Definitions of Petri Net. Part II

Waldemar Korczyński Pedagogical University Kielce

Summary. In the paper an equational definition of Petri net is given.

MML Identifier: E_SIEC.

WWW: http://mizar.org/JFM/Vol4/e_siec.html

The articles [3], [1], [4], and [2] provide the notation and terminology for this paper. In this paper *x*, *y*, *X*, *Y* are sets.

We introduce G-net structures which are extensions of 1-sorted structure and are systems $\langle a \text{ carrier}, an \text{ entrance}, an \text{ escape } \rangle$,

where the carrier is a set and the entrance and the escape are binary relations.

Let *N* be a 1-sorted structure. The functor echaos(N) yields a set and is defined by:

(Def. 1) echaos(N) = (the carrier of N) \cup {the carrier of N}.

Let I_1 be a G-net structure. We say that I_1 is GG if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) The entrance of $I_1 \subseteq [:$ the carrier of I_1 , the carrier of I_1 :],

- (ii) the escape of $I_1 \subseteq [:$ the carrier of I_1 , the carrier of $I_1:]$,
- (iii) (the entrance of I_1) · (the entrance of I_1) = the entrance of I_1 ,
- (iv) (the entrance of I_1) · (the escape of I_1) = the entrance of I_1 ,
- (v) (the escape of I_1) · (the escape of I_1) = the escape of I_1 , and
- (vi) (the escape of I_1) · (the entrance of I_1) = the escape of I_1 .

Let us observe that there exists a G-net structure which is GG. A G-net is a GG G-net structure.

Let I_1 be a G-net structure. We say that I_1 is EE if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) (The entrance of I_1) \cdot ((the entrance of I_1) \setminus id_{the carrier of I_1) = \emptyset , and}

- (ii) (the escape of I_1) \cdot ((the escape of I_1) \setminus id_{the carrier of I_1) = \emptyset .}
- Let us mention that there exists a G-net structure which is EE.

Let us note that there exists a G-net structure which is strict, GG, and EE.

- An E-net is an EE GG G-net structure.
- In the sequel *N* denotes an E-net.

Next we state several propositions:

(1) Let *R*, *S* be binary relations. Then $\langle X, R, S \rangle$ is an E-net if and only if the following conditions are satisfied:

 $R \subseteq [X, X]$ and $S \subseteq [X, X]$ and $R \cdot R = R$ and $R \cdot S = R$ and $S \cdot S = S$ and $S \cdot R = S$ and $R \cdot (R \setminus id_X) = \emptyset$ and $S \cdot (S \setminus id_X) = \emptyset$.

- (2) $\langle X, \emptyset, \emptyset \rangle$ is an E-net.
- (3) $\langle X, id_X, id_X \rangle$ is an E-net.
- (4) $\langle \emptyset, \emptyset, \emptyset \rangle$ is an E-net.
- (8)¹ $\langle X, \mathrm{id}_{X \setminus Y}, \mathrm{id}_{X \setminus Y} \rangle$ is an E-net.
- (9) echaos $(N) \neq \emptyset$.

The strict E-net empty_e is defined as follows:

(Def. 4) empty_e = $\langle \emptyset, \emptyset, \emptyset \rangle$.

Let us consider X. The functor Tempty_e(X) yielding a strict E-net is defined as follows:

(Def. 5) Tempty_e(X) = $\langle X, id_X, id_X \rangle$.

The functor $\text{Pempty}_{e}(X)$ yields a strict E-net and is defined as follows:

(Def. 6) Pempty_e(X) = $\langle X, \emptyset, \emptyset \rangle$.

Next we state two propositions:

- (11)² The carrier of Tempty_e(X) = X and the entrance of Tempty_e(X) = id_X and the escape of Tempty_e(X) = id_X.
- (12) The carrier of $\text{Pempty}_e(X) = X$ and the entrance of $\text{Pempty}_e(X) = \emptyset$ and the escape of $\text{Pempty}_e(X) = \emptyset$.

