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The articlesl[3],[[1],[[4], and [2] provide the notation and terminology for this paper.
In this papel, y, X, Y are sets.
We introduce G-net structures which are extensions of 1-sorted structure and are systems
( a carrier, an entrance, an escape
where the carrier is a set and the entrance and the escape are binary relations.
LetN be a 1-sorted structure. The functor eciidbsyields a set and is defined by:

(Def. 1) echao@\) = (the carrier oN) U {the carrier oiN}.

Let 11 be a G-net structure. We say tHatis GG if and only if the conditions (Def. 2) are
satisfied.

(Def. 2)(i) The entrance df C [the carrier ofl1, the carrier ol ],
(i) the escape of; C [the carrier ofl1, the carrier o1 ],
(i)  (the entrance of;) - (the entrance off) = the entrance af,
(iv) (the entrance of) - (the escape df ) = the entrance off,
(v) (the escape df) - (the escape df;) = the escape df;, and
(vi) (the escape df) - (the entrance off;) = the escape df.

Let us observe that there exists a G-net structure which is GG.
A G-netis a GG G-net structure.
Letl; be a G-net structure. We say thats EE if and only if the conditions (Def. 3) are satisfied.

(Def. 3)()) (The entrance df) - ((the entrance offy) \ idine carrier ofi;) = 0, and
(ii) (the €scape Orl) : ((the €scape dfl) \idthe carrier oﬂl) =0.
Let us mention that there exists a G-net structure which is EE.
Let us note that there exists a G-net structure which is strict, GG, and EE.
An E-net is an EE GG G-net structure.

In the sequeN denotes an E-net.
Next we state several propositions:

(1) LetR, Sbe binary relations. ThetX,R S is an E-net if and only if the following condi-
tions are satisfied:
RC[X,X]andSC [X,X]andR-R=RandR-S=RandS-S=SandS-R= Sand
R-(R\idx) =0andS- (S\idx) =0.
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(2) (X,0,0)is an E-net.

(3) (X,idx,idx) is an E-net.

(4) (0,0,0)is an E-net.

(SH (X,idy\y,idx\v) is an E-net.

(9) echaofN) 0.

The strict E-net emptyis defined as follows:
(Def. 4) empty = (0,0,0).

Let us consideK. The functor Tempty(X) yielding a strict E-net is defined as follows:
(Def. 5) Tempty(X) = (X, idx,idx).

The functor Pempiy(X) yields a strict E-net and is defined as follows:

(Def. 6) Pempty(X) = (X,0,0).

Next we state two propositions:

(11E] The carrier of Tempty(X) = X and the entrance of Temp{X) = idx and the escape of
Tempty,(X) = idx.

(12) The carrier of PemptyX) = X and the entrance of PemptX) = 0 and the escape of
Pempty(X) = 0.

Let us considexk. The functor Psinglgx) yields a strict E-net and is defined by:
(Def. 7)  Psinglg(x) = ({x},idy;,idxy)-
The functor Tsinglg(x) yields a strict E-net and is defined as follows:
(Def. 8) Tsingle(x) = ({x},0,0).
Next we state three propositions:

(13) The carrier of Psingl¢x) = {x} and the entrance of Psing(&) = id,, and the escape of
Psinglg(x) = idyy; -

(14) The carrier of Tsinglgx) = {x} and the entrance of Tsingle) = 0 and the escape of
Tsingle,(x) = 0.

(15) (XUY,idx,idx) is an E-net.
Let us consideK, Y. The functor PTempty(X,Y) yielding a strict E-net is defined by:
(Def. 9) PTempty(X,Y) = (XUY,idx,idx).
One can prove the following propositions:

(16)()) (The entrance df) \ idgom(he entrance oN) = (the entrance dN) \ idine carrier ofN,

(i) (the escape oN) \ idgom(the escape o) = (the escape dfl) \ idine carrier ofN
(iii) ~ (the entrance oN) \ idingthe entrance oy = (the entrance o) \ idine carrier oiv, @nd
(iv) (the escape o) \ iding(ne escape oN) = (the escape d¥l) \ idthe carrier ofiN-

(17) CL(the entrance dfl) = CL(the escape d).

