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Summary. We continue the formalisation of circuits started by Piotr Rudnicki, An-
drzej Trybulec, Pauline Kawamoto, and the second authaor in [12], [13], [11], [14]. The first
step in proving properties of fuli-bit adder circuit, i.e. 1-bit adder, is presented. We employ
the notation of combining circuits introduced in [10].
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The articles[[17],[[16],[[21][[20],[1],[[18],122] 4], [5],[8].[18],[7],[[8], [[2B],[15],12],[[6], 18],
[13], [14], and [10] provide the notation and terminology for this paper.

1. COMBINING OF MANY SORTED SIGNATURES

Letl; be a set. We say thét is pair if and only if:
(Def. 1) There exist sets y such that; = {x, y).

Let us note that every set which is pair is also non empty.

Letx, y be sets. Note thgk, y) is pair.

One can verify that there exists a set which is pair and there exists a set which is non pair.
Let us observe that every natural number is non pair.

Letl; be a set. We say th&t has a pair if and only if:

(Def. 2) There exists a pair sesuch thak € I.

We introducd has no pairs as an antonymlgtas a pair.

Observe that every set which is empty has also no pairsx beta non pair set. Observe that
{x} has no pairs. Ley be a non pair set. Note th&t,y} has no pairs. Let be a non pair set. One
can verify that{x,y,z} has no pairs.

Let us observe that there exists a non empty set which has no pairs.

Let X, Y be sets with no pairs. One can check thatY has no pairs.

Let X be a set with no pairs and létbe a set. One can check the following observations:

x X\ 'Y has no pairs,
x  XNY has no pairs, and

x YN X has no pairs.

1This work was written while the first author visited Shinshu University, July—August 1994.
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Let x be a pair set. Observe thft} is relation-like. Lety be a pair set. One can verify that
{x,y} is relation-like. Letz be a pair set. Note thdk,y, z} is relation-like.

One can verify that every set which is relation-like and has no pairs is also empty.

LetI1 be a function. We say th#f is nonpair yielding if and only if:

(Def. 3) For every set such tha € domly holdsli(x) is non pair.

Letx be a non pair set. Note thét) is nonpair yielding. Ley be a non pair set. One can verify
that(x,y) is nonpair yielding. Lez be a non pair set. Observe tHaty, z) is nonpair yielding.
Next we state the proposition

(1) For every functiorf such thatf is nonpair yielding holds rn§ has no pairs.

Let n be a natural number. Observe that there exists a finite sequence with tewtibh is
one-to-one and nonpair yielding.

Let us observe that there exists a finite sequence which is one-to-one and nonpair yielding.

Let f be a nonpair yielding function. Observe that fnigas no pairs.

One can prove the following propositions:

(2) LetS;, S be non empty many sorted signatures. SupiBse S and InnerVertices, ) is
a binary relation and InnerVertic€%®) is a binary relation. Then InnerVertidgs+-S) is a
binary relation.

(3) LetS, & be unsplit non empty many sorted signatures with arity held in gates. Sup-

pose InnerVerticd$;) is a binary relation and InnerVerticdg) is a binary relation. Then
InnerVertice$S; +-S) is a binary relation.

(4) For all non empty many sorted signaturey, S such that § ~ & and
InnerVertice$S,) misses InputVerticéS; ) holds InputVerticetS; ) C InputVertice$Si+-S)
and InputVertice&S;+-S) = InputVertice$S; ) U (InputVerticesSy) \ InnerVertices$S; )).

(5) For all setsX, Rsuch thaiX has no pairs anR s a binary relation holdX missesR.

(6) LetS, S be unsplit non empty many sorted signatures with arity held in gates. Sup-

pose InputVertice$) has no pairs and InnerVertid€s) is a binary relation. Then
InputVertice$S) C InputVertice$S;+-S) and InputVerticeS; +-S) = InputVertice$S; ) U
(InputVertice$S,) \ InnerVertice$S;)).

