Basic Properties of Extended Real Numbers

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. We introduce product, quotient and absolute value, and we prove some basic properties of extended real numbers.

MML Identifier: EXTREAL1.
WWW: http://mizar.org/JFM/Vol12/extreal1.html

The articles [1], [5], [2], [3], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper *x*, *y*, *z* denote extended real numbers and *a* denotes a real number. The following propositions are true:

- (1) If $x \neq +\infty$ and $x \neq -\infty$, then x is a real number.
- (2) $-\infty < +\infty$.
- (3) If x < y, then $x \neq +\infty$ and $y \neq -\infty$.
- (4) $x = +\infty$ iff $-x = -\infty$ and $x = -\infty$ iff $-x = +\infty$.
- $(5) \quad x -y = x + y.$
- (7)¹ If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$, then $x \neq +\infty$ and $y \neq -\infty$.
- (8) Suppose $x = +\infty$ and $y = -\infty$ and $x = -\infty$ and $y = +\infty$ and $y \neq +\infty$ or $z \neq -\infty$ but $y \neq -\infty$ or $z \neq +\infty$ and $x \neq +\infty$ or $z \neq -\infty$ but $x \neq -\infty$ or $z \neq +\infty$. Then (x+y) + z = x + (y+z).
- $(9) \quad x + -x = 0_{\overline{\mathbb{R}}}.$
- (11)² Suppose $x = +\infty$ and $y = -\infty$ and $x = -\infty$ and $y = +\infty$ and $y = +\infty$ and $z = +\infty$ and $y = -\infty$ and $z = -\infty$ and $x = +\infty$ and $z = +\infty$ and $x = -\infty$. Then (x + y) - z = x + (y - z).

2. Operations of Multiplication, Quotient and Absolute Value on Extended Real Numbers

Let x, y be extended real numbers. The functor $x \cdot y$ yields an extended real number and is defined by the conditions (Def. 1).

¹ The proposition (6) has been removed.

² The proposition (10) has been removed.

- (Def. 1)(i) There exist real numbers a, b such that x = a and y = b and $x \cdot y = a \cdot b$, or
 - (ii) $0_{\overline{\mathbb{R}}} < x \text{ and } y = +\infty \text{ or } 0_{\overline{\mathbb{R}}} < y \text{ and } x = +\infty \text{ or } x < 0_{\overline{\mathbb{R}}} \text{ and } y = -\infty \text{ or } y < 0_{\overline{\mathbb{R}}} \text{ and } x = -\infty$ but $x \cdot y = +\infty$, or
 - (iii) $x < 0_{\overline{\mathbb{R}}}$ and $y = +\infty$ or $y < 0_{\overline{\mathbb{R}}}$ and $x = +\infty$ or $0_{\overline{\mathbb{R}}} < x$ and $y = -\infty$ or $0_{\overline{\mathbb{R}}} < y$ and $x = -\infty$ but $x \cdot y = -\infty$, or
 - (iv) $x = 0_{\overline{\mathbb{R}}} \text{ or } y = 0_{\overline{\mathbb{R}}} \text{ but } x \cdot y = 0_{\overline{\mathbb{R}}}.$

Next we state two propositions:

- (13)³ For all extended real numbers x, y and for all real numbers a, b such that x = a and y = b holds $x \cdot y = a \cdot b$.
- (17)⁴ For all extended real numbers x, y holds $x \cdot y = y \cdot x$.

Let *x*, *y* be extended real numbers. Let us observe that the functor $x \cdot y$ is commutative. One can prove the following propositions:

- (18) If x = a, then 0 < a iff $0_{\overline{\mathbb{R}}} < x$.
- (19) If x = a, then a < 0 iff $x < 0_{\overline{\mathbb{R}}}$.
- (20) If $0_{\overline{\mathbb{R}}} < x$ and $0_{\overline{\mathbb{R}}} < y$ or $x < 0_{\overline{\mathbb{R}}}$ and $y < 0_{\overline{\mathbb{R}}}$, then $0_{\overline{\mathbb{R}}} < x \cdot y$.
- (21) If $0_{\overline{\mathbb{R}}} < x$ and $y < 0_{\overline{\mathbb{R}}}$ or $x < 0_{\overline{\mathbb{R}}}$ and $0_{\overline{\mathbb{R}}} < y$, then $x \cdot y < 0_{\overline{\mathbb{R}}}$.
- (22) $x \cdot y = 0_{\overline{\mathbb{R}}} \text{ iff } x = 0_{\overline{\mathbb{R}}} \text{ or } y = 0_{\overline{\mathbb{R}}}.$
- (23) $(x \cdot y) \cdot z = x \cdot (y \cdot z).$
- $(24) \quad -0_{\overline{\mathbb{R}}} = 0_{\overline{\mathbb{R}}}.$
- (25) $0_{\overline{\mathbb{R}}} < x \text{ iff } -x < 0_{\overline{\mathbb{R}}} \text{ and } x < 0_{\overline{\mathbb{R}}} \text{ iff } 0_{\overline{\mathbb{R}}} < -x.$
- (26) $-x \cdot y = x \cdot -y$ and $-x \cdot y = (-x) \cdot y$.
- (27) If $x \neq +\infty$ and $x \neq -\infty$ and $x \cdot y = +\infty$, then $y = +\infty$ or $y = -\infty$.
- (28) If $x \neq +\infty$ and $x \neq -\infty$ and $x \cdot y = -\infty$, then $y = +\infty$ or $y = -\infty$.
- (29) If $x \neq +\infty$ and $x \neq -\infty$, then $x \cdot (y+z) = x \cdot y + x \cdot z$.
- (30) If $y \neq +\infty$ or $z \neq +\infty$ but $y \neq -\infty$ or $z \neq -\infty$ and $x \neq +\infty$ and $x \neq -\infty$, then $x \cdot (y z) = x \cdot y x \cdot z$.