Let us consider x. The functor $Psingle_e(x)$ yields a strict E-net and is defined by:

(Def. 7) Psingle_e(x) = $\langle \{x\}, id_{\{x\}}, id_{\{x\}} \rangle$.

The functor $Tsingle_{e}(x)$ yields a strict E-net and is defined as follows:

(Def. 8) $\operatorname{Tsingle}_{e}(x) = \langle \{x\}, \emptyset, \emptyset \rangle.$

Next we state three propositions:

- (13) The carrier of $Psingle_e(x) = \{x\}$ and the entrance of $Psingle_e(x) = id_{\{x\}}$ and the escape of $Psingle_e(x) = id_{\{x\}}$.
- (14) The carrier of $\text{Tsingle}_e(x) = \{x\}$ and the entrance of $\text{Tsingle}_e(x) = \emptyset$ and the escape of $\text{Tsingle}_e(x) = \emptyset$.
- (15) $\langle X \cup Y, id_X, id_X \rangle$ is an E-net.

Let us consider X, Y. The functor $PTempty_e(X,Y)$ yielding a strict E-net is defined by:

(Def. 9) PTempty_e(X, Y) = $\langle X \cup Y, id_X, id_X \rangle$.

One can prove the following propositions:

- (16)(i) (The entrance of *N*) \ id_{dom(the entrance of *N*) = (the entrance of *N*) \ id_{the carrier of *N*,}}
- (ii) (the escape of N) \setminus id_{dom(the escape of N) = (the escape of N) \setminus id_{the carrier of N,}}
- (iii) (the entrance of N) \setminus id_{rng(the entrance of N)} = (the entrance of N) \setminus id_{the carrier of N}, and
- (iv) (the escape of N) \ id_{rng(the escape of N) = (the escape of N) \ id_{the carrier of N}.}
- (17) CL(the entrance of N) = CL(the escape of N).

¹ The propositions (5)–(7) have been removed.

² The proposition (10) has been removed.

- (18)(i) rng (the entrance of N) = rng CL(the entrance of N),
- (ii) rng (the entrance of N) = dom CL(the entrance of N),
- (iii) $\operatorname{rng}(\operatorname{the escape of} N) = \operatorname{rng} \operatorname{CL}(\operatorname{the escape of} N),$
- (iv) $\operatorname{rng}(\operatorname{the escape of} N) = \operatorname{dom} \operatorname{CL}(\operatorname{the escape of} N), \text{ and }$
- (v) $\operatorname{rng}(\text{the entrance of } N) = \operatorname{rng}(\text{the escape of } N).$
- (19)(i) dom(the entrance of N) \subseteq the carrier of N,
- (ii) rng (the entrance of N) \subseteq the carrier of N,
- (iii) dom(the escape of N) \subseteq the carrier of N, and
- (iv) rng (the escape of N) \subseteq the carrier of N.
- (20)(i) (The entrance of *N*) \cdot ((the escape of *N*) \setminus id_{the carrier of *N*}) = \emptyset , and
- (ii) (the escape of N) \cdot ((the entrance of N) \setminus id_{the carrier of N}) = \emptyset .
- (21)(i) ((The entrance of N) \ id_{the carrier of N}) · ((the entrance of N) \ id_{the carrier of N}) = \emptyset ,
- (ii) ((the escape of N) \ id_{the carrier of N}) \cdot ((the escape of N) \ id_{the carrier of N}) = \emptyset ,
- (iii) ((the entrance of N) \ id_{the carrier of N}) \cdot ((the escape of N) \ id_{the carrier of N}) = \emptyset , and
- (iv) ((the escape of *N*) \ id_{the carrier of *N*}) \cdot ((the entrance of *N*) \ id_{the carrier of *N*}) = \emptyset .

Let us consider N. The functor $Places_e(N)$ yielding a set is defined by:

(Def. 10) Places_e(
$$N$$
) = rng(the entrance of N).

