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The articles([6],[[16],[1],[[14],[T4],[14],[[5],[[10],[[1B],12],18],[171,T15],19],[[12], and 3] provide
the notation and terminology for this paper.

In this papek, n denote natural numbers andenotes a real number.

Let us considen. The functor® " yields a non empty set of finite sequence®aind is defined
as follows:

(Def. 1) R"=R".

In the sequek denotes a finite sequence of element®of
The function|O|g from R into R is defined by:

(Def. 2) For every holds|O|g(r) = |r].

Let us considex. The functor|x| yielding a finite sequence of elements®fis defined as
follows:

(Def. 3) x| =|0Jr-x.

Let us considen. The functor(0, ..., 0) yields a finite sequence of elementdfoénd is defined
N——

n
as follows:

(Def. 4) (0,...,0) =n~ (0 quareal numbey.
——

n

Let us considen. Then(0,...,0) is an element o} ".
N——

n

In the sequek, X1, X2, y denote elements &} ".

Let us considen, x. Then—xis an element o ".

Let us considen, x, y. Thenx+yis an element o ". Thenx—y is an element o ".

Let us considen, letr be a real number, and let us consigefThenr - x is an element off .

Let us considen, x. Then|x| is an element oR".

Let us considen, x. Then?x is an element oR".

Let x be a finite sequence of elementsiaf The functor|x| yields a real number and is defined
as follows:

(Def. 5) x| =/ ¥2x.
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One can prove the following propositions:
H lenx=n.
(3) domx = Seq.
(4) x(k) eR.
(5) Iffor everyk such thak € Segn holdsx; (K) = x2(K), thenx; = Xo.
6) Ifr =x(k), then|x|(k) =|r|.
(7) |0,...,0)| = n— (0quareal number.
~——

@) [-X=Ix.

©9) [r-xl=]r[-[x.

(10) |(0,...,0)| =0.
——

n
(11) If |x| =0, thenx = <w>.
n
(12) |x>0.
(13) X =Ix.
(14) [r-x=1r[-[x.
(15)  [xa+Xe| < [xa| + [Xal.
(16)  [x1 —Xo| < [Xa| + |-
(A7) [xa| = |xe| < |x1+Xel.
(18) |x1| — |x2| < [¥1—X2].
(19) |x1—x2| =0 iff X1 = Xo.
(20) If X1 # X2, then|xg —xo| > 0.
(21) |x1—X2| =[x —xa.
(22) |x1—x2| < X1 —X| 4 [X—X2|.
Let us considen. The functorp" yielding a function from: ", R "] into R is defined by:
(Def. 6) For all elements, y of ®" holdsp"(x,y) = [x—Y]|.
We now state two propositions:
(23) 2(x—y)=2(y—x).
(24) p"is a metric ofR".
Let us considen. The functor" yields a strict metric space and is defined as follows:
(Def.7) E"=(R",p").

Let us considen. One can check th&" is non empty.
Let us considen. The functorZ? yields a strict topological space and is defined by:

1 The proposition (1) has been removed.
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(Def. 8) EN = (E")iop.

Let us considen. Observe that] is non empty.

We use the following conventiorp, p1, p2, ps are points ofE} andx, X1, X2, Y, Y1, y2 are real
numbers.

The following four propositions are true:

(25) The carrier ofEf = R".
(26) pis afunction from Seg into R.
(27) pis afinite sequence of elementsibf

(28) For every finite sequendesuch thatf = p holds lenf = n.

Let us considen. The functor @x yielding a point ofZ7 is defined by:
Def. 9 n={(0,...,0).
( ) Ogn=( )

n

Let us considen, p1, p2. The functorp; + po yielding a point ofZ7 is defined by:
(Def. 10) For all elementg}, p, of R" such thatp; = p1 andp, = p2 holdsp; + p2 = p} + pb.

Let us observe that the functpi + p, is commutative.
One can prove the following propositions:

(29) For every elementof R " holds?|x| = 2x.
(30) (p1+p2)+ Pz = p1+(p2+ Pa)-
(31) Orn+p=pandp+0zn =p.
Let us considex, n, p. The functorx- p yielding a point of£{ is defined as follows:
(Def. 11) For every elememt of R" such thatp’ = p holdsx- p=x-p'.
Next we state several propositions:
(32) X-0gzp = Ogn.
(33) 1.-p=pand0 p=0g.
(B4 (xy)-p=x-(y-p)
(35) Ifx- p=0gn, thenx=0orp=Ogn.
(36) X:(p1+pP2) =X:pr1+X:Pa2.
@7) (X+y)-p=x-p+y-p.
(38) Ifx-p1=x-p2, thenx=0orp1 = p2.
Let us considen, p. The functor—p yielding a point of£{ is defined by:
(Def. 12) For every elemem of R" such thaty’ = pholds—p=—p'.
One can prove the following propositions:
(39) ——p=p
(40) p+—p=0gn.
(41) If p1+ p2=Ogn, thenpy = —pz andpz = —py.
(42) —(pr+p2) =—p1+—Pp2
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(43) —p=(-1)-p.

(44) —x-p=(—x)-pand—x-p=x-—p.
Let us considen, p1, p2. The functorp; — p> yields a point of£] and is defined as follows:

(Def. 13) For all elementp}, p, of R" such thatp; = p; andp, = p holdsp; — p2 = p} — p5.

The following propositions are true:

(45) p1—p2=p1+—p2.

(46) p—p=0gn.

(47) If p1— p2 = Ogp, thenpy = py.

(48) —(p1—P2) = p2— pr and—(p1 — p2) = —pP1+ Pe.

(49) p1+(p2—p3) = (P1+P2) — Ps3-

(50) p1—(p2+pP3s) =pP1— P2~ Ps-

(51) p1—(p2—p3) = (P1— P2) + P3.

(52) p=(p+p1)—prandp=(p—p1)+P1r.

(53) X:(p1—P2) =X:pr—X- Pa2.

(64) (x=y)-p=x-p-y-p.

In the sequep, p1, p2 denote points of-2.
The following proposition is true

(55) There exist real numbexsy such thatp = (x,y).
Let us considep. The functorp; yielding a real number is defined as follows:
(Def. 14) For every finite sequendesuch thatp = f holdsp; = f(1).
The functorp; yielding a real number is defined by:
(Def. 15) For every finite sequendesuch thatp = f holdsp, = f(2).
Letx, y be real numbers. The functpey] yielding a point of£2 is defined as follows:
(Def. 16) [x,Y] = (X,¥).
The following propositions are true:
(56) [x,y]1=xand[xy]2=Yy.
(57) p=[p1, P2
(58) 02 =[0,0].
(59)  p1+ P2 =[(P1)1+ (P2)1,(P1)2+ (P2)2].
(60)  [X1,Y1] + [X2,Y2| = [X1+X2, Y1+ Y2].
(61) Xx-p=[x-p1, X pa.
(62) x-[x1,y1] = [X-X1,X-y1].
(63) —p=[—p1,—pal.
(64) —[x1,y1] =[x, —y1]-
(65) p1—p2=[(P1)1—(P2)1,(P1)2— (P2)2].
(66) [x1,Y1] — [X2,¥2] = [X1 — X2, Y1 — V2.
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