Booleanholds
f2(〈x,y〉) = F (x,y) holds f1 = f2

for all values of the parameter.
The scheme3AryBooleExdeals with a ternary functorF yielding an element ofBoolean, and

states that:
There exists a functionf from Boolean3 into Booleansuch that for all elementsx, y,
z of Booleanholds f (〈x,y,z〉) = F (x,y,z)

for all values of the parameter.
The scheme3AryBooleUniqdeals with a ternary functorF yielding an element ofBoolean, and

states that:
Let f1, f2 be functions fromBoolean3 into Boolean. Suppose for all elementsx, y,
z of Booleanholds f1(〈x,y,z〉) = F (x,y,z) and for all elementsx, y, z of Boolean
holds f2(〈x,y,z〉) = F (x,y,z). Then f1 = f2

for all values of the parameter.
The scheme3AryBooleDefdeals with a ternary functorF yielding an element ofBoolean, and

states that:
(i) There exists a functionf from Boolean3 into Booleansuch that for all ele-

mentsx, y, z of Booleanholds f (〈x,y,z〉) = F (x,y,z), and
(ii) for all functions f1, f2 from Boolean3 into Booleansuch that for all elements

x, y, zof Booleanholds f1(〈x,y,z〉) = F (x,y,z) and for all elementsx, y, zof Boolean
holds f2(〈x,y,z〉) = F (x,y,z) holds f1 = f2

for all values of the parameter.
The function xor fromBoolean2 into Booleanis defined by:

(Def. 4) For all elementsx, y of Booleanholds xor(〈x,y〉) = x⊕y.

The function or fromBoolean2 into Booleanis defined as follows:

(Def. 5) For all elementsx, y of Booleanholds or(〈x,y〉) = x∨y.

The function & fromBoolean2 into Booleanis defined by:

(Def. 6) For all elementsx, y of Booleanholds &(〈x,y〉) = x∧y.

The function or3 from Boolean3 into Booleanis defined as follows:

(Def. 7) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = x∨y∨z.

Let x be a set. Then〈x〉 is a finite sequence with length 1. Lety be a set. Then〈x,y〉 is a finite
sequence with length 2. Letz be a set. Then〈x,y,z〉 is a finite sequence with length 3.

Let n, m be natural numbers, letp be a finite sequence with lengthn, and letq be a finite
sequence with lengthm. Thenpa q is a finite sequence with lengthn+m.

3. SIGNATURES WITH ONE OPERATION

One can prove the following proposition

(10) LetSbe a circuit-like non void non empty many sorted signature,A be a non-empty circuit
of S, sbe a state ofA, andg be a gate ofS. Then(Following(s))(the result sort ofg) = (Den(g,
A))(s·Arity(g)).
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Let Sbe a non void circuit-like non empty many sorted signature, letA be a non-empty circuit
of S, let sbe a state ofA, and letn be a natural number. The functor Following(s,n) yields a state of
A and is defined by the condition (Def. 8).

(Def. 8) There exists a functionf from N into ∏ (the sorts ofA) such that Following(s,n) = f (n)
and f (0) = s and for every natural numbern holds f (n+1) = Following( f (n)).

One can prove the following propositions:

(11) LetSbe a circuit-like non void non empty many sorted signature,A be a non-empty circuit
of S, ands be a state ofA. Then Following(s,0) = s.

(12) Let S be a circuit-like non void non empty many sorted signature,A be a non-empty
circuit of S, s be a state ofA, and n be a natural number. Then Following(s,n+ 1) =
Following(Following(s,n)).

(13) Let S be a circuit-like non void non empty many sorted signature,A be a non-empty
circuit of S, s be a state ofA, andn, m be natural numbers. Then Following(s,n+ m) =
Following(Following(s,n),m).

(14) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, ands be a state ofA. Then Following(s,1) = Following(s).

(15) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, ands be a state ofA. Then Following(s,2) = Following(Following(s)).

(16) Let S be a circuit-like non void non empty many sorted signature,A be a non-empty
circuit of S, s be a state ofA, and n be a natural number. Then Following(s,n+ 1) =
Following(Following(s),n).