(7) LetS, & be unsplit non empty many sorted signatures with arity held in gates. Suppose

InputVertice$S;) has no pairs and InnerVertig&;) is a binary relation and InputVertic€®)
has no pairs and InnerVertid&s) is a binary relation. Then InputVertic€g+-S) =
InputVertice$S; ) U InputVerticesS,).

(8) For all non empty many sorted signatufs S, such thatS; ~ S, and InputVerticetS;)
has no pairs and InputVerticg®) has no pairs holds InputVerticg +-S,) has no pairs.

(9) LetS, S be unsplit non empty many sorted signatures with arity held in gates.
InputVertice$S; ) has no pairs and InputVertidg®) has no pairs, then InputVertic&s+-S,)
has no pairs.

2. COMBINING OF CIRCUITS

In this article we present several logical schemes. The sclneBooleExdeals with a binary
functor ¥ yielding an element oBoolean and states that:
There exists a functiof from Boolear? into Booleansuch that for all elements y
of Booleanholds f ({(x,y)) = F (x,Y)
for all values of the parameter.
The schem@AryBooleUnicdeals with a binary functof yielding an element oBoolean and
states that:
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Let f1, f, be functions fronBoolearf into Boolean Suppose for all elementsy of
Booleanholds f1({x,y)) = #(x,y) and for all elements, y of Booleanholds f»((x,
y)) = F(xy). Thenf; = f
for all values of the parameter.
The schem@AryBooleDefdeals with a binary functof yielding an element oBoolean and
states that:
() There exists a functiorf from Boolear? into Booleansuch that for all ele-
mentsx, y of Booleanholds f ({x,y)) = #(x,y), and
(i) for all functions f1, f» from Boolearf into Booleansuch that for all elements
x, y of Booleanholds f1({x,y)) = ¥ (x,y) and for all elementg, y of Booleanholds
f2(<X,y>) = :}—(X’y) holdsf, = f;
for all values of the parameter.
The schem@&AryBooleExdeals with a ternary functgf yielding an element oBoolean and
states that:
There exists a functiof from Boolear? into Booleansuch that for all elements y,
zof Booleanholds f ({x,y,2)) = F(X,Y,2)
for all values of the parameter.
The schem8&AryBooleUnicdeals with a ternary functgf yielding an element dBoolean and
states that:
Let f,, f, be functions fromBoolear? into Boolean Suppose for all elements y,
z of Booleanholds f1((x,y,2)) = ¥ (x,y,z) and for all elements, y, z of Boolean
holds f2((x,y,2)) = F (X,¥,2). Thenfy = f,
for all values of the parameter.
The schem@&AryBooleDefleals with a ternary functgrf yielding an element oBoolean and
states that:
() There exists a functiorf from Boolear? into Booleansuch that for all ele-
mentsx, Y, zof Booleanholds f ((x,y,2)) = F(X,Y,z), and
(i)  for all functions fq, f, from Boolear? into Booleansuch that for all elements
X, Y, zof Boolearholdsfi((x,y,2)) = F(x,y,z) and for all elements, y, zof Boolean
holds f2((x,y,2)) = F (X,¥,2) holds f; = f,
for all values of the parameter.
The function xor fromBoolear? into Booleanis defined by:

(Def. 4) For all elementsz, y of Booleanholds xok(x,y)) = x®y.
The function or fromBoolearf into Booleanis defined as follows:
(Def. 5) For all elements, y of Booleanholds of (x,y)) = x\VVy.
The function & fromBoolear? into Booleanis defined by:
(Def. 6) For all elements, y of Booleanholds &((x,y)) = XAY.
The function og from Boolear! into Booleanis defined as follows:
(Def. 7) For all elementg, y, zof Booleanholds og((x,y,2)) =xVyVz

Let x be a set. Therix) is a finite sequence with length 1. Lebe a set. Therix,y) is a finite
sequence with length 2. Letbe a set. TheKx,y,z) is a finite sequence with length 3.

Let n, m be natural numbers, lgt be a finite sequence with length and letq be a finite
sequence with lengtim. Thenp ™ q s a finite sequence with length+ m.

