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The articles [6], [16], [1], [14], [4], [11], [5], [10], [13], [2], [8], [7], [15], [9], [12], and [3] provide
the notation and terminology for this paper.

In this paperk, n denote natural numbers andr denotes a real number.
Let us considern. The functorR n yields a non empty set of finite sequences ofR and is defined

as follows:

(Def. 1) R n = Rn.

In the sequelx denotes a finite sequence of elements ofR.
The function|�|R from R into R is defined by:

(Def. 2) For everyr holds|�|R(r) = |r|.

Let us considerx. The functor|x| yielding a finite sequence of elements ofR is defined as
follows:

(Def. 3) |x|= |�|R ·x.

Let us considern. The functor〈0, . . . ,0︸ ︷︷ ︸
n

〉 yields a finite sequence of elements ofR and is defined

as follows:

(Def. 4) 〈0, . . . ,0︸ ︷︷ ︸
n

〉= n 7→ (0 qua real number).

Let us considern. Then〈0, . . . ,0︸ ︷︷ ︸
n

〉 is an element ofR n.

In the sequelx, x1, x2, y denote elements ofR n.
Let us considern, x. Then−x is an element ofR n.
Let us considern, x, y. Thenx+y is an element ofR n. Thenx−y is an element ofR n.
Let us considern, let r be a real number, and let us considerx. Thenr ·x is an element ofR n.
Let us considern, x. Then|x| is an element ofRn.
Let us considern, x. Then2x is an element ofRn.
Let x be a finite sequence of elements ofR. The functor|x| yields a real number and is defined

as follows:

(Def. 5) |x|=
√

∑2x.
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One can prove the following propositions:

(2)1 lenx = n.

(3) domx = Segn.

(4) x(k) ∈ R.

(5) If for everyk such thatk∈ Segn holdsx1(k) = x2(k), thenx1 = x2.

(6) If r = x(k), then|x|(k) = |r|.

(7) |〈0, . . . ,0︸ ︷︷ ︸
n

〉|= n 7→ (0 qua real number).

(8) |−x|= |x|.

(9) |r ·x|= |r| · |x|.

(10) |〈0, . . . ,0︸ ︷︷ ︸
n

〉|= 0.

(11) If |x|= 0, thenx = 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

(12) |x| ≥ 0.

(13) |−x|= |x|.

(14) |r ·x|= |r| · |x|.

(15) |x1 +x2| ≤ |x1|+ |x2|.

(16) |x1−x2| ≤ |x1|+ |x2|.

(17) |x1|− |x2| ≤ |x1 +x2|.

(18) |x1|− |x2| ≤ |x1−x2|.

(19) |x1−x2|= 0 iff x1 = x2.

(20) If x1 6= x2, then|x1−x2|> 0.

(21) |x1−x2|= |x2−x1|.

(22) |x1−x2| ≤ |x1−x|+ |x−x2|.

Let us considern. The functorρn yielding a function from[:R n, R n :] into R is defined by:

(Def. 6) For all elementsx, y of R n holdsρn(x, y) = |x−y|.

We now state two propositions:

(23) 2(x−y) = 2(y−x).

(24) ρn is a metric ofR n.

Let us considern. The functorEn yields a strict metric space and is defined as follows:

(Def. 7) En = 〈R n,ρn〉.

Let us considern. One can check thatEn is non empty.
Let us considern. The functorEn

T yields a strict topological space and is defined by:

1 The proposition (1) has been removed.
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(Def. 8) En
T = (En)top.

Let us considern. Observe thatEn
T is non empty.

We use the following convention:p, p1, p2, p3 are points ofEn
T andx, x1, x2, y, y1, y2 are real

numbers.
The following four propositions are true:

(25) The carrier ofEn
T = R n.

(26) p is a function from Segn into R.

(27) p is a finite sequence of elements ofR.

(28) For every finite sequencef such thatf = p holds lenf = n.

Let us considern. The functor 0En
T

yielding a point ofEn
T is defined by:

(Def. 9) 0En
T

= 〈0, . . . ,0︸ ︷︷ ︸
n

〉.