Let Sbe a non void circuit-like non empty many sorted signature, letA be a non-empty circuit
of S, let s be a state ofA, and letx be a set. We say thats is stable atx if and only if:

(Def. 9) For every natural numbern holds(Following(s,n))(x) = s(x).

The following propositions are true:

(17) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, s be a state ofA, andx be a set. Ifs is stable atx, then for every natural numbern holds
Following(s,n) is stable atx.

(18) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, s be a state ofA, andx be a set. Ifx∈ InputVertices(S), thens is stable atx.

(19) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, s be a state ofA, andg be a gate ofS. Suppose that for every setx such thatx ∈
rngArity(g) holdss is stable atx. Then Following(s) is stable at the result sort ofg.

4. UNSPLIT CONDITION

Next we state a number of propositions:

(20) LetS1, S2 be non empty many sorted signatures andv be a vertex ofS1. Thenv∈ the carrier
of S1+·S2 andv∈ the carrier ofS2+·S1.

(21) LetS1, S2 be unsplit non empty many sorted signatures with arity held in gates andx be a
set. Ifx∈ InnerVertices(S1), thenx∈ InnerVertices(S1+·S2) andx∈ InnerVertices(S2+·S1).

(22) For all non empty many sorted signaturesS1, S2 and for every setx such thatx ∈
InnerVertices(S2) holdsx∈ InnerVertices(S1+·S2).



FULL ADDER CIRCUIT. PART I 5

(23) For all unsplit non empty many sorted signaturesS1, S2 with arity held in gates holds
S1+·S2 = S2+·S1.

(24) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates and
Boolean denotation held in gates,A1 be a Boolean circuit ofS1 with denotation held in gates,
andA2 be a Boolean circuit ofS2 with denotation held in gates. ThenA1+·A2 = A2+·A1.

(25) LetS1, S2, S3 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates,A1 be a Boolean circuit ofS1, A2 be a Boolean circuit
of S2, andA3 be a Boolean circuit ofS3. Then(A1+·A2)+·A3 = A1+·(A2+·A3).

(26) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates and
Boolean denotation held in gates,A1 be a Boolean non-empty circuit ofS1 with denotation
held in gates,A2 be a Boolean non-empty circuit ofS2 with denotation held in gates, andsbe
a state ofA1+·A2. Thens�the carrier ofS1 is a state ofA1 ands�the carrier ofS2 is a state of
A2.

(27) For all unsplit non empty many sorted signaturesS1, S2 with arity held in gates holds
InnerVertices(S1+·S2) = InnerVertices(S1)∪ InnerVertices(S2).

(28) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S2) misses InputVertices(S1).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit ofS2

with denotation held in gates,s be a state ofA1+·A2, ands1 be a state ofA1. If s1 = s�the
carrier ofS1, then Following(s)�the carrier ofS1 = Following(s1).

(29) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S1) misses InputVertices(S2).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit ofS2

with denotation held in gates,s be a state ofA1+·A2, ands2 be a state ofA2. If s2 = s�the
carrier ofS2, then Following(s)�the carrier ofS2 = Following(s2).

(30) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S2) misses InputVertices(S1).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit of
S2 with denotation held in gates,s be a state ofA1+·A2, ands1 be a state ofA1. Suppose
s1 = s�the carrier ofS1. Let n be a natural number. Then Following(s,n)�the carrier of
S1 = Following(s1,n).

(31) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S1) misses InputVertices(S2).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit of
S2 with denotation held in gates,s be a state ofA1+·A2, ands2 be a state ofA2. Suppose
s2 = s�the carrier ofS2. Let n be a natural number. Then Following(s,n)�the carrier of
S2 = Following(s2,n).

(32) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S2) misses InputVertices(S1).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit of
S2 with denotation held in gates,s be a state ofA1+·A2, ands1 be a state ofA1. Suppose
s1 = s�the carrier ofS1. Let v be a set. Supposev ∈ the carrier ofS1. Let n be a natural
number. Then(Following(s,n))(v) = (Following(s1,n))(v).

