
JOURNAL OF FORMALIZED MATHEMATICS

Volume15, Released 2003, Published 2003

Inst. of Computer Science, Univ. of Białystok

Lines in n-Dimensional Euclidean Spaces

Akihiro Kubo
Shinshu University

Nagano

Summary. In this paper, we define the line ofn-dimensional Euclidian space and we
introduce basic properties of affine space on this space. Next, we define the inner product of
elements of this space. At the end, we introduce orthogonality of lines of this space.
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The articles [12], [5], [15], [2], [13], [8], [4], [11], [10], [3], [6], [1], [14], [7], and [9] provide the
notation and terminology for this paper.

We follow the rules:a, b, l1 denote real numbers,n denotes a natural number, andx, x1, x2, y1,
y2 denote elements ofR n.

The following propositions are true:

(1) 0·x+x = x andx+ 〈0, . . . ,0︸ ︷︷ ︸
n

〉= x.

(2) a· 〈0, . . . ,0︸ ︷︷ ︸
n

〉= 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

(3) 1·x = x and 0·x = 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

(4) (a·b) ·x = a· (b·x).

(5) If a·x = 〈0, . . . ,0︸ ︷︷ ︸
n

〉, thena = 0 orx = 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

(6) a· (x1 +x2) = a·x1 +a·x2.

(7) (a+b) ·x = a·x+b·x.

(8) If a·x1 = a·x2, thena = 0 orx1 = x2.

Let us considern and letx1, x2 be elements ofR n. The functor Line(x1,x2) yielding a subset of
R n is defined by:

(Def. 1) Line(x1,x2) = {(1− l1) ·x1 + l1 ·x2}.

Let us considern and letx1, x2 be elements ofR n. One can verify that Line(x1,x2) is non empty.
Next we state the proposition

(9) Line(x1,x2) = Line(x2,x1).
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Let us considern and letx1, x2 be elements ofR n. Let us observe that the functor Line(x1,x2)
is commutative.

Next we state three propositions:

(10) x1 ∈ Line(x1,x2) andx2 ∈ Line(x1,x2).

(11) If y1 ∈ Line(x1,x2) andy2 ∈ Line(x1,x2), then Line(y1,y2)⊆ Line(x1,x2).

(12) If y1 ∈ Line(x1,x2) andy2 ∈ Line(x1,x2) andy1 6= y2, then Line(x1,x2)⊆ Line(y1,y2).

Let us considern and letA be a subset ofR n. We say thatA is line if and only if:

(Def. 2) There existx1, x2 such thatx1 6= x2 andA = Line(x1,x2).

We introduceA is a line as a synonym ofA is line.
Next we state three propositions:

(13) LetA, C be subsets ofR n and givenx1, x2. SupposeA is a line andC is a line andx1 ∈ A
andx2 ∈ A andx1 ∈C andx2 ∈C. Thenx1 = x2 or A = C.

(14) For every subsetA of R n such thatA is a line there existx1, x2 such thatx1 ∈ A andx2 ∈ A
andx1 6= x2.

(15) For every subsetA of R n such thatA is a line there existsx2 such thatx1 6= x2 andx2 ∈ A.

Let us considern and letx be an element ofR n. The functor Rn2Fin(x) yields a finite sequence
of elements ofR and is defined as follows:

(Def. 3) Rn2Fin(x) = x.

Let us considern and letx be an element ofR n. The functor|x| yielding a real number is defined
as follows:

(Def. 4) |x|= |Rn2Fin(x)|.

Let us considern and letx1, x2 be elements ofR n. The functor|(x1,x2)| yields a real number
and is defined by:

(Def. 5) |(x1,x2)|= |(Rn2Fin(x1),Rn2Fin(x2))|.

Let us observe that the functor|(x1,x2)| is commutative.
One can prove the following propositions:

(16) For all elementsx1, x2 of R n holds|(x1,x2)|= 1
4 · (|x1 +x2|2−|x1−x2|2).

(17) For every elementx of R n holds|(x,x)| ≥ 0.

(18) For every elementx of R n holds|x|2 = |(x,x)|.

(19) For every elementx of R n holds 0≤ |x|.

(20) For every elementx of R n holds|x|=
√
|(x,x)|.

(21) For every elementx of R n holds|(x,x)|= 0 iff |x|= 0.

(22) For every elementx of R n holds|(x,x)|= 0 iff x = 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

(23) For every elementx of R n holds|(x,〈0, . . . ,0︸ ︷︷ ︸
n

〉)|= 0.

(24) For every elementx of R n holds|(〈0, . . . ,0︸ ︷︷ ︸
n

〉,x)|= 0.
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(25) For all elementsx1, x2, x3 of R n holds|(x1 +x2,x3)|= |(x1,x3)|+ |(x2,x3)|.

(26) For all elementsx1, x2 of R n and for every real numbera holds|(a·x1,x2)|= a· |(x1,x2)|.

(27) For all elementsx1, x2 of R n and for every real numbera holds|(x1,a·x2)|= a· |(x1,x2)|.

(28) For all elementsx1, x2 of R n holds|(−x1,x2)|=−|(x1,x2)|.

(29) For all elementsx1, x2 of R n holds|(x1,−x2)|=−|(x1,x2)|.

(30) For all elementsx1, x2 of R n holds|(−x1,−x2)|= |(x1,x2)|.

(31) For all elementsx1, x2, x3 of R n holds|(x1−x2,x3)|= |(x1,x3)|− |(x2,x3)|.

