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Summary. This paper is preparation to prove Birkhoff's Theorem. Some properties
of many sorted algebras are proved. The last section of this work shows that every equation
valid in a many sorted algebra is also valid in each subalgebra, and each image of it. Moreover
for a family of many sorted algebr#s; :i € I) if every equation is valid in eachy, i € | then
is also valid in producf](A :i € 1).

MML Identifier: EQUATION.

WWW: http://mizar.org/JFM/Vol9/equation.html

The articles[[20],[[B],[[25],[124],[26],16],[17]1,16],121],[10],.I8],.1°],[[1],[12R],12B3] [115] [ [16], 171,
[4], [43], [24], [12], [19], [18], [11], and[[2] provide the notation and terminology for this paper.

1. ON THE FUNCTIONS AND MANY SORTED FUNCTIONS

In this papell denotes a set.
The following propositions are true:

(1) LetAbe a setB, C be non empty setd, be a function fromA into B, andg be a function
fromBintoC. If rng(g- f) =C, then rngy =C.

(2) LetAbe amany sorted set indexedIhyB, C be non-empty many sorted sets indexed by
f be a many sorted function frointo B, andg be a many sorted function froBiinto C. If
go f is onto, therg is onto.

(3) LetA, B be non empty sets;, y be sets, and be a function. Iff € (CB)A andy € B, then
dom(commutéf))(y) = Aand rngcommutéf))(y) C C.

(SH Let A, B be many sorted sets indexed bySupposéA is transformable td®. Let f be a
many sorted function indexed By If domy f(K) = A and rng f(k) C B, then f is a many
sorted function fromA into B.

(6) LetA, Bbe many sorted sets indexedlhf be a many sorted function frodinto B, C, E
be many sorted subsets indexed&yndD be a many sorted subset indexedbyf E = D,
thenF [C|D=F [E.

(7) LetBbe a non-empty many sorted set indexed J§y be a many sorted set indexed IpyA
be a many sorted subset indexedd)yandF be a many sorted function frominto B. Then
there exists a many sorted functi@from C into B such thatG | A=F.

1 The proposition (4) has been removed.
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Let | be a set, le”A be a many sorted set indexed hyand letF be a many sorted function
indexed byl. The functor- ~1(A) yields a many sorted set indexed lbgnd is defined as follows:

(Def. 1) For every setsuch thai € | holds(F~1(A))(i) = F(i)"1(A(i)).
Next we state a number of propositions:

(8) LetA, B, C be many sorted sets indexed bgndF be a many sorted function frodinto
B. ThenF °C is a many sorted subset indexediy

(9) LetA, B, C be many sorted sets indexed bbgndF be a many sorted function frodinto
B. ThenF ~(C) is a many sorted subset indexedAy

(10) LetA, Bbe many sorted sets indexed bgndF be a many sorted function frokinto B.
If F is onto, therF °A=B.

(11) LetA, B be many sorted sets indexed bgndF be a many sorted function frodinto B.
If Ais transformable t@, thenF ~1(B) = A.

(12) LetAbe a many sorted set indexed bgndF be a many sorted function indexed hyif
AC g F(k), thenF°F~1(A) = A

(13) For every many sorted functidnindexed byl and for every many sorted sétindexed by
I holdsf °X C rng, f(k).

(14) For every many sorted functidnindexed byl holds f © (dom f(k)) = rng, f(k).
(15) For every many sorted functidnindexed byl holds f ~(rng, f (k)) = dom f (k).
(16) For every many sorted s&tindexed byl holds(ida)° A= A.

(17) For every many sorted s&tindexed byl holds(ida)"(A) = A.

2. ON THE MANY SORTED ALGEBRAS

In the sequeBis a non empty non void many sorted signature dgdJ; are non-empty algebras
overS
One can prove the following propositions:

(19E] Every algebraA overSis a subalgebra of the algebraf

(20) LetUg be an algebra oves, A be a subalgebra &fy, o0 be an operation symbol & andx
be a set. Ik € Args(o,A), thenx € Args(o,Up).

(21) LetUg be an algebra oves, A be a subalgebra &fy, o be an operation symbol & andx
be a set. Ik € Args(o,A), then(Den(o,A))(x) = (Den(o,Up))(X).

(22) LetF be an algebra family df overS, B be a subalgebra ¢f F, o be an operation symbol
of S, andx be a set. Ik € Args(o, B), then(Den(o, B))(x) is a function andDen(o, [1F))(X)
is a function.

Let Sbe a non void non empty many sorted signatureAlbe an algebra oves, and letB be a
subalgebra oA. The functor SuperAlgebraS&) is defined by the condition (Def. 2).

(Def. 2) Letx be a set. Ther € SuperAlgebraSéB) if and only if there exists a strict subalgebra
C of A such thatx = C andB is a subalgebra df.

2 The proposition (18) has been removed.
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Let Sbe a non void non empty many sorted signatureAlbe an algebra oves, and letB be a
subalgebra oA. Observe that SuperAlgebraf} is non empty.

Let Sbe a non empty non void many sorted signature. Note that there exists an algeb$a over
which is strict, non-empty, and free.

Let Sbe a non empty non void many sorted signatureAlbe a non-empty algebra ovBrand
let X be a non-empty locally-finite subsetAf One can check that GEX) is finitely-generated.

Let Sbhe a non empty non void many sorted signature and et a non-empty algebra over
Note that there exists a subalgebrafokhich is strict, non-empty, and finitely-generated.