(33) LetS1, S2 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVertices(S1) misses InputVertices(S2).
Let A1 be a Boolean circuit ofS1 with denotation held in gates,A2 be a Boolean circuit of
S2 with denotation held in gates,s be a state ofA1+·A2, ands2 be a state ofA2. Suppose
s2 = s�the carrier ofS2. Let v be a set. Supposev ∈ the carrier ofS2. Let n be a natural
number. Then(Following(s,n))(v) = (Following(s2,n))(v).
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Let Sbe a non void non empty many sorted signature with denotation held in gates and letg be
a gate ofS. One can verify thatg2 is function-like and relation-like.

The following four propositions are true:

(34) LetSbe a circuit-like non void non empty many sorted signature with denotation held in
gates andA be a non-empty circuit ofS. SupposeA has denotation held in gates. Lets be a
state ofA andg be a gate ofS. Then(Following(s))(the result sort ofg) = g2(s·Arity(g)).

(35) LetSbe an unsplit non void non empty many sorted signature with arity held in gates and
Boolean denotation held in gates,A be a Boolean non-empty circuit ofSwith denotation held
in gates,sbe a state ofA, p be a finite sequence, andf be a function. If〈〈p, f 〉〉 ∈ the operation
symbols ofS, then(Following(s))(〈〈p, f 〉〉) = f (s· p).

(36) LetSbe an unsplit non void non empty many sorted signature with arity held in gates and
Boolean denotation held in gates,A be a Boolean non-empty circuit ofSwith denotation held
in gates,s be a state ofA, p be a finite sequence, andf be a function. Suppose〈〈p, f 〉〉 ∈ the
operation symbols ofS and for every setx such thatx ∈ rngp holdss is stable atx. Then
Following(s) is stable at〈〈p, f 〉〉.

(37) For every unsplit non empty many sorted signatureSholds InnerVertices(S) = the operation
symbols ofS.

5. ONE GATE CIRCUITS

Next we state a number of propositions:

(38) For every setf and for every finite sequencep holds InnerVertices(1GateCircStr(p, f )) is
a binary relation.

(39) For every setf and for every nonpair yielding finite sequencepholds InputVertices(1GateCircStr(p, f ))
has no pairs.

(40) For every setf and for all setsx, y holds InputVertices(1GateCircStr(〈x,y〉, f )) = {x,y}.

(41) For every setf and for all non pair setsx, y holds InputVertices(1GateCircStr(〈x,y〉, f ))
has no pairs.

(42) For every setf and for all setsx, y, z holds InputVertices(1GateCircStr(〈x,y,z〉, f )) =
{x,y,z}.

(43) Let x, y, f be sets. Thenx ∈ the carrier of 1GateCircStr(〈x,y〉, f ) andy ∈ the carrier of
1GateCircStr(〈x,y〉, f ) and〈〈〈x,y〉, f 〉〉 ∈ the carrier of 1GateCircStr(〈x,y〉, f ).

(44) Letx, y, z, f be sets. Thenx∈ the carrier of 1GateCircStr(〈x,y,z〉, f ) andy∈ the carrier of
1GateCircStr(〈x,y,z〉, f ) andz∈ the carrier of 1GateCircStr(〈x,y,z〉, f ).

(45) Let f , x be sets andp be a finite sequence. Thenx ∈ the carrier of 1GateCircStr(p, f ,x)
and for every sety such thaty∈ rngp holdsy∈ the carrier of 1GateCircStr(p, f ,x).

(46) For all setsf , x and for every finite sequencep holds 1GateCircStr(p, f ,x) is circuit-like
and has arity held in gates.

(47) For every finite sequencepand for every setf holds〈〈p, f 〉〉 ∈ InnerVertices(1GateCircStr(p, f )).

