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The articles [3], [1], [4], and [2] provide the notation and terminology for this paper.
In this paperx, y, X, Y are sets.
We introduce G-net structures which are extensions of 1-sorted structure and are systems
〈 a carrier, an entrance, an escape〉,

where the carrier is a set and the entrance and the escape are binary relations.
Let N be a 1-sorted structure. The functor echaos(N) yields a set and is defined by:

(Def. 1) echaos(N) = (the carrier ofN)∪{the carrier ofN}.

Let I1 be a G-net structure. We say thatI1 is GG if and only if the conditions (Def. 2) are
satisfied.

(Def. 2)(i) The entrance ofI1 ⊆ [: the carrier ofI1, the carrier ofI1 :],

(ii) the escape ofI1 ⊆ [: the carrier ofI1, the carrier ofI1 :],

(iii) (the entrance ofI1) · (the entrance ofI1) = the entrance ofI1,

(iv) (the entrance ofI1) · (the escape ofI1) = the entrance ofI1,

(v) (the escape ofI1) · (the escape ofI1) = the escape ofI1, and

(vi) (the escape ofI1) · (the entrance ofI1) = the escape ofI1.

Let us observe that there exists a G-net structure which is GG.
A G-net is a GG G-net structure.
Let I1 be a G-net structure. We say thatI1 is EE if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) (The entrance ofI1) · ((the entrance ofI1)\ idthe carrier ofI1) = /0, and

(ii) (the escape ofI1) · ((the escape ofI1)\ idthe carrier ofI1) = /0.

Let us mention that there exists a G-net structure which is EE.
Let us note that there exists a G-net structure which is strict, GG, and EE.
An E-net is an EE GG G-net structure.
In the sequelN denotes an E-net.
Next we state several propositions:

(1) Let R, Sbe binary relations. Then〈X,R,S〉 is an E-net if and only if the following condi-
tions are satisfied:

R⊆ [:X, X :] andS⊆ [:X, X :] andR·R = R andR·S= R andS·S= S andS·R = S and
R· (R\ idX) = /0 andS· (S\ idX) = /0.
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(2) 〈X, /0, /0〉 is an E-net.

(3) 〈X, idX, idX〉 is an E-net.

(4) 〈 /0, /0, /0〉 is an E-net.

(8)1 〈X, idX\Y, idX\Y〉 is an E-net.

(9) echaos(N) 6= /0.

The strict E-net emptye is defined as follows:

(Def. 4) emptye = 〈 /0, /0, /0〉.

Let us considerX. The functor Temptye(X) yielding a strict E-net is defined as follows:

(Def. 5) Temptye(X) = 〈X, idX, idX〉.

The functor Pemptye(X) yields a strict E-net and is defined as follows:

(Def. 6) Pemptye(X) = 〈X, /0, /0〉.

Next we state two propositions:

(11)2 The carrier of Temptye(X) = X and the entrance of Temptye(X) = idX and the escape of
Temptye(X) = idX.

(12) The carrier of Pemptye(X) = X and the entrance of Pemptye(X) = /0 and the escape of
Pemptye(X) = /0.

Let us considerx. The functor Psinglee(x) yields a strict E-net and is defined by:

(Def. 7) Psinglee(x) = 〈{x}, id{x}, id{x}〉.

The functor Tsinglee(x) yields a strict E-net and is defined as follows:

(Def. 8) Tsinglee(x) = 〈{x}, /0, /0〉.

Next we state three propositions:

(13) The carrier of Psinglee(x) = {x} and the entrance of Psinglee(x) = id{x} and the escape of
Psinglee(x) = id{x}.

(14) The carrier of Tsinglee(x) = {x} and the entrance of Tsinglee(x) = /0 and the escape of
Tsinglee(x) = /0.

(15) 〈X∪Y, idX, idX〉 is an E-net.

Let us considerX, Y. The functor PTemptye(X,Y) yielding a strict E-net is defined by:

(Def. 9) PTemptye(X,Y) = 〈X∪Y, idX, idX〉.

One can prove the following propositions:

(16)(i) (The entrance ofN)\ iddom(the entrance ofN) = (the entrance ofN)\ idthe carrier ofN,

(ii) (the escape ofN)\ iddom(the escape ofN) = (the escape ofN)\ idthe carrier ofN,

(iii) (the entrance ofN)\ idrng(the entrance ofN) = (the entrance ofN)\ idthe carrier ofN, and

(iv) (the escape ofN)\ idrng(the escape ofN) = (the escape ofN)\ idthe carrier ofN.

(17) CL(the entrance ofN) = CL(the escape ofN).

