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Summary. First, we define the inner product to finite sequences of real value. Next,
we extend it to points ofi-dimensional topological spack{. At the end, orthogonality is
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The articles|[[12], [[B], [[1], [[10], [13], [[2], [14], [[7], [[9], [5], [6], and[[11] provide the notation and
terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:n are natural numbers, y, a are real numbers,
vis an element oR", andp, p1, P2, P3, 0, g1, 02 are points ofEy.
The following propositions are true:

)

)

®3)
(4)
®)
(6)

)

G

9)
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For every finite sequenceof elements o holds(—1) - x = —x.

For all finite sequences y of elements oR such that lex = leny holdsx —y = x+ —y.

For every finite sequenceof elements oR holds ler{—x) = lenx.

For all finite sequenceg, x of elements oR such that ler; = lenx, holds ler{x; +x2) =
lenx;.

For all finite sequences, x; of elements oR such that ler; = lenx, holds ler{x; —xp) =
lenx;.

For every real numbexand for every finite sequenaeof elements oR holds lerfa- x) =
lenx.

For all finite sequencesy, zof elements oR such that le = leny and lery = lenz holds

(X+y)ez=xe0z+Yyoz
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2. INNERPRODUCT OFFINITE SEQUENCES

Let x1, X2 be finite sequences of elementsif The functor|(xy,x2)| yields a real number and is
defined by:

(Def. 1) [(x1,%)| =3 (X1 0X2).

Let us observe that the functf{x;, x)| is commutative.
The following propositions are true:

(10) Letys, v be finite sequences of elementFofindx,, X, be elements oR". If x; =y; and
X2 = Y2, then|(y1,Y2)| = 7 - (Ix1 +%2|* — [x1 = X|?).
(11) For every finite sequeneeof elements oR holds|(x,x)| > 0.
(12) For every finite sequenaeof elements oR holds|x|? = | (x,x)|.
(13) For every finite sequeneeof elements oR holds|x| = /|(X,X)].
(14) For every finite sequenaeof elements oR holds 0< |x|.
(15) For every finite sequeneeof elements oR holds|(x,x)| = 0 iff x=(0,...,0).
N——
lenx
(16) For every finite sequeneef elements oR holds|(x,x)| = 0 iff [x| = 0.
(17) For every finite sequeneef elements oR holds|(x, (0,...,0))| = 0.
|
enx

(18) For every finite sequenaeof elements oR holds|((0,...,0),x)| = 0.
N——
lenx
(19) For all finite sequencesy, zof elements oR such that lest = leny and lery = lenz holds
|(x+Y,2)| = [(x.2)|+ (¥, 2)]-
(20) For all finite sequencesy of elements ofR and for every real numbersuch that lex =
leny holds|(a-x,y)| = a-|(x,Y)|.

(21) For all finite sequencesy of elements ofR and for every real numbersuch that lex =
leny holds|(x,a-y)| =a- |(x,y)|-

(22) For all finite sequenceg, x; of elements oR such that lex; = lenxz holds|(—xg,x2)| =
—| (X1, %2)|-

(23) For all finite sequenceg, x; of elements oR such that lem; = lenxz holds|(x1, —x2)| =
—[(x1,%2)!.

(24) For allfinite sequences, x, of elements oR such that lex; = lenx, holds|(—x1, —X2)| =
| (X1, %2)|.

(25) For all finite sequencesg, x2, X3 of elements ofR such that ler; = lenxy and lerx; =
lenxz holds|(x1 — X2,X3)| = |(X1,X3)| — |(X2,X3)]-

(26) Letx, ybe real numbers and, x, x3 be finite sequences of elementgoflf lenx; = lenx;
and lernxz = lenxs, then|(X- x1 + Y- X2,X3)| = X+ |(X1,X3)| + Y- | (X2, X3)|-

(27) For all finite sequencesys, Y2 of elements oR such that lem = leny; and lery; = leny,
holds|(x,y1+Y2)| = (%, y1)[ +[(x,y2)|

(28) For all finite sequencesys, Y2 of elements oRR such that lem = leny; and lery; = leny,
holds|(x,y1 —y2)| = [(x,y1)[ = [(X,y2)I.

(29) Letxq, X2, Y1, Y2 be finite sequences of elementsiafif lenx; = lenxy and lenxy = leny;
and leryy = lenya, then|(x1 +Xz,y1 +Y2)| = [(X1, Y1)| + | (X1, ¥2)| + [ (X2, Y1) | + | (X2, ¥2) |-
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(30) Letxq, X2, 1, Y2 be finite sequences of elementsiofif lenx; = lenx; and lenx; = leny;
and lery; = leny,, then|(xy —Xz,y1—y2)| = (|(x1,y2)| = [ (X1, y2)[ = [(x2, y1)[) + (X2, y2) .