Letx, ybe sets and letf be a function fromBoolean2 intoBoolean. The functor 1GateCircuit(x,y, f )
yields a Boolean strict circuit of 1GateCircStr(〈x,y〉, f ) with denotation held in gates and is defined
by:

(Def. 10) 1GateCircuit(x,y, f ) = 1GateCircuit(〈x,y〉, f ).
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We use the following convention:x, y, z, c denote sets andf denotes a function fromBoolean2

into Boolean.
Next we state four propositions:

(48) Let X be a finite non empty set,f be a function fromX2 into X, and s be a
state of 1GateCircuit(〈x,y〉, f ). Then (Following(s))(〈〈〈x,y〉, f 〉〉) = f (〈s(x),s(y)〉) and
(Following(s))(x) = s(x) and(Following(s))(y) = s(y).

(49) Let X be a finite non empty set,f be a function fromX2 into X, and s be a state of
1GateCircuit(〈x,y〉, f ). Then Following(s) is stable.

(50) For every statesof 1GateCircuit(x,y, f ) holds(Following(s))(〈〈〈x,y〉, f 〉〉) = f (〈s(x),s(y)〉)
and(Following(s))(x) = s(x) and(Following(s))(y) = s(y).

(51) For every states of 1GateCircuit(x,y, f ) holds Following(s) is stable.

Letx, y, zbe sets and letf be a function fromBoolean3 intoBoolean. The functor 1GateCircuit(x,y,z, f )
yields a Boolean strict circuit of 1GateCircStr(〈x,y,z〉, f ) with denotation held in gates and is de-
fined as follows:

(Def. 11) 1GateCircuit(x,y,z, f ) = 1GateCircuit(〈x,y,z〉, f ).

Next we state four propositions:

(52) Let X be a finite non empty set,f be a function fromX3 into X, and s be a state
of 1GateCircuit(〈x,y,z〉, f ). Then (Following(s))(〈〈〈x,y,z〉, f 〉〉) = f (〈s(x),s(y),s(z)〉) and
(Following(s))(x) = s(x) and(Following(s))(y) = s(y) and(Following(s))(z) = s(z).

(53) Let X be a finite non empty set,f be a function fromX3 into X, and s be a state of
1GateCircuit(〈x,y,z〉, f ). Then Following(s) is stable.

(54) Let f be a function fromBoolean3 into Booleanands be a state of 1GateCircuit(x,y,z, f ).
Then (Following(s))(〈〈〈x,y,z〉, f 〉〉) = f (〈s(x),s(y),s(z)〉) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y) and(Following(s))(z) = s(z).

(55) For every function f from Boolean3 into Boolean and for every states of
1GateCircuit(x,y,z, f ) holds Following(s) is stable.

6. BOOLEAN CIRCUITS

Let x, y, c be sets and letf be a function fromBoolean2 into Boolean. The functor
2GatesCircStr(x,y,c, f ) yielding an unsplit non void strict non empty many sorted signature with
arity held in gates and Boolean denotation held in gates is defined by:

(Def. 12) 2GatesCircStr(x,y,c, f ) = 1GateCircStr(〈x,y〉, f )+·1GateCircStr(〈〈〈〈x,y〉, f 〉〉,c〉, f ).

Let x, y, c be sets and letf be a function fromBoolean2 into Boolean. The functor
2GatesCircOutput(x,y,c, f ) yields an element of InnerVertices(2GatesCircStr(x,y,c, f )) and is de-
fined by:

(Def. 13) 2GatesCircOutput(x,y,c, f ) = 〈〈〈〈〈〈x,y〉, f 〉〉,c〉, f 〉〉.

Let x, y, c be sets and letf be a function fromBoolean2 into Boolean. Note that
2GatesCircOutput(x,y,c, f ) is pair.

Next we state two propositions:

(56) InnerVertices(2GatesCircStr(x,y,c, f )) = {〈〈〈x,y〉, f 〉〉,2GatesCircOutput(x,y,c, f )}.