(32) For all real numbersa, b and for all elementsx1, x2, x3 of R n holds|(a ·x1 +b ·x2,x3)| =
a· |(x1,x3)|+b· |(x2,x3)|.

(33) For all elementsx1, y1, y2 of R n holds|(x1,y1 +y2)|= |(x1,y1)|+ |(x1,y2)|.

(34) For all elementsx1, y1, y2 of R n holds|(x1,y1−y2)|= |(x1,y1)|− |(x1,y2)|.

(35) For all elementsx1, x2, y1, y2 of R n holds |(x1 + x2,y1 + y2)| = |(x1,y1)|+ |(x1,y2)|+
|(x2,y1)|+ |(x2,y2)|.

(36) For all elementsx1, x2, y1, y2 of R n holds |(x1− x2,y1− y2)| = (|(x1,y1)| − |(x1,y2)| −
|(x2,y1)|)+ |(x2,y2)|.

(37) For all elementsx, y of R n holds|(x+y,x+y)|= |(x,x)|+2· |(x,y)|+ |(y,y)|.

(38) For all elementsx, y of R n holds|(x−y,x−y)|= (|(x,x)|−2· |(x,y)|)+ |(y,y)|.

(39) For all elementsx, y of R n holds|x+y|2 = |x|2 +2· |(x,y)|+ |y|2.

(40) For all elementsx, y of R n holds|x−y|2 = (|x|2−2· |(x,y)|)+ |y|2.

(41) For all elementsx, y of R n holds|x+y|2 + |x−y|2 = 2· (|x|2 + |y|2).

(42) For all elementsx, y of R n holds|x+y|2−|x−y|2 = 4· |(x,y)|.

(43) For all elementsx, y of R n holds||(x,y)|| ≤ |x| · |y|.

(44) For all elementsx, y of R n holds|x+y| ≤ |x|+ |y|.

Let us considern and letx1, x2 be elements ofR n. We say thatx1, x2 are orthogonal if and only
if:

(Def. 6) |(x1,x2)|= 0.

Let us note that the predicatex1, x2 are orthogonal is symmetric.
Next we state the proposition

(45) LetR be a subset ofR andx1, x2, y1 be elements ofR n. SupposeR= {|y1− x|;x ranges
over elements ofR n: x ∈ Line(x1,x2)}. Then there exists an elementy2 of R n such that
y2 ∈ Line(x1,x2) and|y1−y2|= inf Randx1−x2, y1−y2 are orthogonal.

Let us considern and letp1, p2 be points ofEn
T. The functor Line(p1, p2) yields a subset ofEn

T
and is defined as follows:

(Def. 7) Line(p1, p2) = {(1− l1) · p1 + l1 · p2}.

Let us considern and letp1, p2 be points ofEn
T. One can check that Line(p1, p2) is non empty.

In the sequelp1, p2, q1, q2 denote points ofEn
T.

One can prove the following proposition

(46) Line(p1, p2) = Line(p2, p1).
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Let us considern and letp1, p2 be points ofEn
T. Let us note that the functor Line(p1, p2) is

commutative.
One can prove the following propositions:

(47) p1 ∈ Line(p1, p2) andp2 ∈ Line(p1, p2).

(48) If q1 ∈ Line(p1, p2) andq2 ∈ Line(p1, p2), then Line(q1,q2)⊆ Line(p1, p2).

(49) If q1 ∈ Line(p1, p2) andq2 ∈ Line(p1, p2) andq1 6= q2, then Line(p1, p2)⊆ Line(q1,q2).

Let us considern and letA be a subset ofEn
T. We say thatA is line if and only if:

(Def. 8) There existp1, p2 such thatp1 6= p2 andA = Line(p1, p2).

We introduceA is a line as a synonym ofA is line.
Next we state three propositions:

(50) For all subsetsA, C of En
T such thatA is a line andC is a line andp1 ∈ A andp2 ∈ A and

p1 ∈C andp2 ∈C holdsp1 = p2 or A = C.

(51) For every subsetA of En
T such thatA is a line there existp1, p2 such thatp1 ∈ A andp2 ∈ A

andp1 6= p2.

(52) For every subsetA of En
T such thatA is a line there existsp2 such thatp1 6= p2 andp2 ∈ A.

Let us considern and letp be a point ofEn
T. The functor TPn2Rn(p) yields an element ofR n

and is defined by:

(Def. 9) TPn2Rn(p) = p.

Let us considern and letp be a point ofEn
T. The functor|p| yields a real number and is defined

as follows:

(Def. 10) |p|= |TPn2Rn(p)|.

Let us considern and letp1, p2 be points ofEn
T. The functor|(p1, p2)| yields a real number and

is defined as follows:

(Def. 11) |(p1, p2)|= |(TPn2Rn(p1),TPn2Rn(p2))|.

Let us notice that the functor|(p1, p2)| is commutative.
Let us considern and letp1, p2 be points ofEn

T. We say thatp1, p2 are orthogonal if and only
if:

(Def. 12) |(p1, p2)|= 0.

Let us note that the predicatep1, p2 are orthogonal is symmetric.
One can prove the following proposition

(53) LetRbe a subset ofR andp1, p2, q1 be points ofEn
T. SupposeR= {|q1− p|; p ranges over

points ofEn
T: p∈ Line(p1, p2)}. Then there exists a pointq2 of En

T such thatq2∈ Line(p1, p2)
and|q1−q2|= inf Randp1− p2, q1−q2 are orthogonal.
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