Category Ens

Czesław Byliński Warsaw University Białystok

Summary. If V is any non-empty set of sets, we define \mathbf{Ens}_V to be the category with the objects of all sets $X \in V$, morphisms of all mappings from X into Y, with the usual composition of mappings. By a mapping we mean a triple $\langle X,Y,f\rangle$ where f is a function from X into Y. The notations and concepts included corresponds to that presented in [12], [10]. We also introduce representable functors to illustrate properties of the category \mathbf{Ens} .

MML Identifier: ENS_1.

WWW: http://mizar.org/JFM/Vol3/ens_1.html

The articles [15], [6], [18], [16], [14], [19], [2], [3], [5], [7], [1], [17], [11], [13], [4], [8], and [9] provide the notation and terminology for this paper.

1. Mappings

In this paper *V* denotes a non empty set and *A*, *B* denote elements of *V*. Let us consider *V*. The functor Funcs *V* yielding a set is defined as follows:

(Def. 1) Funcs $V = \bigcup \{B^A\}$.

Let us consider V. Note that Funcs V is functional and non empty. We now state three propositions:

- (1) For every set f holds $f \in \text{Funcs } V$ iff there exist A, B such that if $B = \emptyset$, then $A = \emptyset$ and f is a function from A into B.
- (2) $B^A \subseteq \operatorname{Funcs} V$.
- (3) For every non empty subset W of V holds Funcs $W \subseteq \text{Funcs } V$.

In the sequel f denotes an element of Funcs V.

Let us consider V. The functor Maps V yields a set and is defined as follows:

(Def. 2) Maps $V = \{ \langle \langle A, B \rangle, f \rangle : (B = \emptyset \Rightarrow A = \emptyset) \land f \text{ is a function from } A \text{ into } B \}.$

Let us consider V. One can verify that Maps V is non empty.

In the sequel m, m_1 , m_2 , m_3 denote elements of Maps V.

We now state four propositions:

- (4) There exist f, A, B such that $m = \langle \langle A, B \rangle, f \rangle$ and if $B = \emptyset$, then $A = \emptyset$ and f is a function from A into B.
- (5) For every function f from A into B such that if $B = \emptyset$, then $A = \emptyset$ holds $\langle \langle A, B \rangle, f \rangle \in \text{Maps } V$.

CATEGORY ENS 2

- (6) Maps $V \subseteq [:[:V,V:], Funcs V:]$.
- (7) For every non empty subset W of V holds Maps $W \subseteq \text{Maps } V$.

Let V be a non empty set and let m be an element of Maps V. Observe that m_2 is function-like and relation-like.

Let us consider V, m. The functor dom m yielding an element of V is defined by:

(Def. 4)¹ dom
$$m = (m_1)_1$$
.

The functor cod m yields an element of V and is defined by:

(Def. 5)
$$cod m = (m_1)_2$$
.

We now state three propositions:

- (8) $m = \langle \langle \operatorname{dom} m, \operatorname{cod} m \rangle, m_2 \rangle$.
- (9) $\operatorname{cod} m \neq \emptyset$ or $\operatorname{dom} m = \emptyset$ but m_2 is a function from $\operatorname{dom} m$ into $\operatorname{cod} m$.
- (10) Let f be a function and A, B be sets. Suppose $\langle \langle A, B \rangle, f \rangle \in \text{Maps } V$. Then if $B = \emptyset$, then $A = \emptyset$ and f is a function from A into B.

Let us consider V, A. The functor id(A) yielding an element of Maps V is defined as follows:

(Def. 6)
$$id(A) = \langle \langle A, A \rangle, id_A \rangle$$
.

One can prove the following proposition

(11)
$$(id(A))_2 = id_A$$
 and $domid(A) = A$ and $codid(A) = A$.

Let us consider V, m_1 , m_2 . Let us assume that $\operatorname{cod} m_1 = \operatorname{dom} m_2$. The functor $m_2 \cdot m_1$ yields an element of Maps V and is defined by:

(Def. 7)
$$m_2 \cdot m_1 = \langle \langle \operatorname{dom} m_1, \operatorname{cod} m_2 \rangle, (m_2)_2 \cdot (m_1)_2 \rangle$$
.