3. SGNATURES WITH ONE OPERATION
One can prove the following proposition

(10) LetSbe a circuit-like non void non empty many sorted signatlree a non-empty circuit
of S sbe a state of, andg be a gate o8 Then(Following(s))(the result sort ofj) = (Den(g,
A))(s-Arity (g)).
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Let Sbe a non void circuit-like non empty many sorted signatureAlbe a non-empty circuit
of S, letsbe a state oA, and letn be a natural number. The functor Followisg) yields a state of
A and is defined by the condition (Def. 8).

(Def. 8) There exists a functioh from N into [ (the sorts ofA) such that Followings,n) = f(n)
andf (0) = sand for every natural numberholds f (n+ 1) = Following( f (n)).

One can prove the following propositions:

(11) LetSbe a circuit-like non void non empty many sorted signatlree a non-empty circuit
of S, ands be a state oA. Then Followings,0) =s.

(12) LetS be a circuit-like non void non empty many sorted signatukeye a non-empty
circuit of S s be a state ofA, andn be a natural number. Then Followifggn + 1) =
Following(Following(s,n)).

(13) LetS be a circuit-like non void non empty many sorted signatéxeje a non-empty
circuit of S, s be a state ofA, andn, m be natural numbers. Then Followifgn+ m) =
Following(Following(s, n), m).

(14) LetSbe anon void circuit-like non empty many sorted signatiree a non-empty circuit
of S, ands be a state oA. Then Followings, 1) = Following(s).

(15) LetSbe a non void circuit-like non empty many sorted signatlree a non-empty circuit
of S, ands be a state oA. Then Followings, 2) = Following(Following(s)).

(16) LetS be a circuit-like non void non empty many sorted signatukeye a non-empty
circuit of S s be a state ofA, andn be a natural number. Then Followifggn + 1) =
Following(Following(s), n).

Let Sbhe a non void circuit-like non empty many sorted signatureflee a non-empty circuit
of S letsbe a state oA, and letx be a set. We say thais stable ak if and only if:

(Def. 9) For every natural numberholds(Following(s,n))(x) = s(x).

The following propositions are true:

(17) LetSbe a non void circuit-like non empty many sorted signatlree a non-empty circuit
of S, sbe a state of, andx be a set. I&is stable ak, then for every natural numbarholds
Following(s, n) is stable ak.

(18) LetSbe a non void circuit-like non empty many sorted signatlriee a non-empty circuit
of S sbe a state oA, andx be a set. I € InputVertice$S), thensis stable ak.

(19) LetSbe a non void circuit-like non empty many sorted signatlriee a non-empty circuit
of S s be a state oA, andg be a gate ofS Suppose that for every sgtsuch thatx €
rng Arity(g) holdssis stable ak. Then Followings) is stable at the result sort gf

4. UNSPLIT CONDITION
Next we state a number of propositions:

(20) LetS;, S be non empty many sorted signatures abe a vertex of,. Thenv € the carrier
of S +-S andv € the carrier of$+-S;.

(21) LetS, S be unsplit non empty many sorted signatures with arity held in gates bag
set. Ifx € InnerVertice$S; ), thenx € InnerVertice$S, +-S) andx € InnerVertice$S+-S).

(22) For all non empty many sorted signatui®s S and for every se such thatx €
InnerVertice$S,) holdsx € InnerVertice$S +-S).
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(23) For all unsplit non empty many sorted signatuBesS, with arity held in gates holds
SI+S=S+S.

(24) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates and
Boolean denotation held in gately, be a Boolean circuit o, with denotation held in gates,
andA; be a Boolean circuit o5, with denotation held in gates. Théa+-A; = Ay+-As.

(25) LetS, S, S3 be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gatég,be a Boolean circuit 0§;, A, be a Boolean circuit
of &, andAs be a Boolean circuit o8s. Then(Aq+-A)+-Az = A+ (As+-Ag).

(26) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates and
Boolean denotation held in gate&; be a Boolean non-empty circuit & with denotation
held in gatesA; be a Boolean non-empty circuit 8 with denotation held in gates, asde
a state ofA;+-Ay. Thens|the carrier ofS; is a state ofA; ands|the carrier ofS; is a state of
Ao.

