On the Monoid of Endomorphisms of Universal Algebra and Many Sorted Algebra

Jarosław Gryko Warsaw University Białystok

MML Identifier: ENDALG.

WWW: http://mizar.org/JFM/Vol7/endalg.html

The articles [13], [7], [16], [17], [4], [1], [12], [3], [6], [5], [14], [2], [11], [15], [9], [10], and [8] provide the notation and terminology for this paper.

In this paper U_1 is a universal algebra.

Let us consider U_1 . The functor end (U_1) yielding a non empty set of functions from the carrier of U_1 to the carrier of U_1 is defined by:

(Def. 1) For every function h from U_1 into U_1 holds $h \in \text{end}(U_1)$ iff h is a homomorphism of U_1 into U_1 .

Next we state three propositions:

- (1) end $(U_1) \subseteq$ (the carrier of U_1)^{the carrier of U_1}.
- $(3)^1$ id_{the carrier of $U_1 \in \text{end}(U_1)$.}
- (4) For all elements f_1 , f_2 of end (U_1) holds $f_1 \cdot f_2 \in \text{end}(U_1)$.

Let us consider U_1 . The functor $Comp(U_1)$ yields a binary operation on $end(U_1)$ and is defined by:

(Def. 2) For all elements x, y of end (U_1) holds $(Comp(U_1))(x, y) = y \cdot x$.

Let us consider U_1 . The functor $\operatorname{End}(U_1)$ yields a strict multiplicative loop structure and is defined by:

(Def. 3) The carrier of $\operatorname{End}(U_1) = \operatorname{end}(U_1)$ and the multiplication of $\operatorname{End}(U_1) = \operatorname{Comp}(U_1)$ and the unity of $\operatorname{End}(U_1) = \operatorname{id}_{\operatorname{the carrier of } U_1}$.

Let us consider U_1 . One can verify that $End(U_1)$ is non empty.

Let us consider U_1 . Observe that End (U_1) is left unital, well unital, and associative.

We now state two propositions:

(5) For all elements x, y of $\operatorname{End}(U_1)$ and for all elements f, g of $\operatorname{end}(U_1)$ such that x = f and y = g holds $x \cdot y = g \cdot f$.

1

¹ The proposition (2) has been removed.

(6) $\operatorname{id}_{\operatorname{the carrier of } U_1} = \mathbf{1}_{\operatorname{End}(U_1)}.$

In the sequel S denotes a non void non empty many sorted signature and U_2 denotes a non-empty algebra over S.

Let us consider S, U_2 . The functor end (U_2) yielding a set of many sorted functions from the sorts of U_2 into the sorts of U_2 is defined by the conditions (Def. 4).

- (Def. 4)(i) Every element of end(U_2) is a many sorted function from U_2 into U_2 , and
 - (ii) for every many sorted function h from U_2 into U_2 holds $h \in \text{end}(U_2)$ iff h is a homomorphism of U_2 into U_2 .

The following four propositions are true:

- (9)² end $(U_2) \subseteq \prod MSFuncs$ (the sorts of U_2 , the sorts of U_2).
- (10) $id_{the sorts of U_2} \in end(U_2)$.
- (11) For all elements f_1 , f_2 of end (U_2) holds $f_1 \circ f_2 \in \text{end}(U_2)$.
- (12) For every many sorted function F from $MSAlg(U_1)$ into $MSAlg(U_1)$ and for every element f of $end(U_1)$ such that $F = \{0\} \longmapsto f$ holds $F \in end(MSAlg(U_1))$.

Let us consider S, U_2 . The functor $Comp(U_2)$ yielding a binary operation on $end(U_2)$ is defined by:

(Def. 5) For all elements x, y of end(U_2) holds (Comp(U_2))(x, y) = $y \circ x$.

Let us consider S, U_2 . The functor $\operatorname{End}(U_2)$ yields a strict multiplicative loop structure and is defined by:

(Def. 6) The carrier of $\operatorname{End}(U_2) = \operatorname{end}(U_2)$ and the multiplication of $\operatorname{End}(U_2) = \operatorname{Comp}(U_2)$ and the unity of $\operatorname{End}(U_2) = \operatorname{id}_{\text{the sorts of } U_2}$.

Let us consider S, U_2 . Observe that $End(U_2)$ is non empty.

Let us consider S, U_2 . One can check that $\operatorname{End}(U_2)$ is left unital, well unital, and associative. We now state three propositions:

- (13) For all elements x, y of $\operatorname{End}(U_2)$ and for all elements f, g of $\operatorname{end}(U_2)$ such that x = f and y = g holds $x \cdot y = g \circ f$.
- (14) $\operatorname{id}_{\operatorname{the sorts of} U_2} = \mathbf{1}_{\operatorname{End}(U_2)}$.
- (16)³ For every element f of end (U_1) holds $\{0\} \longmapsto f$ is a many sorted function from $MSAlg(U_1)$ into $MSAlg(U_1)$.
- Let G, H be non empty groupoids and let I_1 be a map from G into H. We say that I_1 is multiplicative if and only if:
- (Def. 7) For all elements x, y of G holds $I_1(x \cdot y) = I_1(x) \cdot I_1(y)$.
- Let G, H be non empty multiplicative loop structures and let I_1 be a map from G into H. We say that I_1 is unity-preserving if and only if:
- (Def. 8) $I_1(\mathbf{1}_G) = \mathbf{1}_H$.

Let us note that there exists a non empty multiplicative loop structure which is left unital.

Let G, H be left unital non empty multiplicative loop structures. Observe that there exists a map from G into H which is multiplicative and unity-preserving.

Let G, H be left unital non empty multiplicative loop structures. A homomorphism from G to H is a multiplicative unity-preserving map from G into H.

Let G, H be left unital non empty multiplicative loop structures and let h be a map from G into H. We say that h is a monomorphism if and only if:

² The propositions (7) and (8) have been removed.

³ The proposition (15) has been removed.

(Def. 9) h is one-to-one.

We say that h is an epimorphism if and only if:

(Def. 10) $\operatorname{rng} h = \operatorname{the carrier of} H$.

Let G, H be left unital non empty multiplicative loop structures and let h be a map from G into H. We say that h is an isomorphism if and only if:

(Def. 11) h is an epimorphism and a monomorphism.

The following proposition is true

- (17) Let G be a left unital non empty multiplicative loop structure. Then $id_{the\ carrier\ of\ G}$ is a homomorphism from G to G.
- Let G, H be left unital non empty multiplicative loop structures. We say that G and H are isomorphic if and only if:
- (Def. 12) There exists a homomorphism from G to H which is an isomorphism.

Let us note that the predicate G and H are isomorphic is reflexive.

Next we state three propositions:

- (18) Let h be a function. Suppose dom $h = \text{end}(U_1)$ and for every set x such that $x \in \text{end}(U_1)$ holds $h(x) = \{0\} \longmapsto x$. Then h is a homomorphism from $\text{End}(U_1)$ to $\text{End}(\text{MSAlg}(U_1))$.
- (19) Let h be a homomorphism from $\operatorname{End}(U_1)$ to $\operatorname{End}(\operatorname{MSAlg}(U_1))$. If for every set x such that $x \in \operatorname{end}(U_1)$ holds $h(x) = \{0\} \longmapsto x$, then h is an isomorphism.
- (20) End(U_1) and End(MSAlg(U_1)) are isomorphic.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Artur Kornilowicz. On the group of automorphisms of universal algebra and many sorted algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/autalg_1.html.
- [9] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/alg_1.html.
- [10] Malgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [11] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialg 1.html.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.

- [15] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 17, 1995

Published January 2, 2004