Let us consider N. The functor $Transitions_e(N)$ yields a set and is defined by:

(Def. 11) Transitions_e(
$$N$$
) = (the carrier of N) \ Places_e(N).

Next we state three propositions:

- (22) Places_e(N) misses Transitions_e(N).
- (23) If $\langle x, y \rangle \in$ the entrance of *N* or $\langle x, y \rangle \in$ the escape of *N* and if $x \neq y$, then $x \in$ Transitions_e(*N*) and $y \in$ Places_e(*N*).
- (24) (The entrance of N) \ id_{the carrier of $N \subseteq [:$ Transitions_e(N), Places_e(N):] and (the escape of N) \ id_{the carrier of $N \subseteq [:$ Transitions_e(N), Places_e(N):].}}

Let us consider N. The functor $Flow_e(N)$ yielding a binary relation is defined by:

(Def. 12) Flow_e(N) = ((the entrance of N) $\subset \cup$ the escape of N) \setminus id_{the carrier of N}.

Next we state the proposition

(25) $\operatorname{Flow}_{e}(N) \subseteq [\operatorname{Places}_{e}(N), \operatorname{Transitions}_{e}(N)] \cup [\operatorname{Transitions}_{e}(N), \operatorname{Places}_{e}(N)].$

Let us consider N. We introduce $places_e(N)$ as a synonym of $Places_e(N)$. We introduce transitions_e(N) as a synonym of Transitions_e(N).

Let us consider N. The functor $\operatorname{pre}_{e}(N)$ yields a binary relation and is defined by:

(Def. 15)³ $\operatorname{pre}_{e}(N) = (\text{the entrance of } N) \setminus \operatorname{id}_{\operatorname{the carrier of } N}.$

The functor $post_e(N)$ yielding a binary relation is defined as follows:

(Def. 16) $\text{post}_e(N) = (\text{the escape of } N) \setminus \text{id}_{\text{the carrier of } N}.$

We now state the proposition

³ The definitions (Def. 13) and (Def. 14) have been removed.

 $(28)^4$ pre_e(N) \subseteq [: transitions_e(N), places_e(N) :] and post_e(N) \subseteq [: transitions_e(N), places_e(N) :].

Let us consider N. The functor shore_e(N) yields a set and is defined by:

(Def. 17) shore_e(N) = the carrier of N.

The functor $\operatorname{prox}_{\rho}(N)$ yields a binary relation and is defined by:

(Def. 18) $\operatorname{prox}_{e}(N) = ((\text{the entrance of } N) \cup (\text{the escape of } N))^{\smile}.$

The functor $flow_e(N)$ yields a binary relation and is defined by:

(Def. 19) flow_e(N) = (the entrance of N) $\smile \cup$ the escape of $N \cup id_{\text{the carrier of } N}$.

Next we state several propositions:

- (29) $\operatorname{prox}_{e}(N) \subseteq [:\operatorname{shore}_{e}(N), \operatorname{shore}_{e}(N):] \text{ and } \operatorname{flow}_{e}(N) \subseteq [:\operatorname{shore}_{e}(N), \operatorname{shore}_{e}(N):].$
- (30) $\operatorname{prox}_{e}(N) \cdot \operatorname{prox}_{e}(N) = \operatorname{prox}_{e}(N)$ and $(\operatorname{prox}_{e}(N) \setminus \operatorname{id}_{\operatorname{shore}_{e}(N)}) \cdot \operatorname{prox}_{e}(N) = \emptyset$ and $\operatorname{prox}_{e}(N) \cup (\operatorname{prox}_{e}(N))^{\smile} \cup \operatorname{id}_{\operatorname{shore}_{e}(N)} = \operatorname{flow}_{e}(N) \cup (\operatorname{flow}_{e}(N))^{\smile}.$
- (31)(i) $\operatorname{id}_{(\text{the carrier of }N)\setminus\operatorname{rng}(\text{the escape of }N)} \cdot ((\text{the escape of }N) \setminus \operatorname{id}_{\text{the carrier of }N}) = (\text{the escape of }N) \setminus \operatorname{id}_{\text{the carrier of }N}, \text{ and}$
- (ii) $\operatorname{id}_{(\text{the carrier of }N)\setminus \operatorname{rng}(\text{the entrance of }N)} \cdot ((\text{the entrance of }N) \setminus \operatorname{id}_{\operatorname{the carrier of }N}) = (\text{the entrance of }N) \setminus \operatorname{id}_{\operatorname{the carrier of }N}.$
- (32)(i) ((The escape of *N*) \ id_{the carrier of *N*}) \cdot ((the escape of *N*) \ id_{the carrier of *N*}) = \emptyset ,
- (ii) ((the entrance of *N*) \ id_{the carrier of *N*}) \cdot ((the entrance of *N*) \ id_{the carrier of *N*}) = \emptyset ,
- (iii) ((the escape of *N*) \ id_{the carrier of *N*}) \cdot ((the entrance of *N*) \ id_{the carrier of *N*}) = \emptyset , and
- (iv) ((the entrance of *N*) \ $id_{the \ carrier \ of \ N}$) \cdot ((the escape of *N*) \ $id_{the \ carrier \ of \ N}$) = \emptyset .
- (33)(i) ((The escape of N) \ id_{the carrier of N}) $\sim \cdot$ ((the escape of N) \ id_{the carrier of N}) $\sim = \emptyset$, and
- (ii) ((the entrance of N) \ id_{the carrier of N}) \simeq · ((the entrance of N) \ id_{the carrier of N}) $\simeq \emptyset$.
- (34)(i) ((The escape of N) \ id_{the carrier of N}) $\sim \cdot (id_{(the carrier of N) \setminus rng(the escape of N)}) = ((the escape of N) \setminus id_{the carrier of N})$, and
- (ii) ((the entrance of N) \ $id_{the \ carrier \ of \ N}$) $\sim \cdot (id_{(the \ carrier \ of \ N) \setminus rng(the \ entrance \ of \ N)})^{\sim} = ((the \ entrance \ of \ N) \setminus id_{the \ carrier \ of \ N})^{\sim}.$
- (35)(i) ((The escape of N) \ id_{the carrier of N}) \cdot id_{(the carrier of N) \rng(the escape of N)} = \emptyset , and
- (ii) ((the entrance of N) \ id_{the carrier of N}) \cdot id_{(the carrier of N) \setminus rng(the entrance of N)} = \emptyset .
- (36)(i) $\operatorname{id}_{\operatorname{(the carrier of N)} \operatorname{rng}(\operatorname{the escape of N})} \cdot ((\operatorname{the escape of N}) \setminus \operatorname{id}_{\operatorname{the carrier of N}})^{\smile} = \emptyset$, and
- (ii) $\operatorname{id}_{(\text{the carrier of }N)\setminus\operatorname{rng}(\text{the entrance of }N)} \cdot ((\text{the entrance of }N) \setminus \operatorname{id}_{\text{the carrier of }N})^{\smile} = \emptyset.$

Let us consider N. We introduce $\operatorname{support}_e(N)$ as a synonym of $\operatorname{shore}_e(N)$. Let us consider N. The functor $\operatorname{entrance}_e(N)$ yields a binary relation and is defined by:

 $(\text{Def. 21})^5 \quad \text{entrance}_e(N) = ((\text{the escape of } N) \setminus \text{id}_{\text{the carrier of } N})^{\smile} \cup \text{id}_{(\text{the carrier of } N) \setminus \text{rng}(\text{the escape of } N)}.$

The functor $escape_e(N)$ yields a binary relation and is defined by:

- (Def. 22) $\operatorname{escape}_{e}(N) = ((\operatorname{the entrance of } N) \setminus \operatorname{id}_{\operatorname{the carrier of } N})^{\smile} \cup \operatorname{id}_{\operatorname{(the carrier of } N) \setminus \operatorname{rng}(\operatorname{the entrance of } N)}$. We now state two propositions:
 - (37) entrance_e(N) entrance_e(N) = entrance_e(N) and entrance_e(N) escape_e(N) = entrance_e(N) and escape_e(N) escape_e(N) = escape_e(N).