(27) For all unsplit non empty many sorted signatuggsS, with arity held in gates holds
InnerVertice$S;+-S) = InnerVertice$S; ) UInnerVertice$S,).

(28) LetS), S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef@gemisses InputVerticés, ).
Let A; be a Boolean circuit of; with denotation held in gategy be a Boolean circuit 0%
with denotation held in gates,be a state oA;+-Ay, ands; be a state of;. If 51 = s[the
carrier ofS;, then Followings) [the carrier ofS; = Following(s; ).

(29) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef8gemisses InputVerticés,).
Let A; be a Boolean circuit of; with denotation held in gategy be a Boolean circuit 0%
with denotation held in gates,be a state of\;+-Ay, ands, be a state ofy. If 5, = s[the
carrier ofS,, then Followings) [the carrier ofS, = Following(s,).

(30) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef@igemsisses InputVerticés ).
Let A; be a Boolean circuit 0§, with denotation held in gate#y, be a Boolean circuit of
S with denotation held in gates,be a state ofA\;+-Ay, ands; be a state of\;. Suppose
s = sfthe carrier ofS;. Let n be a natural number. Then Followifgn) [the carrier of

S, = Following(sy, n).

(31) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef@igemsisses InputVerticésy).
Let A; be a Boolean circuit 0§, with denotation held in gate#y, be a Boolean circuit of
S with denotation held in gates,be a state ofA\;+-Ay, ands, be a state of,. Suppose
sp = sfthe carrier ofS;. Let n be a natural number. Then Followiggn) [the carrier of
S, = Following(sp, n).

(32) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef@gemisses InputVerticés ).
Let A; be a Boolean circuit 0§, with denotation held in gate#y, be a Boolean circuit of
S with denotation held in gates,be a state ofA;+-Ay, ands; be a state of\;. Suppose
s1 = sfthe carrier ofS;. Letv be a set. Supposee the carrier ofS;. Let n be a natural
number. Ther{Following(s, n))(v) = (Following(sz, n))(v).

(33) LetS;, S be unsplit non void non empty many sorted signatures with arity held in gates
and Boolean denotation held in gates. Suppose InnerVef@cemisses InputVerticésSy).
Let A; be a Boolean circuit 0§; with denotation held in gate#y, be a Boolean circuit of
S with denotation held in gates,be a state ofA\;+-Ay, ands, be a state of,. Suppose
s, = s|the carrier ofS,. Letv be a set. Supposee the carrier ofS,. Let n be a natural
number. Ther{Following(s, n))(v) = (Following(s,,n))(v).
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Let Sbe a non void non empty many sorted signature with denotation held in gates grimklet
a gate ofS. One can verify that), is function-like and relation-like.
The following four propositions are true:

(34) LetSbe a circuit-like non void non empty many sorted signature with denotation held in
gates andh be a non-empty circuit db SupposeA has denotation held in gates. Lstbe a
state ofA andg be a gate o8. Then(Following(s))(the result sort 0§) = g»(s- Arity (g)).

(85) LetSbe an unsplit non void non empty many sorted signature with arity held in gates and
Boolean denotation held in gatéshe a Boolean non-empty circuit 8with denotation held
in gatessbe a state of, p be a finite sequence, aricdbe a function. If{p, f) € the operation
symbols ofS, then(Following(s))({p, f)) = f(s: p).

(36) LetSbe an unsplit non void non empty many sorted signature with arity held in gates and
Boolean denotation held in gatésbe a Boolean non-empty circuit 8fwith denotation held
in gatess be a state oA, p be a finite sequence, arfdbe a function. Supposfp, f) € the
operation symbols o8 and for every sek such thatx € rngp holdss is stable ax. Then
Following(s) is stable a{p, f).

(37) Forevery unsplit non empty many sorted signaBhields InnerVerticesS) = the operation
symbols ofS.

5. ONE GATE CIRCUITS
Next we state a number of propositions:

(38) For every sef and for every finite sequengeholds InnerVerticedlGateCircStp, f)) is
a binary relation.

