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Summary. This paper is preparation to prove Birkhoff’s Theorem. Some properties
of many sorted algebras are proved. The last section of this work shows that every equation
valid in a many sorted algebra is also valid in each subalgebra, and each image of it. Moreover
for a family of many sorted algebras(Ai : i ∈ I) if every equation is valid in eachAi , i ∈ I then
is also valid in product∏(Ai : i ∈ I).

MML Identifier: EQUATION.

WWW: http://mizar.org/JFM/Vol9/equation.html

The articles [20], [8], [25], [24], [26], [5], [7], [6], [21], [10], [3], [9], [1], [22], [23], [15], [16], [17],
[4], [13], [14], [12], [19], [18], [11], and [2] provide the notation and terminology for this paper.

1. ON THE FUNCTIONS AND MANY SORTED FUNCTIONS

In this paperI denotes a set.
The following propositions are true:

(1) Let A be a set,B, C be non empty sets,f be a function fromA into B, andg be a function
from B into C. If rng(g· f ) = C, then rngg = C.

(2) LetA be a many sorted set indexed byI , B, C be non-empty many sorted sets indexed byI ,
f be a many sorted function fromA into B, andg be a many sorted function fromB intoC. If
g◦ f is onto, theng is onto.

(3) Let A, B be non empty sets,C, y be sets, andf be a function. Iff ∈ (CB)A andy∈ B, then
dom(commute( f ))(y) = A and rng(commute( f ))(y)⊆C.

(5)1 Let A, B be many sorted sets indexed byI . SupposeA is transformable toB. Let f be a
many sorted function indexed byI . If domκ f (κ) = A and rngκ f (κ) ⊆ B, then f is a many
sorted function fromA into B.

(6) LetA, B be many sorted sets indexed byI , F be a many sorted function fromA into B, C, E
be many sorted subsets indexed byA, andD be a many sorted subset indexed byC. If E = D,
thenF � C � D = F � E.

(7) LetB be a non-empty many sorted set indexed byI , C be a many sorted set indexed byI , A
be a many sorted subset indexed byC, andF be a many sorted function fromA into B. Then
there exists a many sorted functionG from C into B such thatG � A = F.

1 The proposition (4) has been removed.
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Let I be a set, letA be a many sorted set indexed byI , and letF be a many sorted function
indexed byI . The functorF−1(A) yields a many sorted set indexed byI and is defined as follows:

(Def. 1) For every seti such thati ∈ I holds(F−1(A))(i) = F(i)−1(A(i)).

Next we state a number of propositions:

(8) Let A, B, C be many sorted sets indexed byI andF be a many sorted function fromA into
B. ThenF ◦C is a many sorted subset indexed byB.

(9) Let A, B, C be many sorted sets indexed byI andF be a many sorted function fromA into
B. ThenF−1(C) is a many sorted subset indexed byA.

(10) LetA, B be many sorted sets indexed byI andF be a many sorted function fromA into B.
If F is onto, thenF ◦ A = B.

(11) LetA, B be many sorted sets indexed byI andF be a many sorted function fromA into B.
If A is transformable toB, thenF−1(B) = A.

(12) LetA be a many sorted set indexed byI andF be a many sorted function indexed byI . If
A⊆ rngκ F(κ), thenF ◦ F−1(A) = A.

(13) For every many sorted functionf indexed byI and for every many sorted setX indexed by
I holds f ◦ X ⊆ rngκ f (κ).

(14) For every many sorted functionf indexed byI holds f ◦ (domκ f (κ)) = rngκ f (κ).

(15) For every many sorted functionf indexed byI holds f−1(rngκ f (κ)) = domκ f (κ).

(16) For every many sorted setA indexed byI holds(idA) ◦ A = A.

(17) For every many sorted setA indexed byI holds(idA)−1(A) = A.

2. ON THE MANY SORTED ALGEBRAS

In the sequelS is a non empty non void many sorted signature andU0, U1 are non-empty algebras
overS.

