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Summary. We introduce product, quotient and absolute value, and we prove some
basic properties of extended real numbers.
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The articles [1], [5], [2], [3], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperx, y, z denote extended real numbers anda denotes a real number.
The following propositions are true:

(1) If x 6= +∞ andx 6=−∞, thenx is a real number.

(2) −∞ < +∞.

(3) If x < y, thenx 6= +∞ andy 6=−∞.

(4) x = +∞ iff −x =−∞ andx =−∞ iff −x = +∞.

(5) x−−y = x+y.

(7)1 If x 6=−∞ andy 6= +∞ andx≤ y, thenx 6= +∞ andy 6=−∞.

(8) Supposex = +∞ andy=−∞ andx =−∞ andy= +∞ andy 6= +∞ or z 6=−∞ buty 6=−∞
or z 6= +∞ andx 6= +∞ or z 6=−∞ butx 6=−∞ or z 6= +∞. Then(x+y)+z= x+(y+z).

(9) x+−x = 0R.

(11)2 Supposex= +∞ andy=−∞ andx=−∞ andy= +∞ andy= +∞ andz= +∞ andy=−∞
andz=−∞ andx= +∞ andz= +∞ andx=−∞ andz=−∞. Then(x+y)−z= x+(y−z).

2. OPERATIONS OFMULTIPLICATION , QUOTIENT AND ABSOLUTE VALUE ON EXTENDED

REAL NUMBERS

Let x, y be extended real numbers. The functorx · y yields an extended real number and is defined
by the conditions (Def. 1).

1 The proposition (6) has been removed.
2 The proposition (10) has been removed.
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(Def. 1)(i) There exist real numbersa, b such thatx = a andy = b andx ·y = a·b, or

(ii) 0R < x andy = +∞ or 0R < y andx = +∞ or x < 0R andy = −∞ or y < 0R andx = −∞
butx ·y = +∞, or

(iii) x < 0R andy = +∞ or y < 0R andx = +∞ or 0R < x andy = −∞ or 0R < y andx = −∞
butx ·y =−∞, or

(iv) x = 0R or y = 0R butx ·y = 0R.

Next we state two propositions:

(13)3 For all extended real numbersx, y and for all real numbersa, b such thatx = a andy = b
holdsx ·y = a·b.

(17)4 For all extended real numbersx, y holdsx ·y = y·x.

Let x, y be extended real numbers. Let us observe that the functorx ·y is commutative.
One can prove the following propositions:

(18) If x = a, then 0< a iff 0R < x.

(19) If x = a, thena < 0 iff x < 0R.

(20) If 0R < x and 0R < y or x < 0R andy < 0R, then 0R < x ·y.

(21) If 0R < x andy < 0R or x < 0R and 0R < y, thenx ·y < 0R.

(22) x ·y = 0R iff x = 0R or y = 0R.

(23) (x ·y) ·z= x · (y·z).

(24) −0R = 0R.

(25) 0R < x iff −x < 0R andx < 0R iff 0R <−x.

(26) −x ·y = x ·−y and−x ·y = (−x) ·y.

(27) If x 6= +∞ andx 6=−∞ andx ·y = +∞, theny = +∞ or y =−∞.

(28) If x 6= +∞ andx 6=−∞ andx ·y =−∞, theny = +∞ or y =−∞.

(29) If x 6= +∞ andx 6=−∞, thenx · (y+z) = x ·y+x ·z.

(30) If y 6= +∞ or z 6= +∞ but y 6= −∞ or z 6= −∞ andx 6= +∞ andx 6= −∞, thenx · (y− z) =
x ·y−x ·z.

Let x, y be extended real numbers. Let us assume thatx=−∞ or x= +∞ buty=−∞ or y= +∞
buty 6= 0R. The functorx

y yielding an extended real number is defined by the conditions (Def. 2).

(Def. 2)(i) There exist real numbersa, b such thatx = a andy = b and x
y = a

b, or

(ii) x = +∞ and 0R < y or x =−∞ andy < 0R but x
y = +∞, or

(iii) x =−∞ and 0R < y or x = +∞ andy < 0R but x
y =−∞, or

(iv) y =−∞ or y = +∞ but x
y = 0R.

We now state three propositions:

(32)5 Let x, y be extended real numbers. Supposey 6= 0R. Let a, b be real numbers. Ifx = a and
y = b, then x

y = a
b.

3 The proposition (12) has been removed.
4 The propositions (14)–(16) have been removed.
5 The proposition (31) has been removed.
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(33) For all extended real numbersx, y such thatx 6= −∞ but x 6= +∞ but y = −∞ or y = +∞
holds x

y = 0R.

(34) For every extended real numberx such thatx 6=−∞ andx 6= +∞ andx 6= 0R holds x
x = 1.

Let x be an extended real number. The functor|x| yields an extended real number and is defined
as follows:

(Def. 3) |x|=
{

x, if 0R ≤ x,
−x, otherwise.

One can prove the following propositions:

(36)6 For every extended real numberx such that 0R < x holds|x|= x.

(37) For every extended real numberx such thatx < 0R holds|x|=−x.

(38) For all real numbersa, b holdsR(a·b) = R(a) ·R(b).

(39) For all real numbersa, b such thatb 6= 0 holdsR(a
b) = R(a)

R(b) .

(40) For all extended real numbersx, y such thatx≤ y andx< +∞ and−∞ < y holds 0R ≤ y−x.

(41) For all extended real numbersx, y such thatx< y andx< +∞ and−∞ < y holds 0R < y−x.

(42) If x≤ y and 0R ≤ z, thenx ·z≤ y·z.

(43) If x≤ y andz≤ 0R, theny·z≤ x ·z.

(44) If x < y and 0R < z andz 6= +∞, thenx ·z< y·z.

(45) If x < y andz< 0R andz 6=−∞, theny·z< x ·z.

(46) Supposex is a real number andy is a real number. Thenx < y if and only if there exist real
numbersp, q such thatp = x andq = y andp < q.

(47) If x 6=−∞ andy 6= +∞ andx≤ y and 0R < z, then x
z ≤

y
z.

(48) If x≤ y and 0R < z andz 6= +∞, then x
z ≤

y
z.

(49) If x 6=−∞ andy 6= +∞ andx≤ y andz< 0R, then y
z ≤

x
z.

(50) If x≤ y andz< 0R andz 6=−∞, then y
z ≤

x
z.

(51) If x < y and 0R < z andz 6= +∞, then x
z < y

z.

(52) If x < y andz< 0R andz 6=−∞, then y
z < x

z.
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