The following propositions are true:

- (12) If $dom m_2 = cod m_1$, then $(m_2 \cdot m_1)_2 = (m_2)_2 \cdot (m_1)_2$ and $dom(m_2 \cdot m_1) = dom m_1$ and $cod(m_2 \cdot m_1) = cod m_2$.
- (13) If dom $m_2 = \operatorname{cod} m_1$ and dom $m_3 = \operatorname{cod} m_2$, then $m_3 \cdot (m_2 \cdot m_1) = (m_3 \cdot m_2) \cdot m_1$.
- (14) $m \cdot id(\text{dom } m) = m \text{ and } id(\text{cod } m) \cdot m = m.$

Let us consider V, A, B. The functor Maps(A, B) yields a set and is defined as follows:

(Def. 8) Maps
$$(A, B) = \{ \langle \langle A, B \rangle, f \rangle; f \text{ ranges over elements of Funcs } V : \langle \langle A, B \rangle, f \rangle \in \text{Maps } V \}.$$

Next we state several propositions:

- (15) For every function f from A into B such that if $B = \emptyset$, then $A = \emptyset$ holds $\langle \langle A, B \rangle, f \rangle \in \text{Maps}(A, B)$.
- (16) If $m \in \text{Maps}(A, B)$, then $m = \langle \langle A, B \rangle, m_2 \rangle$.
- (17) $\operatorname{Maps}(A, B) \subseteq \operatorname{Maps} V$.
- (18) $\operatorname{Maps} V = \bigcup \{\operatorname{Maps}(A, B)\}.$
- (19) $m \in \text{Maps}(A, B)$ iff dom m = A and cod m = B.
- (20) If $m \in \text{Maps}(A, B)$, then $m_2 \in B^A$.

Let us consider V, m. We say that m is surjective if and only if:

(Def. 9)
$$\operatorname{rng}(m_2) = \operatorname{cod} m$$
.

We introduce m is a surjection as a synonym of m is surjective.

¹ The definition (Def. 3) has been removed.

2. CATEGORY ENS

Let us consider V. The functor Dom_V yields a function from Maps V into V and is defined as follows:

(Def. 10) For every m holds $Dom_V(m) = dom m$.

The functor Cod_V yields a function from Maps V into V and is defined by:

(Def. 11) For every m holds $Cod_V(m) = cod m$.

The functor \cdot_V yielding a partial function from [: Maps V, Maps V:] to Maps V is defined as follows:

(Def. 12) For all m_2 , m_1 holds $\langle m_2, m_1 \rangle \in \text{dom}(\cdot_V)$ iff $\text{dom } m_2 = \text{cod } m_1$ and for all m_2 , m_1 such that $\text{dom } m_2 = \text{cod } m_1$ holds $\cdot_V(\langle m_2, m_1 \rangle) = m_2 \cdot m_1$.

The functor Id_V yielding a function from V into Maps V is defined as follows:

(Def. 13) For every *A* holds $Id_V(A) = id(A)$.

Let us consider V. The functor \mathbf{Ens}_V yielding a category structure is defined as follows:

(Def. 14) $\mathbf{Ens}_V = \langle V, \operatorname{Maps} V, \operatorname{Dom}_V, \operatorname{Cod}_V, \cdot_V, \operatorname{Id}_V \rangle$.

One can prove the following proposition

(21) $\langle V, \text{Maps } V, \text{Dom}_V, \text{Cod}_V, \cdot_V, \text{Id}_V \rangle$ is a category.

Let us consider V. Observe that \mathbf{Ens}_V is strict and category-like.

In the sequel a, b denote objects of **Ens**_V.

We now state the proposition

(22) A is an object of **Ens** $_V$.

Let us consider V, A. The functor ${}^{@}A$ yields an object of \mathbf{Ens}_{V} and is defined by:

(Def. 15) ${}^{\tiny{@}}A = A$.

Next we state the proposition

(23) a is an element of V.

Let us consider V, a. The functor ${}^{@}a$ yields an element of V and is defined as follows:

(Def. 16) $^{@}a = a$.

In the sequel f, g denote morphisms of \mathbf{Ens}_V .

We now state the proposition

(24) m is a morphism of \mathbf{Ens}_V .

Let us consider V, m. The functor ${}^{@}m$ yielding a morphism of \mathbf{Ens}_{V} is defined by:

(Def. 17) $^{@}m = m$.

We now state the proposition

(25) f is an element of Maps V.

Let us consider V, f. The functor ${}^{@}f$ yielding an element of Maps V is defined as follows:

(Def. 18) $^{@} f = f$.

The following propositions are true:

4

- (26) $\operatorname{dom} f = \operatorname{dom}({}^{@} f) \text{ and } \operatorname{cod} f = \operatorname{cod}({}^{@} f).$
- (27) $hom(a,b) = Maps(^{@}a, ^{@}b).$
- (28) If dom $g = \operatorname{cod} f$, then $g \cdot f = ({}^{@}g) \cdot ({}^{@}f)$.
- (29) $id_a = id(^{@}a).$
- (30) If $a = \emptyset$, then a is initial.
- (31) If $\emptyset \in V$ and a is initial, then $a = \emptyset$.
- (32) For every universal class W and for every object a of \mathbf{Ens}_W such that a is initial holds $a = \emptyset$.
- (33) If there exists a set x such that $a = \{x\}$, then a is terminal.
- (34) If $V \neq \{\emptyset\}$ and a is terminal, then there exists a set x such that $a = \{x\}$.
- (35) For every universal class W and for every object a of \mathbf{Ens}_W such that a is terminal there exists a set x such that $a = \{x\}$.
- (36) f is monic iff $({}^{\textcircled{@}}f)_2$ is one-to-one.
- (37) If f is epi and there exists A and there exist sets x_1 , x_2 such that $x_1 \in A$ and $x_2 \in A$ and $x_1 \neq x_2$, then [@] f is a surjection.
- (38) If ${}^{\textcircled{a}}f$ is a surjection, then f is epi.
- (39) For every universal class W and for every morphism f of \mathbf{Ens}_W such that f is epi holds ${}^{@}f$ is a surjection.
- (40) For every non empty subset W of V holds \mathbf{Ens}_W is full subcategory of \mathbf{Ens}_V .

3. Representable Functors

We follow the rules: C denotes a category, a, b, c denote objects of C, and f, g, h, f', g' denote morphisms of C.

Let us consider C. The functor Hom(C) yielding a set is defined as follows:

(Def. 19) $\text{Hom}(C) = \{\text{hom}(a,b)\}.$

Let us consider C. Note that Hom(C) is non empty.

The following two propositions are true:

- (41) $hom(a,b) \in Hom(C)$.
- (42) If $hom(a, cod f) = \emptyset$, then $hom(a, dom f) = \emptyset$ and if $hom(dom f, a) = \emptyset$, then $hom(cod f, a) = \emptyset$.

Let us consider C, a, f. The functor hom(a, f) yields a function from hom(a, dom f) into hom(a, cod f) and is defined by:

(Def. 20) For every g such that $g \in \text{hom}(a, \text{dom } f)$ holds $(\text{hom}(a, f))(g) = f \cdot g$.

The functor hom(f,a) yields a function from hom(cod f,a) into hom(dom f,a) and is defined by:

(Def. 21) For every g such that $g \in \text{hom}(\text{cod } f, a)$ holds $(\text{hom}(f, a))(g) = g \cdot f$.

The following propositions are true:

- (43) $hom(a, id_c) = id_{hom(a,c)}$.
- (44) $\operatorname{hom}(\operatorname{id}_c, a) = \operatorname{id}_{\operatorname{hom}(c, a)}$.
- (45) If dom $g = \operatorname{cod} f$, then $\operatorname{hom}(a, g \cdot f) = \operatorname{hom}(a, g) \cdot \operatorname{hom}(a, f)$.

CATEGORY ENS 5

- (46) If dom $g = \operatorname{cod} f$, then $\operatorname{hom}(g \cdot f, a) = \operatorname{hom}(f, a) \cdot \operatorname{hom}(g, a)$.
- (47) $\langle (\operatorname{hom}(a, \operatorname{dom} f), \operatorname{hom}(a, \operatorname{cod} f)) \rangle$, $\operatorname{hom}(a, f) \rangle$ is an element of Maps $\operatorname{Hom}(C)$.
- (48) $\langle (\operatorname{hom}(\operatorname{cod} f, a), \operatorname{hom}(\operatorname{dom} f, a) \rangle, \operatorname{hom}(f, a) \rangle$ is an element of Maps $\operatorname{Hom}(C)$.

Let us consider C, a. The functor hom(a, -) yielding a function from the morphisms of C into Maps Hom(C) is defined as follows:

(Def. 22) For every f holds $(hom(a, -))(f) = \langle \langle hom(a, dom f), hom(a, cod f) \rangle, hom(a, f) \rangle$.

The functor hom(-,a) yields a function from the morphisms of C into Maps Hom(C) and is defined as follows:

(Def. 23) For every f holds $(hom(-,a))(f) = \langle \langle hom(cod f, a), hom(dom f, a) \rangle, hom(f, a) \rangle$.

We now state three propositions:

- (49) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}(a, -)$ is a functor from C to Ens_V .
- (50) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}(-,a)$ is a contravariant functor from C into Ens_V .
- (51) If $hom(dom f, cod f') = \emptyset$, then $hom(cod f, dom f') = \emptyset$.

Let us consider C, f, g. The functor hom(f,g) yields a function from hom(cod f, dom g) into hom(dom f, cod g) and is defined as follows:

(Def. 24) For every h such that $h \in \text{hom}(\text{cod } f, \text{dom } g)$ holds $(\text{hom}(f, g))(h) = g \cdot h \cdot f$.