⁴ The propositions (26) and (27) have been removed.

⁵ The definition (Def. 20) has been removed.

(38) entrance_e(N) · (entrance_e(N) \ id_{support_e(N)}) = \emptyset and escape_e(N) · (escape_e(N) \ id_{support_e(N)}) = \emptyset .

Let us consider N. We introduce stanchion_e(N) as a synonym of shore_e(N). Let us consider N. The functor $adjac_e(N)$ yields a binary relation and is defined as follows:

- (Def. 24)⁶ $\operatorname{adjac}_{e}(N) = (((\text{the entrance of } N) \cup (\text{the escape of } N)) \setminus \operatorname{id}_{\operatorname{the carrier of } N}) \cup \operatorname{id}_{\operatorname{(the carrier of } N) \setminus \operatorname{rng}(\operatorname{the entrance of } N)})$
 - We introduce circulation_e(N) as a synonym of $flow_e(N)$. One can prove the following two propositions:
 - (39) $\operatorname{adjac}_{e}(N) \subseteq [\operatorname{stanchion}_{e}(N), \operatorname{stanchion}_{e}(N):]$ and $\operatorname{circulation}_{e}(N) \subseteq [\operatorname{stanchion}_{e}(N), \operatorname{stanchion}_{e}(N):]$.
 - (40) $\operatorname{adjac}_{e}(N) \cdot \operatorname{adjac}_{e}(N) = \operatorname{adjac}_{e}(N)$ and $(\operatorname{adjac}_{e}(N) \setminus \operatorname{id}_{\operatorname{stanchion}_{e}(N)}) \cdot \operatorname{adjac}_{e}(N) = \emptyset$ and $\operatorname{adjac}_{e}(N) \cup (\operatorname{adjac}_{e}(N))^{\smile} \cup \operatorname{id}_{\operatorname{stanchion}_{e}(N)} = \operatorname{circulation}_{e}(N) \cup (\operatorname{circulation}_{e}(N))^{\smile}$.

Let N be an E-net. We introduce transitions_s(N) as a synonym of $Places_e(N)$. We introduce $places_s(N)$ as a synonym of $Transitions_e(N)$. We introduce $carrier_s(N)$ as a synonym of shore_e(N). We introduce $enter_s(N)$ as a synonym of $entrance_e(N)$. We introduce $exit_s(N)$ as a synonym of $escape_e(N)$. We introduce $prox_s(N)$ as a synonym of $adjac_e(N)$.

In the sequel *N* is an E-net.

One can prove the following proposition

(41) ((The entrance of N) \setminus id_{the carrier of N) \cong [:Places_e(N), Transitions_e(N):] and ((the escape of N) \setminus id_{the carrier of N) \cong [:Places_e(N), Transitions_e(N):].}}

Let N be a G-net structure. The functor $\operatorname{pre}_{\mathfrak{s}}(N)$ yielding a binary relation is defined as follows:

(Def. 25) $\operatorname{pre}_{s}(N) = ((\operatorname{the escape of } N) \setminus \operatorname{id}_{\operatorname{the carrier of } N})^{\smile}.$

The functor $post_s(N)$ yielding a binary relation is defined as follows:

(Def. 26) $\operatorname{post}_{s}(N) = ((\text{the entrance of } N) \setminus \operatorname{id}_{\operatorname{the carrier of } N})^{\smile}.$

The following proposition is true

(42) $\text{post}_{s}(N) \subseteq [:\text{transitions}_{s}(N), \text{places}_{s}(N):] \text{ and } \text{pre}_{s}(N) \subseteq [:\text{transitions}_{s}(N), \text{places}_{s}(N):].$

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [2] Waldemar Korczyński. Some properties of binary relations. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/ Vol4/sysrel.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [4] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received January 31, 1992

Published January 2, 2004

⁶ The definition (Def. 23) has been removed.