(57) If c 6= 〈〈〈x,y〉, f 〉〉, then InputVertices(2GatesCircStr(x,y,c, f )) = {x,y,c}.
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Let x, y, c be sets and letf be a function fromBoolean2 into Boolean. The functor
2GatesCircuit(x,y,c, f ) yielding a strict Boolean circuit of 2GatesCircStr(x,y,c, f ) with denotation
held in gates is defined as follows:

(Def. 14) 2GatesCircuit(x,y,c, f ) = 1GateCircuit(x,y, f )+·1GateCircuit(〈〈〈x,y〉, f 〉〉,c, f ).

One can prove the following four propositions:

(58) InnerVertices(2GatesCircStr(x,y,c, f )) is a binary relation.

(59) For all non pair setsx, y, c holds InputVertices(2GatesCircStr(x,y,c, f )) has no pairs.

(60) x∈ the carrier of 2GatesCircStr(x,y,c, f ) andy∈ the carrier of 2GatesCircStr(x,y,c, f ) and
c∈ the carrier of 2GatesCircStr(x,y,c, f ).

(61) 〈〈〈x,y〉, f 〉〉 ∈ the carrier of 2GatesCircStr(x,y,c, f ) and〈〈〈〈〈〈x,y〉, f 〉〉,c〉, f 〉〉 ∈ the carrier of
2GatesCircStr(x,y,c, f ).

Let Sbe an unsplit non void non empty many sorted signature, letA be a Boolean circuit ofS,
let s be a state ofA, and letv be a vertex ofS. Thens(v) is an element ofBoolean.

In the sequels is a state of 2GatesCircuit(x,y,c, f ).
We now state several propositions:

(62) Supposec 6= 〈〈〈x,y〉, f 〉〉. Then(Following(s,2))(2GatesCircOutput(x,y,c, f ))= f (〈 f (〈s(x),
s(y)〉),s(c)〉) and(Following(s,2))(〈〈〈x,y〉, f 〉〉) = f (〈s(x),s(y)〉) and(Following(s,2))(x) =
s(x) and(Following(s,2))(y) = s(y) and(Following(s,2))(c) = s(c).

(63) If c 6= 〈〈〈x,y〉, f 〉〉, then Following(s,2) is stable.

(64) Supposec 6= 〈〈〈x,y〉, xor〉〉. Let s be a state of 2GatesCircuit(x,y,c,xor) and a1,
a2, a3 be elements ofBoolean. If a1 = s(x) and a2 = s(y) and a3 = s(c), then
(Following(s,2))(2GatesCircOutput(x,y,c,xor)) = a1⊕a2⊕a3.

(65) Supposec 6= 〈〈〈x,y〉, or〉〉. Let s be a state of 2GatesCircuit(x,y,c,or) and a1, a2,
a3 be elements ofBoolean. If a1 = s(x) and a2 = s(y) and a3 = s(c), then
(Following(s,2))(2GatesCircOutput(x,y,c,or)) = a1∨a2∨a3.

(66) Supposec 6= 〈〈〈x,y〉, &〉〉. Let s be a state of 2GatesCircuit(x,y,c,&) and a1, a2,
a3 be elements ofBoolean. If a1 = s(x) and a2 = s(y) and a3 = s(c), then
(Following(s,2))(2GatesCircOutput(x,y,c,&)) = a1∧a2∧a3.

7. ONE BIT ADDER

Let x, y, c be sets. The functor BitAdderOutput(x,y,c) yielding an element of
InnerVertices(2GatesCircStr(x,y,c,xor)) is defined by:

(Def. 15) BitAdderOutput(x,y,c) = 2GatesCircOutput(x,y,c,xor).

Let x, y, c be sets. The functor BitAdderCirc(x,y,c) yielding a strict Boolean circuit of
2GatesCircStr(x,y,c,xor) with denotation held in gates is defined by:

(Def. 16) BitAdderCirc(x,y,c) = 2GatesCircuit(x,y,c,xor).

Let x, y, c be sets. The functor MajorityIStr(x,y,c) yields an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates and is defined
as follows:

(Def. 17) MajorityIStr(x,y,c)= 1GateCircStr(〈x,y〉,&)+·1GateCircStr(〈y,c〉,&)+·1GateCircStr(〈c,
x〉,&).