Let us considern, p1, p2. The functorp1 + p2 yielding a point ofEn
T is defined by:

(Def. 10) For all elementsp′1, p′2 of R n such thatp′1 = p1 andp′2 = p2 holdsp1 + p2 = p′1 + p′2.

Let us observe that the functorp1 + p2 is commutative.
One can prove the following propositions:

(29) For every elementx of R n holds2|x|= 2x.

(30) (p1 + p2)+ p3 = p1 +(p2 + p3).

(31) 0En
T
+ p = p andp+0En

T
= p.

Let us considerx, n, p. The functorx · p yielding a point ofEn
T is defined as follows:

(Def. 11) For every elementp′ of R n such thatp′ = p holdsx · p = x · p′.

Next we state several propositions:

(32) x ·0En
T

= 0En
T
.

(33) 1· p = p and 0· p = 0En
T
.

(34) (x ·y) · p = x · (y· p).

(35) If x · p = 0En
T
, thenx = 0 or p = 0En

T
.

(36) x · (p1 + p2) = x · p1 +x · p2.

(37) (x+y) · p = x · p+y· p.

(38) If x · p1 = x · p2, thenx = 0 or p1 = p2.

Let us considern, p. The functor−p yielding a point ofEn
T is defined by:

(Def. 12) For every elementp′ of R n such thatp′ = p holds−p =−p′.

One can prove the following propositions:

(39) −−p = p.

(40) p+−p = 0En
T
.

(41) If p1 + p2 = 0En
T
, thenp1 =−p2 andp2 =−p1.

(42) −(p1 + p2) =−p1 +−p2.
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(43) −p = (−1) · p.

(44) −x · p = (−x) · p and−x · p = x ·−p.

Let us considern, p1, p2. The functorp1− p2 yields a point ofEn
T and is defined as follows:

(Def. 13) For all elementsp′1, p′2 of R n such thatp′1 = p1 andp′2 = p2 holdsp1− p2 = p′1− p′2.

The following propositions are true:

(45) p1− p2 = p1 +−p2.

(46) p− p = 0En
T
.

(47) If p1− p2 = 0En
T
, thenp1 = p2.

(48) −(p1− p2) = p2− p1 and−(p1− p2) =−p1 + p2.

(49) p1 +(p2− p3) = (p1 + p2)− p3.

(50) p1− (p2 + p3) = p1− p2− p3.

(51) p1− (p2− p3) = (p1− p2)+ p3.

(52) p = (p+ p1)− p1 andp = (p− p1)+ p1.

(53) x · (p1− p2) = x · p1−x · p2.

(54) (x−y) · p = x · p−y· p.

In the sequelp, p1, p2 denote points ofE2
T.

The following proposition is true

(55) There exist real numbersx, y such thatp = 〈x,y〉.

Let us considerp. The functorp1 yielding a real number is defined as follows:

(Def. 14) For every finite sequencef such thatp = f holdsp1 = f (1).

The functorp2 yielding a real number is defined by:

(Def. 15) For every finite sequencef such thatp = f holdsp2 = f (2).

Let x, y be real numbers. The functor[x,y] yielding a point ofE2
T is defined as follows:

(Def. 16) [x,y] = 〈x,y〉.

The following propositions are true:

(56) [x,y]1 = x and[x,y]2 = y.

(57) p = [p1, p2].

(58) 0E2
T

= [0,0].

(59) p1 + p2 = [(p1)1 +(p2)1,(p1)2 +(p2)2].

(60) [x1,y1]+ [x2,y2] = [x1 +x2,y1 +y2].

(61) x · p = [x · p1,x · p2].

(62) x · [x1,y1] = [x ·x1,x ·y1].

(63) −p = [−p1,−p2].

(64) −[x1,y1] = [−x1,−y1].

(65) p1− p2 = [(p1)1− (p2)1,(p1)2− (p2)2].

(66) [x1,y1]− [x2,y2] = [x1−x2,y1−y2].
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