(39) Forevery set and for every nonpair yielding finite sequengkolds InputVerticeSlGateCircStp, ))
has no pairs.

(40) For every sef and for all setx, y holds InputVertice€lGateCircStf(x,y), f)) = {x,y}.

(41) For every sef and for all non pair setg, y holds InputVertice§lGateCircStf(x,y), f))
has no pairs.

(42) For every seff and for all sets, y, z holds InputVerticeSlGateCircStf(x,y,2), f)) =
{xy,z}.

(43) Letx, y, f be sets. Thew € the carrier of 1GateCircStfx,y), f) andy € the carrier of
1GateCircSif(x,y), f) and{(x,y), f) € the carrier of 1GateCircSifx,y), f).

(44) Letxy, z f be sets. Ther € the carrier of 1GateCircSifx,y,2), f) andy € the carrier of
1GateCircStf(x,y,2), f) andz € the carrier of 1GateCircSifx,y,2), f).

(45) Letf, x be sets ang be a finite sequence. There the carrier of 1GateCircSip, f,X)
and for every sey such thaty € rngp holdsy € the carrier of 1GateCircSip, f,x).

(46) For all setsf, x and for every finite sequengeholds 1GateCircStp, f,x) is circuit-like
and has arity held in gates.

(47) Forevery finite sequengeand for every sef holds(p, f) € InnerVerticeg1GateCircStfp, f)).

Letx, y be sets and left be a function fronBooleart into Boolean The functor 1GateCircu(, y, f)
yields a Boolean strict circuit of 1GateCirc8i,y), f) with denotation held in gates and is defined
by:

(Def. 10) 1GateCircuik,y, f) = 1GateCircuif(x,y), f).
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We use the following conventior, y, z, ¢ denote sets antl denotes a function frorBooleart
into Boolean
Next we state four propositions:

(48) Let X be a finite non empty setf be a function fromX? into X, and s be a
state of 1GateCircuitx,y), f). Then (Following(s))({(x,y), f)) = f({(s(x),s(y))) and
(Following(s))(x) = s(x) and(Following(s))(y) = s(y).

(49) LetX be a finite non empty setf be a function fromX? into X, ands be a state of
1GateCircuif(x,y), f). Then Followings) is stable.

(50) For every stateof 1GateCircuitx, y, f) holds(Following(s))({(x,y), f)) = f({(s(x),s(y)))
and(Following(s))(x) = s(x) and(Following(s))(y) = s(y).

(51) For every stateof 1GateCircuix,y, f) holds Followinds) is stable.

Letx, y, zbe sets and let be a function fronBooleart into Boolean The functor 1GateCircui,y, z, f)
yields a Boolean strict circuit of 1GateCirc8i,y, z), f) with denotation held in gates and is de-
fined as follows:

(Def. 11) 1GateCircuik,y,z, f) = 1GateCircuit(x,y,z), f).

Next we state four propositions:

(52) LetX be a finite non empty setf be a function fromX2 into X, ands be a state
of 1GateCircuif(x,y,z), f). Then (Following(s))({(x,y,2), f}) = f({s(x),s(y),s(z))) and
(Following(s))(x) = s(x) and(Following(s))(y) = s(y) and(Following(s))(z) = s(2).

(53) LetX be a finite non empty set, be a function fromX3 into X, ands be a state of
1GateCircuif(x,y, z), f). Then Followings) is stable.

(54) Letf be a function fronBoolear! into Booleanands be a state of 1GateCirc(it y,z f).
Then (Following(s))({(x,y,2), f)) = f({s(x),s(y),s(z))) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y) and(Following(s))(z) = s(2).

(55) For every functionf from Booleaf into Boolean and for every states of
1GateCircuitx,y, z, f) holds Followinds) is stable.

6. BOOLEAN CIRCUITS

Let x, y, ¢ be sets and letf be a function fromBoolearf into Boolean The functor
2GatesCircStK,y, ¢, f) yielding an unsplit non void strict non empty many sorted signature with
arity held in gates and Boolean denotation held in gates is defined by:

(Def. 12) 2GatesCircSix,y,c, f) = 1GateCircStf(x,y), f)+- LGateCircSt(((x,y), f},c), f).