Let x, y, c be sets. The functor MajorityStr(x,y,c) yields an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates and is defined
as follows:



FULL ADDER CIRCUIT. PART I 9

(Def. 18) MajorityStr(x,y,c) = MajorityIStr(x,y,c)+·1GateCircStr(〈〈〈〈x,y〉, &〉〉,〈〈〈y,c〉, &〉〉,〈〈〈c,x〉,
&〉〉〉,or3).

Let x, y, c be sets. The functor MajorityICirc(x,y,c) yields a strict Boolean circuit of
MajorityIStr(x,y,c) with denotation held in gates and is defined as follows:

(Def. 19) MajorityICirc(x,y,c)= 1GateCircuit(x,y,&)+·1GateCircuit(y,c,&)+·1GateCircuit(c,x,&).

One can prove the following propositions:

(67) InnerVertices(MajorityStr(x,y,c)) is a binary relation.

(68) For all non pair setsx, y, c holds InputVertices(MajorityStr(x,y,c)) has no pairs.

(69) For every states of MajorityICirc(x,y,c) and for all elementsa, b of Booleansuch that
a = s(x) andb = s(y) holds(Following(s))(〈〈〈x,y〉, &〉〉) = a∧b.

(70) For every states of MajorityICirc(x,y,c) and for all elementsa, b of Booleansuch that
a = s(y) andb = s(c) holds(Following(s))(〈〈〈y,c〉, &〉〉) = a∧b.

(71) For every states of MajorityICirc(x,y,c) and for all elementsa, b of Booleansuch that
a = s(c) andb = s(x) holds(Following(s))(〈〈〈c,x〉, &〉〉) = a∧b.

Let x, y, c be sets. The functor MajorityOutput(x,y,c) yields an element of
InnerVertices(MajorityStr(x,y,c)) and is defined by:

(Def. 20) MajorityOutput(x,y,c) = 〈〈〈〈〈〈x,y〉, &〉〉,〈〈〈y,c〉, &〉〉,〈〈〈c,x〉, &〉〉〉, or3 〉〉.

Let x, y, c be sets. The functor MajorityCirc(x,y,c) yields a strict Boolean circuit of
MajorityStr(x,y,c) with denotation held in gates and is defined as follows:

(Def. 21) MajorityCirc(x,y,c)= MajorityICirc(x,y,c)+·1GateCircuit(〈〈〈x,y〉, &〉〉,〈〈〈y,c〉, &〉〉,〈〈〈c,x〉,
&〉〉,or3).

We now state a number of propositions:

(72) x∈ the carrier of MajorityStr(x,y,c) andy∈ the carrier of MajorityStr(x,y,c) andc∈ the
carrier of MajorityStr(x,y,c).

(73) 〈〈〈x,y〉, &〉〉 ∈ InnerVertices(MajorityStr(x,y,c)) and〈〈〈y,c〉, &〉〉 ∈ InnerVertices(MajorityStr(x,y,c))
and〈〈〈c,x〉, &〉〉 ∈ InnerVertices(MajorityStr(x,y,c)).

(74) For all non pair setsx, y, c holds x ∈ InputVertices(MajorityStr(x,y,c)) and y ∈
InputVertices(MajorityStr(x,y,c)) andc∈ InputVertices(MajorityStr(x,y,c)).

(75) For all non pair setsx, y, c holds InputVertices(MajorityStr(x,y,c)) = {x,y,c} and
InnerVertices(MajorityStr(x,y,c))= {〈〈〈x,y〉, &〉〉,〈〈〈y,c〉, &〉〉,〈〈〈c,x〉, &〉〉}∪{MajorityOutput(x,y,c)}.

(76) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(y), then(Following(s))(〈〈〈x,y〉, &〉〉) = a1∧a2.

(77) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda2, a3 be elements of
Boolean. If a2 = s(y) anda3 = s(c), then(Following(s))(〈〈〈y,c〉, &〉〉) = a2∧a3.

(78) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda1, a3 be elements of
Boolean. If a1 = s(x) anda3 = s(c), then(Following(s))(〈〈〈c,x〉, &〉〉) = a3∧a1.