Let x, y be extended real numbers. Let us assume that $x = -\infty$ or $x = +\infty$ but $y = -\infty$ or $y = +\infty$ but $y \neq 0_{\overline{\mathbb{R}}}$. The functor $\frac{x}{y}$ yielding an extended real number is defined by the conditions (Def. 2).

(Def. 2)(i) There exist real numbers a, b such that x = a and y = b and $\frac{x}{y} = \frac{a}{b}$, or

- (ii) $x = +\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = -\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{x}{y} = +\infty$, or
- (iii) $x = -\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = +\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{x}{y} = -\infty$, or
- (iv) $y = -\infty$ or $y = +\infty$ but $\frac{x}{y} = 0_{\overline{\mathbb{R}}}$.

We now state three propositions:

(32)⁵ Let x, y be extended real numbers. Suppose $y \neq 0_{\overline{\mathbb{R}}}$. Let a, b be real numbers. If x = a and y = b, then $\frac{x}{y} = \frac{a}{b}$.

 $^{^{3}}$ The proposition (12) has been removed.

⁴ The propositions (14)–(16) have been removed.

⁵ The proposition (31) has been removed.

- (33) For all extended real numbers x, y such that $x \neq -\infty$ but $x \neq +\infty$ but $y = -\infty$ or $y = +\infty$ holds $\frac{x}{y} = 0_{\overline{\mathbb{R}}}$.
- (34) For every extended real number x such that $x \neq -\infty$ and $x \neq +\infty$ and $x \neq 0_{\mathbb{R}}$ holds $\frac{x}{x} = 1$.

Let *x* be an extended real number. The functor |x| yields an extended real number and is defined as follows:

(Def. 3)
$$|x| = \begin{cases} x, \text{ if } 0_{\overline{\mathbb{R}}} \le x, \\ -x, \text{ otherwise.} \end{cases}$$

One can prove the following propositions:

- (36)⁶ For every extended real number x such that $0_{\mathbb{R}} < x$ holds |x| = x.
- (37) For every extended real number *x* such that $x < 0_{\mathbb{R}}$ holds |x| = -x.
- (38) For all real numbers a, b holds $\overline{\mathbb{R}}(a \cdot b) = \overline{\mathbb{R}}(a) \cdot \overline{\mathbb{R}}(b)$.
- (39) For all real numbers *a*, *b* such that $b \neq 0$ holds $\overline{\mathbb{R}}(\frac{a}{b}) = \frac{\overline{\mathbb{R}}(a)}{\overline{\mathbb{R}}(b)}$.
- (40) For all extended real numbers x, y such that $x \le y$ and $x < +\infty$ and $-\infty < y$ holds $0_{\mathbb{R}} \le y x$.
- (41) For all extended real numbers *x*, *y* such that x < y and $x < +\infty$ and $-\infty < y$ holds $0_{\mathbb{R}} < y x$.
- (42) If $x \le y$ and $0_{\overline{\mathbb{R}}} \le z$, then $x \cdot z \le y \cdot z$.
- (43) If $x \le y$ and $z \le 0_{\overline{\mathbb{R}}}$, then $y \cdot z \le x \cdot z$.
- (44) If x < y and $0_{\mathbb{R}} < z$ and $z \neq +\infty$, then $x \cdot z < y \cdot z$.
- (45) If x < y and $z < 0_{\mathbb{R}}$ and $z \neq -\infty$, then $y \cdot z < x \cdot z$.
- (46) Suppose x is a real number and y is a real number. Then x < y if and only if there exist real numbers p, q such that p = x and q = y and p < q.
- (47) If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$ and $0_{\overline{\mathbb{R}}} < z$, then $\frac{x}{z} \leq \frac{y}{z}$.
- (48) If $x \le y$ and $0_{\mathbb{R}} < z$ and $z \ne +\infty$, then $\frac{x}{z} \le \frac{y}{z}$.
- (49) If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$ and $z < 0_{\overline{\mathbb{R}}}$, then $\frac{y}{z} \leq \frac{x}{z}$.
- (50) If $x \le y$ and $z < 0_{\mathbb{R}}$ and $z \ne -\infty$, then $\frac{y}{z} \le \frac{x}{z}$.
- (51) If x < y and $0_{\mathbb{R}} < z$ and $z \neq +\infty$, then $\frac{x}{z} < \frac{y}{z}$.
- (52) If x < y and $z < 0_{\mathbb{R}}$ and $z \neq -\infty$, then $\frac{y}{z} < \frac{x}{z}$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/supinf_1.html.
- [3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/supinf_2.html.
- [4] Józef Białas. Some properties of the intervals. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/measure6. html.

⁶ The proposition (35) has been removed.

BASIC PROPERTIES OF EXTENDED REAL NUMBERS

[5] Krzysztof Hryniewiecki. Basic properties of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.

Received September 7, 2000

Published January 2, 2004