1 The propositions (5)-(7) have been removed.
2 The proposition (10) has been removed.
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(18)(1) rng(the entrance df) = rng CL(the entrance o),
(i) rng(the entrance o) = dom CL(the entrance o),
(iii)  rng(the escape oN) = rng CL(the escape df),

(iv) rng(the escape dfl) = domCL(the escape dfl), and
(v) rng(the entrance dfl) = rng (the escape df).

(19)(1)) dom(the entrance ®f) C the carrier oiN,
(i) rng(the entrance ofl) C the carrier ofN,

(i) dom(the escape dN) C the carrier oiN, and
(iv) rng(the escape dfl) C the carrier oiN.

(20)(1)) (The entrance dfl) - ((the escape d¥) \ idihe carrier oin) = 0, and
(i) (the escape oN) - ((the entrance o) \ idihe carrier o) = O.

(21)(@i) ((The entrance o) \ idihe carrier oiv) - ((the entrance o) \ idine carrier o) = 0,
(i)  ((the escape dfl) \ idine carrier omn) - ((the escape d¥) \ idihe carrier o) = O,

(i) ((the entrance o) \ idine carrier oiN) - ((the escape dfl) \ idine carrier oin) = 0, @and
(iv)  ((the escape dfl) \ idine carrier omn) - ((the entrance o) \ idine carrier oiv) = 0.

Let us consideN. The functor Place$N) yielding a set is defined by:
(Def. 10) PlacegN) = rng(the entrance dfl).
Let us consideN. The functor TransitiongN) yields a set and is defined by:
(Def. 11) Transitiong(N) = (the carrier olN) \ Placeg(N).
Next we state three propositions:
(22) Places(N) misses Transitior¢N).

(23) If(x,y) e the entrance dfl or (x, y) € the escape dfl and ifx#£y, thenx € Transitiong(N)
andy € Placeg(N).

(24) (The entrance o) \ idine carrier oin € [ Transitiong(N), Placeg(N):] and (the escape of
N) \ idthe carrier oiv C [ Transitiong(N), Placeg(N) ].

Let us consideN. The functor Flow(N) yielding a binary relation is defined by:
(Def. 12) Flow(N) = ((the entrance di)~ Uthe escape d¥) \ idie carrier o -

Next we state the proposition
(25) Flowe(N) C :Placeg(N), Transitiong(N) ] U [ Transitiong(N), Placeg(N) ].

Let us consideMN. We introduce placgéN) as a synonym of PlacgiN). We introduce
transitiong(N) as a synonym of Transitiog@\).
Let us consideN. The functor prg(N) yields a binary relation and is defined by:

(Def. 15§ pre,(N) = (the entrance o) \ ide carrier ofN-
The functor posi(N) yielding a binary relation is defined as follows:
(Def. 16) po%(N) == (the escape dﬂ) \ |dthe carrier ofN -

We now state the proposition

3 The definitions (Def. 13) and (Def. 14) have been removed.
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(28@ pres(N) C [transitiong(N), placeg(N) ] and post(N) C [:transitiong(N), placeg(N) J.
Let us consideN. The functor shorgN) yields a set and is defined by:
(Def. 17) shorg(N) = the carrier ofN.
The functor prox(N) yields a binary relation and is defined by:
(Def. 18) prox(N) = ((the entrance o) U (the escape dfl))™.
The functor flow(N) yields a binary relation and is defined by:
(Def. 19) flowe(N) = (the entrance o)~ Uthe escape dfl Uidine carrier ofN-

Next we state several propositions:
(29) prox(N) C [:shore(N), shorg(N) ] and flowe(N) C [:shore(N), shore(N) .

(30)  prox,(N) - prox,(N) = prox(N) and(prox,(N) \ idsnore(n)) - ProXe(N) = 0 and prox(N) U
(Proxg(N))~ Uidspore(n) = flowe(N) U (flowe(N)) ™.

B idihe carrier ofN)\mg(tne escape oR) ° ((the escape oN) \ idie carrier ofn) = (the escape of
N) \ idthe carrier oin, @and

(ii) id_(the carrier ofN)\rng(the entrance oN) * ((the entrance Olf\l) \ idihe carrier ofN) = (the entrance of
N) \ Idthe carrier ofN-

(32)(i) ((The escape dfl) \ idine carrier oin) - ((the escape d¥) \ idine carrier otn) = 0,
(i)  ((the entrance dN) \ idine carrier o) - ((the entrance o) \ idihe carrier oin) = 0,
(i) ((the escape dfl) \ idine carrier omn) « ((the entrance o) \ idine carrier oy ) = 0, and
(iv)  ((the entrance o) \ idine carrier o) - ((the escape d¥) \ idine carrier oiv) = 0.