(79) Let x, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda1, a2, a3 be ele-
ments ofBoolean. If a1 = s(〈〈〈x,y〉, &〉〉) anda2 = s(〈〈〈y,c〉, &〉〉) anda3 = s(〈〈〈c,x〉, &〉〉), then
(Following(s))(MajorityOutput(x,y,c)) = a1∨a2∨a3.

(80) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(y), then(Following(s,2))(〈〈〈x,y〉, &〉〉) = a1∧a2.
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(81) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda2, a3 be elements of
Boolean. If a2 = s(y) anda3 = s(c), then(Following(s,2))(〈〈〈y,c〉, &〉〉) = a2∧a3.

(82) Letx, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), anda1, a3 be elements of
Boolean. If a1 = s(x) anda3 = s(c), then(Following(s,2))(〈〈〈c,x〉, &〉〉) = a3∧a1.

(83) Let x, y, c be non pair sets,s be a state of MajorityCirc(x,y,c), and a1, a2,
a3 be elements ofBoolean. If a1 = s(x) and a2 = s(y) and a3 = s(c), then
(Following(s,2))(MajorityOutput(x,y,c)) = a1∧a2∨a2∧a3∨a3∧a1.

(84) For all non pair setsx, y, c and for every statesof MajorityCirc(x,y,c) holds Following(s,2)
is stable.

Let x, y, c be sets. The functor BitAdderWithOverflowStr(x,y,c) yields an unsplit non void strict
non empty many sorted signature with arity held in gates and Boolean denotation held in gates and
is defined as follows:

(Def. 22) BitAdderWithOverflowStr(x,y,c) = 2GatesCircStr(x,y,c,xor)+·MajorityStr(x,y,c).

One can prove the following three propositions:

(85) For all non pair setsx, y, c holds InputVertices(BitAdderWithOverflowStr(x,y,c)) =
{x,y,c}.

(86) For all non pair setsx, y, c holds InnerVertices(BitAdderWithOverflowStr(x,y,c)) = {〈〈〈x,
y〉, xor〉〉,2GatesCircOutput(x,y,c,xor)}∪{〈〈〈x,y〉, &〉〉,〈〈〈y,c〉, &〉〉,〈〈〈c,x〉, &〉〉}∪{MajorityOutput(x,y,c)}.

(87) LetSbe a non empty many sorted signature. SupposeS= BitAdderWithOverflowStr(x,y,c).
Thenx∈ the carrier ofSandy∈ the carrier ofSandc∈ the carrier ofS.

Let x, y, c be sets. The functor BitAdderWithOverflowCirc(x,y,c) yielding a strict Boolean
circuit of BitAdderWithOverflowStr(x,y,c) with denotation held in gates is defined by:

(Def. 23) BitAdderWithOverflowCirc(x,y,c) = BitAdderCirc(x,y,c)+·MajorityCirc(x,y,c).

One can prove the following propositions:

(88) InnerVertices(BitAdderWithOverflowStr(x,y,c)) is a binary relation.

(89) For all non pair setsx, y, c holds InputVertices(BitAdderWithOverflowStr(x,y,c)) has no
pairs.

(90) BitAdderOutput(x,y,c)∈ InnerVertices(BitAdderWithOverflowStr(x,y,c)) and MajorityOutput(x,y,c)∈
InnerVertices(BitAdderWithOverflowStr(x,y,c)).

(91) Let x, y, c be non pair sets,s be a state of BitAdderWithOverflowCirc(x,y,c),
and a1, a2, a3 be elements ofBoolean. Suppose a1 = s(x) and a2 = s(y)
and a3 = s(c). Then (Following(s,2))(BitAdderOutput(x,y,c)) = a1 ⊕ a2 ⊕ a3 and
(Following(s,2))(MajorityOutput(x,y,c)) = a1∧a2∨a2∧a3∨a3∧a1.

(92) For all non pair setsx, y, c and for every statesof BitAdderWithOverflowCirc(x,y,c) holds
Following(s,2) is stable.
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