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Summary. In this paper, we define the line ofdimensional Euclidian space and we
introduce basic properties of affine space on this space. Next, we define the inner product of
elements of this space. At the end, we introduce orthogonality of lines of this space.
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The articles([12],[15],[[15],[12],121B],[8],[4],111],110],13],16], 1], 114],[[¥], and [9] provide the
notation and terminology for this paper.

We follow the rules:a, b, I; denote real numbers,denotes a natural number, axd, Xz, y1,
y» denote elements &g ".

The following propositions are true:

(1) 0-x+x=xandx+(0,...,0) =x.
N——
n

(2 a-(0,...,00=(0,...,0).

N——
n n
(3) 1.x=xand0x={(0,...,0).
——

4) (a-b)-x=a-(b-x).

(5) Ifa-x={0,...,0),thena=0o0rx=(0,...,0).
N—— N——
n n

6) a-(x1+x)=a-x+a x.
(7) (a+b)-x=a-x+b-x
(8) Ifa-xg =a-xz, thena=0orx; =xp.

Let us considen and letxs, X2 be elements oR". The functor Linéxs,Xp) yielding a subset of
R"is defined by:

(Def. 1) Line(X1,X2) = {(l— |1) ~X1+|1-X2}.

Let us considen and letx;, xo be elements R ". One can verify that Lingq, x2) is non empty.
Next we state the proposition

(9) Line(xg,x%2) = Line(X,x1).
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Let us considen and letxs, x; be elements o ". Let us observe that the functor Lipe,x2)
is commutative.
Next we state three propositions:

(10) x3 € Line(xg,x2) andx, € Line(xy,X2).
(11) Ify; € Line(x1,X2) andys € Line(x1,%2), then Lingys,y») C Line(Xy, X2).
(12) Ify; € Line(x1,X2) andys € Line(x1,%p) andys # Yo, then Lingxy,X2) C Line(yi, y»).
Let us considen and letA be a subset aR". We say thaf is line if and only if:
(Def. 2) There exisks, X2 such that; # X andA = Line(x1,X2).

We introduceA is a line as a synonym &is line.
Next we state three propositions:

(13) LetA, C be subsets aR" and givenx;, xo. Supposé\ is a line andC is a line andx; € A
andx; € Aandx; € Candxp € C. Thenx; = x; orA=C.

(14) For every subsét of R" such thatA is a line there existy, x, such thak; € Aandx; € A
andx; 75 X2.

(15) For every subsét of " such thatA is a line there exists, such thai; # x; andx; € A.

Let us considen and letx be an element aR". The functor Rn2Fifx) yields a finite sequence
of elements oR and is defined as follows:

(Def. 3) Rn2Firix) = x.

Let us considen and letx be an element aR". The functorjx| yielding a real number is defined
as follows:

(Def. 4) |x| = |RN2Finx)|.

Let us considen and letxs, xo be elements o ". The functor|(x1,X2)| yields a real number
and is defined by:

(Def. 5) |(x1,%2)] = |(RN2Fin(x1),RN2Fin(x2))|.

Let us observe that the functfiixi,x2)| is commutative.
One can prove the following propositions:

(16) For all elementsy, x, of R holds|(xy,X2)| = F - (X1 +X2|? — [x1 — X2|2).

(17) For every elementof R " holds|(x,x)| > 0.

(18) For every elementof " holds|x|2 = |(x,X)|.

(19) For every elementof K" holds 0< |x].

(20) For every elementof " holds|x| = /| (X, X)|.

(21) For every elementof R" holds|(x,x)| = 0 iff |x] =0.

(22) For every elementof K" holds|(x,x)| = 0 iff x=(0,...,0).
~——

n

(23) For every elementof K" holds|(x, (0,...,0))| = 0.
N——

n

(24) For every elementof ®" holds|((0,...,0),x)| = 0.
N——

n
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(25) For all elementsy, Xz, X3 of R holds|(x1 + X2,X3)| = |(X1,X3)| + | (X2, X3)|.

(26) For all elementsy, x of X" and for every real numberholds|(a- x1,X2)| = a-|(x1,X2)].
(27) For all elementsy, x of X" and for every real numberholds|(x1,a-X2)| = a-|(x1,X2)|.
(28) For all elementsg, x2 of X" holds|(—x1,%2)| = —|(X1,%2)|-

(29) For all elementsg, x of X" holds|(x1, —%2)| = —|(X1,%2)|-

(30) For all elementsg, x; of X" holds|(—x1, —X2)| = |(X1,%2)|-

(31) For all elementsg, X2, X3 of R" holds|(x1 —X2,X%3)| = |(X1,%3)| — | (X2, X3)|-

(32) For all real numbera, b and for all elementg;, xp, x3 of R" holds|(a-x1 +b-x2,X3)| =
a-[(x1,x3)| +b-[(X2,X3)|-