(33)(1)) ((The escape dN) \ idthe carrier o)™ - ((the escape d¥) \ idihe carrier otn) ™~ = 0, and

(") ((the entl’ance dﬂ) \ id[he carrier QfN)v N ((the entl’ance dﬂ) \ id[he carrier ofN)v = 0.

(34)(i)  ((The escape d¥l) \idine carrier o)~ (id(the carrier ofN)\mgthe escape o))~ = ((the escape
of N) \ idine carrier o)™, @nd

(i) ((the entrance ON) \ idthe carrier ofN)v : (id(the carrier ofN)\rng(the entrance oN))V = ((the en-
trance ofN) \ ide carrier ofN) -

(35) (') ((The escape dﬂ) \ idthe carrier ofN) : id(the carrier ofN)\rng(the escape oN) = ®a and
(ii) ((the entrance dﬂ) \ idithe carrier ofN) : id(the carrier ofN)\rng(the entrance oN) = 0.

(36) (') id(the carrier ofN)\rng(the escape oN) ((the escape dﬂ) \ idthe carrier OfN)v = Oa and
(ii) id (the carrier ofN)\rng(the entrance oN) ((the entrance dﬂ) \ idthe carrier ofN)v =0.

Let us consideN. We introduce suppqitN) as a synonym of shogéN).
Let us consideN. The functor entrangéN) yields a binary relation and is defined by:

(Def. 21@ entrancg(N) = ((the escape d¥) \ idine carrier o)~ U id(the carrier ofN)\rng(the escape oN)-
The functor escapéN) yields a binary relation and is defined by:
(Def. 22) escan-féN) = ((the entrance o) \ idine carrier o)~ U id(the carrier ofN)\rng(the entrance oN)-

We now state two propositions:

(37) entrancgN)-entrancg(N) = entrancg(N) and entrancg€N) - escapg(N) = entrancg(N)
and escapgN) - entrancg(N) = escapg(N) and escapgN) - escapg(N) = escapg(N).

4 The propositions (26) and (27) have been removed.
5 The definition (Def. 20) has been removed.
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(38) entrancgN)- (entrance(N) \ idsypporg(n)) = 0 and escapgN) - (escapg(N) \ idsypporg(n)) =
0.

Let us consideN. We introduce stanchi@fN) as a synonym of shogéN).
Let us consideN. The functor adjagN) yields a binary relation and is defined as follows:

(Def. 24@ adja(é(N) = (((the entrance dﬂ) U(the escape dﬂ)) \ idihe carrier OfN) U id(the carrier ofN)\rng(the entrance oN)-

We introduce circulatiog(N) as a synonym of flog(N).
One can prove the following two propositions:

(39) adjag(N) C [stanchiog(N), stanchiog(N)] and circulatiog(N) C [ stanchiog(N),

stanchiog(N) ].

(40) adjag(N) - adjag(N) = adjag(N) and (adjag(N) \ idstanchioa(n)) - @djag(N) = 0 and
adjag(N) U (adjag(N))~ Uidstanchiog(n) = Circulations(N) U (circulations(N))™~ .

Let N be an E-net. We introduce transitig(id) as a synonym of PlacgiN). We introduce
places(N) as a synonym of TransitiogdN). We introduce carrig(N) as a synonym of shogéN).
We introduce entgfN) as a synonym of entrang@). We introduce exi{N) as a synonym of
escapg(N). We introduce proxN) as a synonym of adjatN).

In the sequeN is an E-net.

One can prove the following proposition

(41) ((The entrance o) \ idie carrier o)™~ C [ Placeg(N), Transitiong(N) ] and((the escape
of N) \ idthe carrier o)™~ C [ Places(N), Transitiong(N) 1.

Let N be a G-net structure. The functor gifd) yielding a binary relation is defined as follows:
(Def. 25) pre(N) = ((the escape d¥) \ idine carrier ofiN) ™ -
The functor pos(N) yielding a binary relation is defined as follows:
(Def. 26) posi(N) = ((the entrance oN) \ idine carrier ofN) ™ -

The following proposition is true

(42) post(N) C transitiong(N), placeg(N) ] and prg(N) C [ transitiong(N), placeg(N) 1.
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