One can prove the following propositions:

(19)2 Every algebraA overS is a subalgebra of the algebra ofA.

(20) LetU0 be an algebra overS, A be a subalgebra ofU0, o be an operation symbol ofS, andx
be a set. Ifx∈ Args(o,A), thenx∈ Args(o,U0).

(21) LetU0 be an algebra overS, A be a subalgebra ofU0, o be an operation symbol ofS, andx
be a set. Ifx∈ Args(o,A), then(Den(o,A))(x) = (Den(o,U0))(x).

(22) LetF be an algebra family ofI overS, B be a subalgebra of∏F, o be an operation symbol
of S, andx be a set. Ifx∈ Args(o,B), then(Den(o,B))(x) is a function and(Den(o,∏F))(x)
is a function.

Let Sbe a non void non empty many sorted signature, letA be an algebra overS, and letB be a
subalgebra ofA. The functor SuperAlgebraSet(B) is defined by the condition (Def. 2).

(Def. 2) Letx be a set. Thenx∈ SuperAlgebraSet(B) if and only if there exists a strict subalgebra
C of A such thatx = C andB is a subalgebra ofC.

2 The proposition (18) has been removed.
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Let Sbe a non void non empty many sorted signature, letA be an algebra overS, and letB be a
subalgebra ofA. Observe that SuperAlgebraSet(B) is non empty.

Let Sbe a non empty non void many sorted signature. Note that there exists an algebra overS
which is strict, non-empty, and free.

Let Sbe a non empty non void many sorted signature, letA be a non-empty algebra overS, and
let X be a non-empty locally-finite subset ofA. One can check that Gen(X) is finitely-generated.

Let Sbe a non empty non void many sorted signature and letA be a non-empty algebra overS.
Note that there exists a subalgebra ofA which is strict, non-empty, and finitely-generated.

Let S be a non empty non void many sorted signature and letA be a feasible algebra overS.
Observe that there exists a subalgebra ofA which is feasible.

We now state several propositions:

(23) LetA be an algebra overS, C be a subalgebra ofA, andD be a many sorted subset indexed
by the sorts ofA. SupposeD = the sorts ofC. Let h be a many sorted function fromA
into U0 andg be a many sorted function fromC into U0. Supposeg = h � D. Let o be an
operation symbol ofS, x be an element of Args(o,A), andy be an element of Args(o,C). If
Args(o,C) 6= /0 andx = y, thenh#x = g#y.

(24) LetA be a feasible algebra overS, C be a feasible subalgebra ofA, andD be a many sorted
subset indexed by the sorts ofA. SupposeD = the sorts ofC. Let h be a many sorted function
from A into U0. Supposeh is a homomorphism ofA into U0. Let g be a many sorted function
from C into U0. If g = h � D, theng is a homomorphism ofC into U0.

(25) LetB be a strict non-empty algebra overS, G be a generator set ofU0, H be a non-empty
generator set ofB, and f be a many sorted function fromU0 into B. SupposeH ⊆ f ◦G and f
is a homomorphism ofU0 into B. Then f is an epimorphism ofU0 ontoB.

(26) LetW be a strict free non-empty algebra overSandF be a many sorted function fromU0

into U1. SupposeF is an epimorphism ofU0 ontoU1. Let G be a many sorted function from
W into U1. SupposeG is a homomorphism ofW into U1. Then there exists a many sorted
functionH from W into U0 such thatH is a homomorphism ofW into U0 andG = F ◦H.

(27) LetI be a non empty finite set,A be a non-empty algebra overS, andF be an algebra family
of I over S. Suppose that for every elementi of I there exists a strict non-empty finitely-
generated subalgebraC of A such thatC = F(i). Then there exists a strict non-empty finitely-
generated subalgebraB of A such that for every elementi of I holdsF(i) is a subalgebra of
B.