Let x, y, ¢ be sets and lef be a function fromBoolearf into Boolean The functor
2GatesCircOutpux,y,c, f) yields an element of InnerVerticgGatesCircStKk, y,c, f)) and is de-
fined by:

(Def. 13) 2GatesCircOutp,y,c, f) = ({({{(x,y), f},c), f).

Let x, y, ¢ be sets and letf be a function fromBoolearf into Boolean Note that
2GatesCircOutpux,y,c, f) is pair.
Next we state two propositions:

(56) InnerVerticeGatesCircSti,y,c, f)) = {{(x,y), f),2GatesCircOutpyk,y,c, f)}.
(57) Ifc# {{(xy), f), then InputVerticeRGatesCircSti, y,c, f)) = {x,y,c}.
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Let x, y, ¢ be sets and lef be a function fromBoolearf into Boolean The functor

2GatesCircuiix, y, c, f) yielding a strict Boolean circuit of 2GatesCirc8try, c, f) with denotation
held in gates is defined as follows:

(Def. 14) 2GatesCircuik,y,c, f) = 1GateCircuitx,y, f)+- 1GateCircuit{(x,y), f),c, f).

One can prove the following four propositions:
(58) InnerVerticeGatesCircStK, y,c, f)) is a binary relation.
(59) For all non pair sets, y, ¢ holds InputVerticeGatesCircStx, y, c, f)) has no pairs.

(60) x e the carrier of 2GatesCirc3iy, c, f) andy € the carrier of 2GatesCircSk,y, c, f) and
c € the carrier of 2GatesCirc3K,y,c, f).

(61) {({x,y), f) € the carrier of 2GatesCirc3i,y,c, f) and (({(x,y), f),c), f) € the carrier of
2GatesCircStx, y,c, ).

Let Sbhe an unsplit non void non empty many sorted signaturél le¢ a Boolean circuit 0§,
let sbe a state oA, and letv be a vertex ofs. Thens(v) is an element oBoolean

In the sequesis a state of 2GatesCirc@i y,c, ).

We now state several propositions:

(62) Suppose# {(x,y), f). Then(Following(s,2))(2GatesCircOutpyx,y,c, f)) = f({f({s(x),
s(y))),s(c))) and (Following(s, 2))({{(x.), f)) = f({s(x),s(y))) and (Following(s,2))(x) =
s(x) and(Following(s, 2))(y) = s(y) and(Following(s, 2))(c) = s(c).

(63) Ifc# ((x,y), f), then Followingds,2) is stable.

(64) Supposec # {{x,y),xor). Let s be a state of 2GatesCirc(ity,c,xor) and aj,
ay, az be elements ofBoolean If a3 = s(x) and a; = s(y) and az = s(c), then
(Following(s,2))(2GatesCircOutpyx, y, c,xor)) = a; & az & as.

(65) Supposec # {{x,y),or). Let s be a state of 2GatesCirc@ity,c,or) and a;, ap,
az be elements ofBoolean If a; = s(x) and a; = s(y) and az = s(c), then
(Following(s, 2))(2GatesCircOutpi(x,y,c,or)) = a; V az V a3.

(66) Supposec # ((x,y),&). Let s be a state of 2GatesCirc@ity,c,&) and a;, ap,
az be elements ofBoolean If a; = s(x) and a; = s(y) and az = s(c), then
(Following(s,2)) (2GatesCircOutpux,y,c,&)) = a; Aaz A ag.

7. ONE BIT ADDER

Let X, y, c be sets. The functor BitAdderOutgyuty,c) yielding an element of
InnerVerticeg2GatesCircStK, y, c, xor)) is defined by:

(Def. 15) BitAdderOutpuix,y,c) = 2GatesCircOutpuk, y, c, xor).

Let x, y, c be sets. The functor BitAdderCiixy,c) yielding a strict Boolean circuit of
2GatesCircStK, y, ¢, xor) with denotation held in gates is defined by:

(Def. 16) BitAdderCir¢x,y,c) = 2GatesCircuitx, y, ¢, xor).