We now state several propositions:

- (52) $\langle (\operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g), \operatorname{hom}(\operatorname{dom} f, \operatorname{cod} g) \rangle, \operatorname{hom}(f, g) \rangle$ is an element of Maps Hom(C).
- (53) $\operatorname{hom}(\operatorname{id}_a, f) = \operatorname{hom}(a, f)$ and $\operatorname{hom}(f, \operatorname{id}_a) = \operatorname{hom}(f, a)$.
- (54) $\operatorname{hom}(\operatorname{id}_a, \operatorname{id}_b) = \operatorname{id}_{\operatorname{hom}(a,b)}$.
- (55) $hom(f,g) = hom(dom f,g) \cdot hom(f,dom g)$.
- (56) If $\operatorname{cod} g = \operatorname{dom} f$ and $\operatorname{dom} g' = \operatorname{cod} f'$, then $\operatorname{hom} (f \cdot g, g' \cdot f') = \operatorname{hom} (g, g') \cdot \operatorname{hom} (f, f')$.

Let us consider C. The functor $hom_C(-,-)$ yielding a function from the morphisms of [:C,C:] into Maps Hom(C) is defined as follows:

(Def. 25) For all f, g holds $(\hom_C(-,-))(\langle f,g\rangle) = \langle \langle \hom(\operatorname{cod} f,\operatorname{dom} g), \hom(\operatorname{dom} f,\operatorname{cod} g) \rangle$, $\hom(f,g) \rangle$.

Next we state two propositions:

- (57) $hom(a, -) = (curry(hom_C(-, -)))(id_a)$ and $hom(-, a) = (curry'(hom_C(-, -)))(id_a)$.
- (58) If $\operatorname{Hom}(C) \subseteq V$, then $\operatorname{hom}_C(-,-)$ is a functor from $[:C^{\operatorname{op}}, C:]$ to Ens_V .

Let us consider V, C, a. Let us assume that $\operatorname{Hom}(C) \subseteq V$. The functor $\operatorname{hom}_V(a,-)$ yielding a functor from C to Ens_V is defined as follows:

(Def. 26) $hom_V(a, -) = hom(a, -)$.

The functor $hom_V(-,a)$ yields a contravariant functor from C into **Ens**_V and is defined by:

(Def. 27) $hom_V(-,a) = hom(-,a)$.

Let us consider V, C. Let us assume that $\operatorname{Hom}(C) \subseteq V$. The functor $\operatorname{hom}_V^C(-,-)$ yielding a functor from $[:C^{\operatorname{op}},C:]$ to Ens_V is defined as follows:

(Def. 28) $hom_V^C(-,-) = hom_C(-,-)$.

CATEGORY ENS 6

The following propositions are true:

- (59) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{hom}_V(a,-))(f) = \langle \langle \operatorname{hom}(a,\operatorname{dom} f), \operatorname{hom}(a,\operatorname{cod} f) \rangle$, $\operatorname{hom}(a,f) \rangle$.
- (60) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{Obj}(\operatorname{hom}_V(a,-)))(b) = \operatorname{hom}(a,b)$.
- (61) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{hom}_V(-,a))(f) = \langle \langle \operatorname{hom}(\operatorname{cod} f,a), \operatorname{hom}(\operatorname{dom} f,a) \rangle$, $\operatorname{hom}(f,a) \rangle$.
- (62) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{Obj}(\operatorname{hom}_V(-,a)))(b) = \operatorname{hom}(b,a)$.
- (63) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{hom}_V^C(-,-))(\langle f^{\operatorname{op}}, g \rangle) = \langle \langle \operatorname{hom}(\operatorname{cod} f, \operatorname{dom} g), \operatorname{hom}(\operatorname{dom} f, \operatorname{cod} g) \rangle$, $\operatorname{hom}(f,g) \rangle$.
- (64) If $\operatorname{Hom}(C) \subseteq V$, then $(\operatorname{Obj}(\operatorname{hom}_{V}^{C}(-,-)))(\langle a^{\operatorname{op}},b\rangle) = \operatorname{hom}(a,b)$.
- (65) If $\text{Hom}(C) \subseteq V$, then $(\text{hom}_{V}^{C}(-,-))(a^{\text{op}},-) = \text{hom}_{V}(a,-)$.
- (66) If $\text{Hom}(C) \subseteq V$, then $(\text{hom}_{V}^{C}(-,-))(-,a) = \text{hom}_{V}(-,a)$.

ACKNOWLEDGMENTS

I would like to thank Andrzej Trybulec for his useful suggestions and valuable comments.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat 1.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [9] Czesław Byliński. Opposite categories and contravariant functors. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/oppoat_1.html.
- [10] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.
- [11] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/classes2.html.
- [12] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [13] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [14] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [17] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.

- $[18] \begin{tabular}{ll} Zinaida Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_1.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb|http://mizar.org/JFM/Vol1/subset_2.html|.| The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. The properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1$
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 1, 1991

Published January 2, 2004