1 The propositions (5)–(7) have been removed.
2 The proposition (10) has been removed.
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(18)(i) rng(the entrance ofN) = rngCL(the entrance ofN),

(ii) rng(the entrance ofN) = domCL(the entrance ofN),

(iii) rng(the escape ofN) = rngCL(the escape ofN),

(iv) rng(the escape ofN) = domCL(the escape ofN), and

(v) rng(the entrance ofN) = rng(the escape ofN).

(19)(i) dom(the entrance ofN)⊆ the carrier ofN,

(ii) rng(the entrance ofN)⊆ the carrier ofN,

(iii) dom(the escape ofN)⊆ the carrier ofN, and

(iv) rng(the escape ofN)⊆ the carrier ofN.

(20)(i) (The entrance ofN) · ((the escape ofN)\ idthe carrier ofN) = /0, and

(ii) (the escape ofN) · ((the entrance ofN)\ idthe carrier ofN) = /0.

(21)(i) ((The entrance ofN)\ idthe carrier ofN) · ((the entrance ofN)\ idthe carrier ofN) = /0,

(ii) ((the escape ofN)\ idthe carrier ofN) · ((the escape ofN)\ idthe carrier ofN) = /0,

(iii) ((the entrance ofN)\ idthe carrier ofN) · ((the escape ofN)\ idthe carrier ofN) = /0, and

(iv) ((the escape ofN)\ idthe carrier ofN) · ((the entrance ofN)\ idthe carrier ofN) = /0.

Let us considerN. The functor Placese(N) yielding a set is defined by:

(Def. 10) Placese(N) = rng(the entrance ofN).

Let us considerN. The functor Transitionse(N) yields a set and is defined by:

(Def. 11) Transitionse(N) = (the carrier ofN)\Placese(N).

Next we state three propositions:

(22) Placese(N) misses Transitionse(N).

(23) If 〈〈x, y〉〉 ∈ the entrance ofN or 〈〈x, y〉〉 ∈ the escape ofN and ifx 6= y, thenx∈Transitionse(N)
andy∈ Placese(N).

(24) (The entrance ofN) \ idthe carrier ofN ⊆ [:Transitionse(N), Placese(N) :] and (the escape of
N)\ idthe carrier ofN ⊆ [:Transitionse(N), Placese(N) :].

Let us considerN. The functor Flowe(N) yielding a binary relation is defined by:

(Def. 12) Flowe(N) = ((the entrance ofN)`∪ the escape ofN)\ idthe carrier ofN.

Next we state the proposition

(25) Flowe(N)⊆ [:Placese(N), Transitionse(N) :]∪ [:Transitionse(N), Placese(N) :].

Let us considerN. We introduce placese(N) as a synonym of Placese(N). We introduce
transitionse(N) as a synonym of Transitionse(N).

Let us considerN. The functor pree(N) yields a binary relation and is defined by:

(Def. 15)3 pree(N) = (the entrance ofN)\ idthe carrier ofN.

The functor poste(N) yielding a binary relation is defined as follows:

(Def. 16) poste(N) = (the escape ofN)\ idthe carrier ofN.

We now state the proposition

3 The definitions (Def. 13) and (Def. 14) have been removed.
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(28)4 pree(N)⊆ [: transitionse(N), placese(N) :] and poste(N)⊆ [: transitionse(N), placese(N) :].

Let us considerN. The functor shoree(N) yields a set and is defined by:

(Def. 17) shoree(N) = the carrier ofN.

The functor proxe(N) yields a binary relation and is defined by:

(Def. 18) proxe(N) = ((the entrance ofN)∪ (the escape ofN))`.

The functor flowe(N) yields a binary relation and is defined by:

(Def. 19) flowe(N) = (the entrance ofN)`∪ the escape ofN∪ idthe carrier ofN.

Next we state several propositions:

(29) proxe(N)⊆ [:shoree(N), shoree(N) :] and flowe(N)⊆ [:shoree(N), shoree(N) :].

(30) proxe(N) ·proxe(N) = proxe(N) and(proxe(N)\ idshoree(N)) ·proxe(N) = /0 and proxe(N)∪
(proxe(N))`∪ idshoree(N) = flowe(N)∪ (flowe(N))`.

(31)(i) id(the carrier ofN)\rng(the escape ofN) · ((the escape ofN) \ idthe carrier ofN) = (the escape of
N)\ idthe carrier ofN, and

(ii) id (the carrier ofN)\rng(the entrance ofN) · ((the entrance ofN)\ idthe carrier ofN) = (the entrance of
N)\ idthe carrier ofN.