(28) LetA, B be strict non-empty finitely-generated subalgebras ofU0. Then there exists a strict
non-empty finitely-generated subalgebraM of U0 such thatA is a subalgebra ofM andB is a
subalgebra ofM.

(29) Let S1 be a non empty non void many sorted signature,A1 be a non-empty algebra
over S1, andC be a set. SupposeC = {A;A ranges over elements of Subalgebras(A1):∨

R: strict non-empty finitely-generated subalgebra ofA1
R= A}. Let F be an algebra family ofC overS1.

Suppose that for every setc such thatc ∈C holdsc = F(c). Then there exists a strict non-
empty subalgebraP1 of ∏F such that there exists a many sorted function fromP1 into A1

which is an epimorphism ofP1 ontoA1.

(30) LetU0 be a feasible free algebra overS, A be a free generator set ofU0, andZ be a subset
of U0. If Z ⊆ A and Gen(Z) is feasible, then Gen(Z) is free.

3. EQUATIONS IN MANY SORTED ALGEBRAS

Let Sbe a non empty non void many sorted signature. The functor TS(N) yields an algebra overS
and is defined as follows:

(Def. 3) TS(N) = Free((the carrier ofS) 7−→ N).
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Let S be a non empty non void many sorted signature. One can verify that TS(N) is strict,
non-empty, and free.

Let S be a non empty non void many sorted signature. The equations ofS constitute a many
sorted set indexed by the carrier ofSdefined by:

(Def. 4) The equations ofS= [[the sorts of TS(N), the sorts of TS(N)]].

Let Sbe a non empty non void many sorted signature. Note that the equations ofSis non-empty.
Let Sbe a non empty non void many sorted signature. A set of equations ofS is a many sorted

subset indexed by the equations ofS.
In the sequels denotes a sort symbol ofS, e denotes an element of (the equations ofS)(s), and

E denotes a set of equations ofS.
Let S be a non empty non void many sorted signature, lets be a sort symbol ofS, and letx, y

be elements of (the sorts of TS(N))(s). Then〈〈x, y〉〉 is an element of (the equations ofS)(s). We
introducex=y as a synonym of〈〈x, y〉〉.

Next we state two propositions:

(31) e1 ∈ (the sorts of TS(N))(s).

(32) e2 ∈ (the sorts of TS(N))(s).

Let Sbe a non empty non void many sorted signature, letA be an algebra overS, let s be a sort
symbol ofS, and letebe an element of (the equations ofS)(s). The predicateA |= e is defined by:

(Def. 5) For every many sorted functionh from TS(N) into A such thath is a homomorphism of
TS(N) into A holdsh(s)(e1) = h(s)(e2).

Let Sbe a non empty non void many sorted signature, letA be an algebra overS, and letE be a
set of equations ofS. The predicateA |= E is defined as follows:

(Def. 6) For every sort symbols of S and for every elemente of (the equations ofS)(s) such that
e∈ E(s) holdsA |= e.

The following propositions are true:

(33) For every strict non-empty subalgebraU2 of U0 such thatU0 |= eholdsU2 |= e.

(34) For every strict non-empty subalgebraU2 of U0 such thatU0 |= E holdsU2 |= E.

(35) If U0 andU1 are isomorphic andU0 |= e, thenU1 |= e.

(36) If U0 andU1 are isomorphic andU0 |= E, thenU1 |= E.

(37) For every congruenceRof U0 such thatU0 |= eholdsU0/R |= e.

(38) For every congruenceRof U0 such thatU0 |= E holdsU0/R |= E.

(39) Let F be an algebra family ofI over S. Suppose that for every seti such thati ∈ I there
exists an algebraA overSsuch thatA = F(i) andA |= e. Then∏F |= e.

(40) Let F be an algebra family ofI over S. Suppose that for every seti such thati ∈ I there
exists an algebraA overSsuch thatA = F(i) andA |= E. Then∏F |= E.
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