Let Sbe a non empty non void many sorted signature and le¢ a feasible algebra ové&
Observe that there exists a subalgebra afhich is feasible.

We now state several propositions:

(23) LetAbe an algebra oves, C be a subalgebra &, andD be a many sorted subset indexed
by the sorts ofA. SupposeD = the sorts ofC. Let h be a many sorted function from
into Up andg be a many sorted function frof@ into Up. Supposeg = h [ D. Let o be an
operation symbol 0§, x be an element of Ards, A), andy be an element of Ardgs,C). If
Args(0,C) # 0 andx =y, thenh#x = g#y.

(24) LetAbe afeasible algebra ov8rC be a feasible subalgebraAfandD be a many sorted
subset indexed by the sortsAf Supposé® = the sorts ofC. Leth be a many sorted function
from Alinto Ug. Supposéis a homomorphism oA into Ug. Letg be a many sorted function
fromC into Ug. If g=h | D, theng is a homomorphism df into Ug.

(25) LetB be a strict non-empty algebra ov8&rG be a generator set &fy, H be a non-empty
generator set d8, andf be a many sorted function frobly into B. Supposéd C f°Gand f
is a homomorphism dfly into B. Thenf is an epimorphism dfl; ontoB.

(26) LetW be a strict free non-empty algebra o&andF be a many sorted function froly
into U1. Supposé- is an epimorphism dfly ontoU;. Let G be a many sorted function from
W into U;. SupposeG is a homomorphism d#V into U;. Then there exists a many sorted
functionH from W into Ug such thaH is a homomorphism dV intoUg andG =F o H.

(27) Letl be a non empty finite sefbe a non-empty algebra ov@BrandF be an algebra family
of | overS. Suppose that for every elemendf | there exists a strict non-empty finitely-
generated subalgebtaof A such thaC = F(i). Then there exists a strict non-empty finitely-
generated subalgebBaof A such that for every elemenbf | holdsF (i) is a subalgebra of
B.

(28) LetA, B be strict non-empty finitely-generated subalgebrddpofThen there exists a strict
non-empty finitely-generated subalgebaof Ug such thatA is a subalgebra d¥l andBis a
subalgebra of.

(29) LetS be a non empty non void many sorted signatukg,be a non-empty algebra
over S, andC be a set. Supposé = {A;A ranges over elements of Subalgelfras:
VR: strict non-empty finitely-generated subalgebrafqf R= A}' LetF be an algebra family ot over$,.
Suppose that for every setsuch thatc € C holdsc = F(c). Then there exists a strict non-
empty subalgebr&; of [1F such that there exists a many sorted function fieninto Aq
which is an epimorphism df; ontoA;.

(30) LetUq be a feasible free algebra ov&rA be a free generator setdf, andZ be a subset
of Up. If ZC Aand GelfZ) is feasible, then G€Z) is free.

3. EQUATIONS IN MANY SORTED ALGEBRAS

Let Sbe a non empty non void many sorted signature. The funcgi@¥Tyields an algebra oves
and is defined as follows:

(Def. 3) Tg(N) = Fred((the carrier ofS) — N).
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Let S be a non empty non void many sorted signature. One can verify &&%)Ts strict,
non-empty, and free.

Let S be a non empty non void many sorted signature. The equatioBgoifstitute a many
sorted set indexed by the carrier®€lefined by:

(Def. 4) The equations &= [the sorts of E(N), the sorts of F(N)].

Let Sbe a non empty non void many sorted signature. Note that the equatiSismin-empty.

Let Sbe a non empty non void many sorted signature. A set of equatioBsa many sorted
subset indexed by the equationsof

In the seques denotes a sort symbol & e denotes an element of (the equation$yf), and
E denotes a set of equations®f

Let Sbe a non empty non void many sorted signatures la¢ a sort symbol 0§, and letx, y
be elements of (the sorts ok[IN))(s). Then(x,y) is an element of (the equations 8f(s). We
introducex=y as a synonym ofx, Y).

Next we state two propositions:

(31) ey € (the sorts of E(N))(s).
(32) e € (the sorts of E(N))(s).

Let Sbe a non empty non void many sorted signatureAlbe an algebra oves, let s be a sort
symbol ofS, and lete be an element of (the equations){s). The predicaté\ |~ eis defined by:

(Def. 5) For every many sorted functidnfrom Tg(N) into A such thath is a homomorphism of
Ts(N) into A holdsh(s)(e1) = h(s)(e2).

Let Sbe a non empty non void many sorted signatureflbe an algebra oves, and letE be a
set of equations o The predicaté = E is defined as follows:

(Def. 6) For every sort symbda of Sand for every elemerg of (the equations 08)(s) such that
ec E(s) holdsAl=e

The following propositions are true:
(33) For every strict non-empty subalgekiaof Uy such thatly = eholdsU; = e.
(34) For every strict non-empty subalgehtaof Uy such that)y = E holdsU; = E.
(35) IfUp andU; are isomorphic antp |= e, thenU; = e.
(36) If Uy andU; are isomorphic andp |= E, thenU; |= E.
(37) For every congruendeof Ug such that)y = eholdsUp/RE= e
(38) For every congruendeof Ug such that)y = E holdsUy/R = E.

(39) LetF be an algebra family of overS. Suppose that for every sesuch that € | there
exists an algebra overSsuch thatA = F (i) andA = e Then[]F e

(40) LetF be an algebra family of overS. Suppose that for every sesuch that € | there
exists an algebra overSsuch thatA = F (i) andA = E. Then[]F = E.
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