(31) For all finite sequencesy of elements ofR such that lex = leny holds|(x+Y,x+Y)| =
[(xX)[+2-[(x V)] + (. 9)]-

(32) For all finite sequencesy of elements oR such that lex = leny holds|(x—y,x—Y)| =
(1) =2-[(xY)]) + (%, V).

(33) For all finite sequences y of elements oR such that lest = leny holds|x+y|2 = [x|? +

2- 1y + Iyl*.

(34) For all finite sequencesy of elements oR such that lex = leny holds|x—y|? = (|x|?> —
2-|(y. X))+ Iyl*.

(35) For allfinite sequencesy of elements oR such that lew = leny holds|x+y|?+ [x—Y|? =
2. (12 + |y

(36) For allfinite sequencesy of elements oR such that lem = leny holds|x+Y|? — [x—Y|?> =
4. ‘(X7y)|

(37) For allfinite sequencesy of elements oR such that lex = leny holds||(x,y)|| < |X| - |y|-

(38) For all finite sequencesy of elements oR such that lex = leny holds|x+y| < x|+ y].

3. INNERPRODUCT OFPOINTS OF £

Let us considen and letp, q be points of£{. The functor|(p,q)| yields a real number and is
defined as follows:

(Def. 2) There exist finite sequencésg of elements oR such thatf = pandg=qgand|(p,q)| =

(f.9)].

Let us observe that the functfip,q)| is commutative.
Next we state a number of propositions:

(39) For every natural numberand for all pointspy, p2 of Z7 holds|(p1, p2)| = % “(Jpr+
P2[% = |p1— p2/?).

(40)  [(p1+ P2, P3)| = [(P1, P3)| + (P2, P3)|-

(41) For every real numberholds|(X- p1, p2)| = X- |(p1, P2)|-

(42) For every real numberholds|(p1,x- p2)| = X- |(p1, P2)|.

(43) [(=p1,p2)[ = —[(P1, P2)-

(44) (P, —P2)| = —[(P1, P2)|.

(45)  [(=p1,—p2)| =[(p1, P2)]-

(46) |(pr— P2, p3)| = |(P1, P3)| — |(P2, P3)|.

(47) [(x-pr+Y- P2, p3)[ = X-[(P1, P3)| + Y- |(P2; Pa)|-

(48) [(p,ar+a2)| = [(p,qn)| + (P, G2)I-

(49) [(p,q1— )| = |(p,au)| — |(P, ).

(50) [(P1+ P2, 01+ 02)| = [(P1,G2)| + (P21, G2) | + (P2, G2) | + | (P2, G2) |-

(51) [(P1— P2, 01— d2)| = (|(P1,0a)| — [(P1,G2)| — [(P2,G)]) + [(P2, G2) -

(

(52) [(p+a,p+a)|=I(p,p)+2-[(p,a)|+[(a9)-
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(53) |(p—a,p—a)[=(I(p,p)[=2-[(P.a)]) +[(a,q)[-
(54) [(p,0zp)| =0.

(55) [(Ozp,p)| =0.

(56) |(Ozn,0zn)| =0.

(67) I(p,p)| = 0.

(58) |(p.p)| =P

(59) Ipl=vI(p,p)-

(60) 0<|p.

(61) [0zn|=0.

(62) |(p,p)|=0iff [p|=0.

(63) [(p,p)| =0iff p=0gn.

(64) [p| =0iff p=0g.

(65) p+# Ogn iff [(p,p)| > 0.

(66) p# O iff [p| > 0.

(67) |p+d®*=|p*+2-|(q,p)|+|q*.
(68) |p—d*=(Ipl*~2-|(q,p)))+]q*
(69) |p+d*+[p—af*=2-(|pf*+a*).
(70) |p+d*—[p—af*=4-|(p,q)l-
71) |(p,a)| = - (IP+d*~[p—aP).
(72) [(p,9) <[(p, P)|+1(a,9)-

(73)  For all pointsp, g of Zr holds||(p,a)|| < [p|-|q|.
(74) |p+d < |p|+]al.

Let us considen, p, g. We say thap, q are orthogonal if and only if:

(Def. 3) [(p,g)|=0.

Let us note that the predicape q are orthogonal is symmetric.
Next we state several propositions:

(75) p, Oz are orthogonal.

(76) Ozn, pare orthogonal.

(77) p, p are orthogonal iffp = Ogn.

(78) If p, g are orthogonal, thea- p, q are orthogonal.
(79) If p, g are orthogonal, thep, a- q are orthogonal.

(80) If for everyq holdsp, g are orthogonal, thep = Ozn.
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