(32)(i) ((The escape ofN)\ idthe carrier ofN) · ((the escape ofN)\ idthe carrier ofN) = /0,

(ii) ((the entrance ofN)\ idthe carrier ofN) · ((the entrance ofN)\ idthe carrier ofN) = /0,

(iii) ((the escape ofN)\ idthe carrier ofN) · ((the entrance ofN)\ idthe carrier ofN) = /0, and

(iv) ((the entrance ofN)\ idthe carrier ofN) · ((the escape ofN)\ idthe carrier ofN) = /0.

(33)(i) ((The escape ofN)\ idthe carrier ofN)` · ((the escape ofN)\ idthe carrier ofN)` = /0, and

(ii) ((the entrance ofN)\ idthe carrier ofN)` · ((the entrance ofN)\ idthe carrier ofN)` = /0.

(34)(i) ((The escape ofN)\ idthe carrier ofN)` ·(id(the carrier ofN)\rng(the escape ofN))` = ((the escape
of N)\ idthe carrier ofN)`, and

(ii) ((the entrance ofN) \ idthe carrier ofN)` · (id(the carrier ofN)\rng(the entrance ofN))` = ((the en-
trance ofN)\ idthe carrier ofN)`.

(35)(i) ((The escape ofN)\ idthe carrier ofN) · id(the carrier ofN)\rng(the escape ofN) = /0, and

(ii) ((the entrance ofN)\ idthe carrier ofN) · id(the carrier ofN)\rng(the entrance ofN) = /0.

(36)(i) id(the carrier ofN)\rng(the escape ofN) · ((the escape ofN)\ idthe carrier ofN)` = /0, and

(ii) id (the carrier ofN)\rng(the entrance ofN) · ((the entrance ofN)\ idthe carrier ofN)` = /0.

Let us considerN. We introduce supporte(N) as a synonym of shoree(N).
Let us considerN. The functor entrancee(N) yields a binary relation and is defined by:

(Def. 21)5 entrancee(N) = ((the escape ofN)\ idthe carrier ofN)`∪ id(the carrier ofN)\rng(the escape ofN).

The functor escapee(N) yields a binary relation and is defined by:

(Def. 22) escapee(N) = ((the entrance ofN)\ idthe carrier ofN)`∪ id(the carrier ofN)\rng(the entrance ofN).

We now state two propositions:

(37) entrancee(N) ·entrancee(N) = entrancee(N) and entrancee(N) ·escapee(N) = entrancee(N)
and escapee(N) ·entrancee(N) = escapee(N) and escapee(N) ·escapee(N) = escapee(N).

4 The propositions (26) and (27) have been removed.
5 The definition (Def. 20) has been removed.
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(38) entrancee(N)·(entrancee(N)\ idsupporte(N))= /0 and escapee(N)·(escapee(N)\ idsupporte(N))=
/0.

Let us considerN. We introduce stanchione(N) as a synonym of shoree(N).
Let us considerN. The functor adjace(N) yields a binary relation and is defined as follows:

(Def. 24)6 adjace(N)= (((the entrance ofN)∪(the escape ofN))\ idthe carrier ofN)∪ id(the carrier ofN)\rng(the entrance ofN).

We introduce circulatione(N) as a synonym of flowe(N).
One can prove the following two propositions:

(39) adjace(N) ⊆ [:stanchione(N), stanchione(N) :] and circulatione(N) ⊆ [:stanchione(N),
stanchione(N) :].

(40) adjace(N) · adjace(N) = adjace(N) and (adjace(N) \ idstanchione(N)) · adjace(N) = /0 and
adjace(N)∪ (adjace(N))`∪ idstanchione(N) = circulatione(N)∪ (circulatione(N))`.

Let N be an E-net. We introduce transitionss(N) as a synonym of Placese(N). We introduce
placess(N) as a synonym of Transitionse(N). We introduce carriers(N) as a synonym of shoree(N).
We introduce enters(N) as a synonym of entrancee(N). We introduce exits(N) as a synonym of
escapee(N). We introduce proxs(N) as a synonym of adjace(N).

In the sequelN is an E-net.
One can prove the following proposition

(41) ((The entrance ofN)\ idthe carrier ofN)` ⊆ [:Placese(N), Transitionse(N) :] and((the escape
of N)\ idthe carrier ofN)` ⊆ [:Placese(N), Transitionse(N) :].

Let N be a G-net structure. The functor pres(N) yielding a binary relation is defined as follows:

(Def. 25) pres(N) = ((the escape ofN)\ idthe carrier ofN)`.

The functor posts(N) yielding a binary relation is defined as follows:

(Def. 26) posts(N) = ((the entrance ofN)\ idthe carrier ofN)`.

The following proposition is true

(42) posts(N)⊆ [: transitionss(N), placess(N) :] and pres(N)⊆ [: transitionss(N), placess(N) :].
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