(33) For all elementgy, y1, y2 of R holds|(x1,y1 +VY2)| = |(X1,y1)| + | (X1,Y2)].
(34) For all elementsgy, yi1, Y2 of R" holds|(x1,y1 —¥2)| = |(X1,Y1)| — |(X1,¥2)|-

(35) For all elementsy, X, Y1, Y2 of " holds |(xy + X2,y1 + Y2)| = |(X1,y1)| + |(X1,¥2)| +
|(x2,y1)[ + [ (x2,Y2)|-

(36) For all elementsy, Xo, y1, Y2 of R" holds |(x1 — X2,y1 — Y2)| = (|(X1,y1)| — | (X1, ¥2)| —
|(x2,y1)[) + [ (%2, y2)!-

(37) For all elements, y of R" holds|(x+Yy,X+Y)| = [(X,X)| +2- [(X.Y)| +|(V,y)]-
(38) For all elements, y of X" holds|(x—y,x—Yy)| = (|(x,X)| —2-|(x,Y)]) + |(V,y)].
(39) For all elements, y of R" holds|x+y|? = |x]2+2-|(x,Y)| +|y|*-

(40) For all elementg, y of ®" holds|x—y|? = (|x|> —2- |(x,y)|) + ly|?.

(41) For all elements, y of R" holds|x+Yy[2+|x—y|? = 2- (|x|>+|y|?).

(42) For all elements, y of ®" holds|x+y[2 — [x—y[]2 = 4-|(x,y)|.

(43) For all elements, y of " holds||(x,y)|| < X - |y]-

(44) For all elements, y of ®" holds|x+y| < |x| + |y|.

Let us considen and letx;, xo be elements o ". We say thak;, x, are orthogonal if and only
if:
(Def. 6) |(x1,%2)| =0.

Let us note that the predicatg, x, are orthogonal is symmetric.
Next we state the proposition

(45) LetRbe a subset dR andx, X2, y1 be elements o ". Supposer = {|y; —X|; X ranges
over elements ofR™: x € Line(x,x2)}. Then there exists an elemept of X" such that
y2 € Line(x1,x2) and|y; — y2| = infRandx; — x2, y1 — Y2 are orthogonal.

Let us considen and letpy, p> be points ofE]. The functor Ling¢ps, p2) yields a subset of}
and is defined as follows:

(Def. 7) Ling(py,p2) = {(1—11)-pr+11-p2}.

Let us considen and letpy, p, be points of£f. One can check that Lifgs, p2) is non empty.
In the sequeps, po, 01, g2 denote points of7.
One can prove the following proposition

(46) Line(py, p2) = Line(pz, p1).
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Let us considen and letps, po be points ofZE{. Let us note that the functor Ligpy, p2) is
commutative.
One can prove the following propositions:

(47) p1 € Line(py, p2) andp; € Line(py, p2).
(48) If g1 € Line(p1, p2) andge € Line(p1, p2), then Lingqr, g2) C Line(p1, p2).
(49) If q1 € Line(p1, p2) andgp € Line(py, p2) andqx # gz, then Ling p1, p2) C Line(qs, d2).
Let us considen and letA be a subset of7. We say thaA is line if and only if:
(Def. 8) There exisps, py such thatp; # p, andA = Line(ps, p2).

We introduceA is a line as a synonym &is line.
Next we state three propositions:

(50) For all subset#, C of Z£{ such thatA is a line andC is a line andp; € Aandp; € A and
p1 € Candpz € Choldsp; = pporA=C.

(51) For every subset of 7 such thatAis a line there exispy, p2 such thafp; € Aandp; € A
andpy # pz.
(52) For every subsét of £7 such thatAis a line there existg, such thatp; # p2 andp, € A.

Let us considen and letp be a point of£{. The functor TPn2R(p) yields an element oR "
and is defined by:

(Def. 9) TPn2R(p) = p.

Let us considen and letp be a point of£]. The functor|p| yields a real number and is defined
as follows:

(Def. 10) |p| = |TPn2Rp)|.

Let us considen and letps, p2 be points of£f. The functori(pz, p2)| yields a real number and
is defined as follows:

(Def. 11) |(p1; P2)| = |[(TPN2Rr{py), TPN2Rripy))|.

Let us notice that the functotps, p2)| is commutative.
Let us considen and letpy, p2 be points ofE7. We say thapy, p. are orthogonal if and only
if:

(Def. 12) |(py, p2)| =0.

Let us note that the predicage, py are orthogonal is symmetric.
One can prove the following proposition

(53) LetRbe asubsetdk andps, p2, qi be points ofE}. Supposdr= {|q1 — p|; p ranges over
points of E7: p € Line(p1, p2)}. Then there exists a poigp of 7 such thaty, € Line(py, p2)
and|g; — 02| = infRandp; — pz, 01 — g2 are orthogonal.
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