Letx, y, ¢ be sets. The functor MajorityISi, y, c) yields an unsplit non void strict non empty

many sorted signature with arity held in gates and Boolean denotation held in gates and is defined
as follows:

(Def. 17) MajoritylStrx,y,c) = 1GateCircStf(x, y), & )+- 1GateCircSt(y, c), & )+- LGateCircSff(c,
X),&).

Let x, y, c be sets. The functor MajoritySi,y,c) yields an unsplit non void strict non empty

many sorted signature with arity held in gates and Boolean denotation held in gates and is defined
as follows:
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(Def. 18) MajorityStfx,y,c) = MajoritylStr(x,y,c)+- 1GateCircSt({(x,y), &), ({y,c), &), {{(c,X),
&)),or3).

Let x, y, ¢ be sets. The functor MajoritylCi(g,y,c) yields a strict Boolean circuit of
MajoritylStr(x,y,c) with denotation held in gates and is defined as follows:

(Def. 19) MajoritylCirdx,y, c) = 1GateCircuitx, y, & )+- 1GateCircuity, ¢, & )+- 1GateCircuifc, x, & ).
One can prove the following propositions:
(67) InnerVertice@MajorityStr(x,y,c)) is a binary relation.
(68) For all non pair sets, y, ¢ holds InputVertice@MajorityStr(x, y,c)) has no pairs.

(69) For every stats of MajoritylCirc(x,y,c) and for all elements, b of Booleansuch that
a = s(x) andb = s(y) holds(Following(s))({{(x,y}, &)) = aAh.

a= s(y) andb = s(c) holds(Following(s))({{y,c), &)) =aAb.

(71) For every stats of MajoritylCirc(x,y,c) and for all elements, b of Booleansuch that

)

(

(70) For every stats of MajoritylCirc(x,y,c) and for all elements, b of Booleansuch that

(

)
a = s(c) andb = s(x) holds(Following(s))({(c,x}, &)) = aAh.

Let x, y, c be sets. The functor MajorityOutduty,c) yields an element of
InnerVerticegMajorityStr(x,y,c)) and is defined by:

(Def. 20)  MajorityOutputx,y,c) = (({{(x.y), &),{(¥;€), &),{(c;X), &)), 0r3).

Let x, y, ¢ be sets. The functor MajorityCifg,y,c) yields a strict Boolean circuit of
MajorityStr(x, y, ¢) with denotation held in gates and is defined as follows:

(Def. 21) MajorityCirdx,y, c) = MajoritylCirc(x, Y, c)+- 1GateCircuit{(x,y), &), {{y,c), &), {{c,X),
&),Ol’g).

We now state a number of propositions:

(72) x e the carrier of MajorityStx,y,c) andy € the carrier of MajorityStfx,y,c) andc € the
carrier of MajoritySttx,y,c).

(73) {{x,y), &) € InnerVertice$MajorityStr(x,y,c)) and{(y,c), &) € InnerVerticegMajorityStr(x,y,c))

and((c,x), &) € InnerVerticegMajorityStr(x,y,c)).

(74) For all non pair setx, y, ¢ holds x € InputVerticegMajorityStr(x,y,c)) and y €
InputVerticegMajorityStr(x,y, ¢)) andc € InputVerticegMajorityStr(x,y, c)).

(75) For all non pair setx, y, ¢ holds InputVertice@MajorityStr(x,y,c)) = {x,y,c} and

InnerVerticegMajorityStr(x,y,c)) = {{{x,¥), &), {{y,C), &), {{¢,X), &) } U{MajorityOutpuix,y,c)}.

(76) Letx, y, c be non pair sets; be a state of MajorityCir, y, c), andas, a; be elements of
Boolean If a; = s(x) andayz = s(y), then(Following(s)) ({{X,y), &)) = a1 A a.

(77) Letx, y, c be non pair setss be a state of MajorityCir, y, c), anday, ag be elements of
Boolean If a; = s(y) andag = s(c), then(Following(s))({{y,c), &)) = az A as.

(78) Letx, y, c be non pair sets; be a state of MajorityCir, y,c), andas, az be elements of
Boolean If a; = s(x) andaz = s(c), then(Following(s))({{c,x), &)) = az A as.

(79) Letx, y, c be non pair setss be a state of MajorityCir,y,c), anda;, ap, az be ele-
ments ofBoolean If a; = s({{x,y), &)) andaz = s({{y,c), &)) andaz = s({{(c,x), &)), then
(Following(s))(MajorityOutputx,y,c)) = a1 Vaz V as.

(80) Letx, y, c be non pair sets; be a state of MajorityCir, y,c), andas, a; be elements of
Boolean If a; = s(x) anday = s(y), then(Following(s,2)) ({{x,y), &}) = a1 A az.
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(81) Letx, y, c be non pair setss be a state of MajorityCir, y,c), anday, az be elements of
Boolean If a; = s(y) andag = s(c), then(Following(s, 2))({{y,c), &)) = az A aa.

(82) Letx, y, c be non pair sets; be a state of MajorityCir, y, c), andas, ag be elements of
Boolean If a; = s(x) andag = s(c), then(Following(s,2))({(c,x), &}) = azAa1.

(83) Letx y, ¢ be non pair setss be a state of MajorityCinx,y,c), and aj, ap,
az be elements ofBoolean If a; = s(x) and a; = s(y) and az = s(c), then
(Following(s, 2)) (MajorityOutputx,y,c)) = aj AaxVaxAagVazAa.

(84) Forallnon pair sets y, cand for every stateof MajorityCirc(x, y, ¢) holds Followingds, 2)
is stable.

Letx, y, c be sets. The functor BitAdderWithOverflowStry, c) yields an unsplit non void strict
non empty many sorted signature with arity held in gates and Boolean denotation held in gates and
is defined as follows:

(Def. 22) BitAdderWithOverflowStx,y, c) = 2GatesCircStK, y, ¢, xor)+- MajorityStr(x, y, c).

One can prove the following three propositions:

(85) For all non pair sets, y, ¢ holds InputVerticeBitAdderWithOverflowStfx,y,c)) =
{x.y,c}.
(86) For all non pair sets, y, ¢ holds InnerVerticeBitAdderWithOverflowSt¢x, y, ¢)) = {{(x,
y), xor), 2GatesCircOutpik, y, ¢, xor) } U{((x,), &), {(¥.¢), &), {(c.X), &) } U {MajorityOutpu{x,y,c)}.

(87) LetSbe anonempty many sorted signature. Sup@es®itAdderWithOverflowSt(x,y,c).
Thenx € the carrier ofSandy € the carrier ofSandc € the carrier ofS,

Let x, y, ¢ be sets. The functor BitAdderWithOverflowCircy,c) yielding a strict Boolean
circuit of BitAdderWithOverflowStfx, y, ¢) with denotation held in gates is defined by:

(Def. 23) BitAdderWithOverflowCir¢x,y, ¢) = BitAdderCirqx, y, c)+- MajorityCirc(x, y, c).

One can prove the following propositions:

(88) InnerVertice@BitAdderWithOverflowStfx,y, c)) is a binary relation.

(89) For all non pair setg, y, ¢ holds InputVerticeBitAdderwithOverflowStfx,y,c)) has no
pairs.

(90) BitAdderOutputx,y,c) € InnerVertice$BitAdderWithOverflowStfx, y, ¢)) and MajorityOutpux, y,c) €
InnerVertice$BitAdderWithOverflowStfx, y, c)).

(91) Letx, y, ¢ be non pair setss be a state of BitAdderwithOverflowCitg,y,c),
and a;, ap, az be elements ofBoolean Supposea; = s(x) and ap = s(y)
and ag = s(c). Then (Following(s,2))(BitAdderOutputx,y,c)) = ay & a» ¢ az and
(Following(s, 2))(MajorityOutputx,y,c)) = aj Aax VazAagVazAa.

(92) Forall non pair sets, y, c and for every stateof BitAdderWithOverflowCir¢x, y, c) holds
Following(s, 2) is stable.
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